C280, Computer Vision

Prof. Trevor Darrell trevor@eecs.berkeley.edu

Lecture 16: Recognition in Context

Last Lecture

- Naïve-Bayes Nearest Neighbor (Irani)
- ISM (Liebe)
- Constellation Models (Fergus)
- Transformed LDA Models (Sudderth)
- 3-D view models (Saravese)

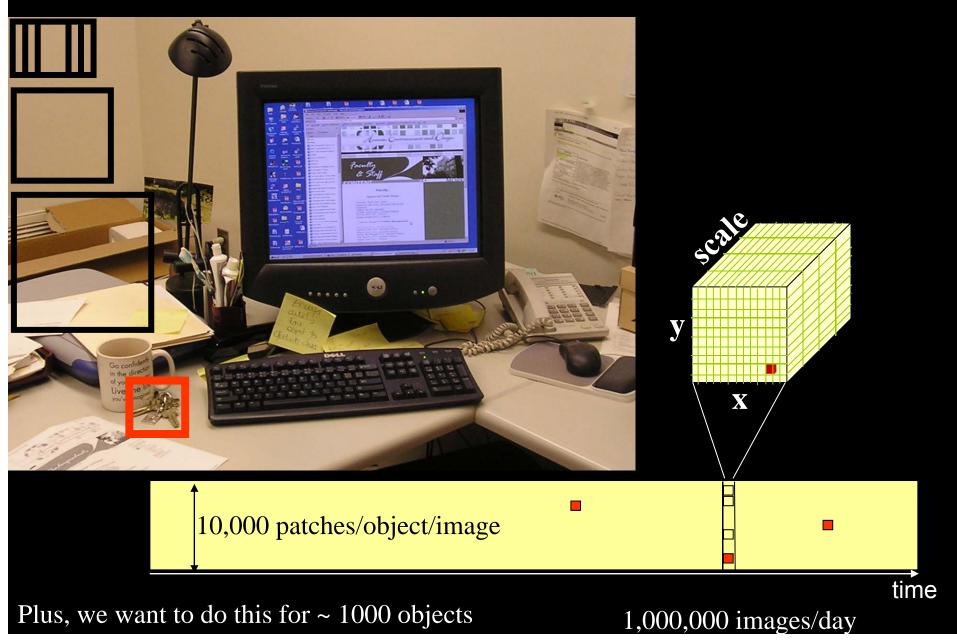
This week

- Two last topics in recognition:
 - Context
 - Articulation

Today: Three papers on computational models of context:

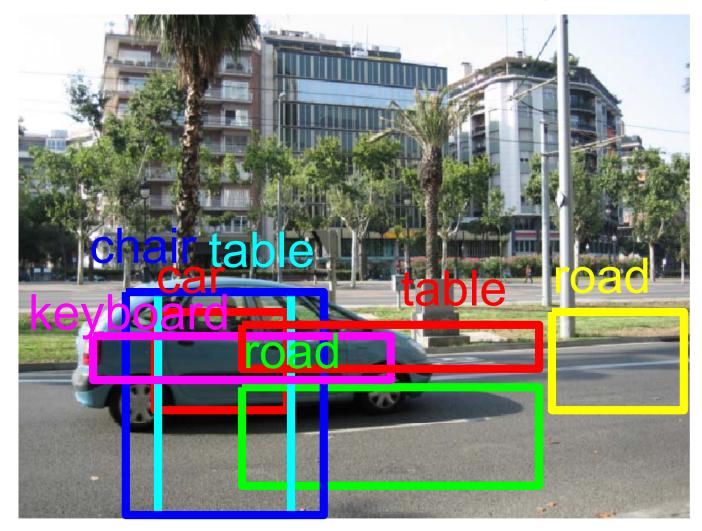
- A. Torralba, K. P. Murphy, and W. T. Freeman, "Contextual models for object detection using boosted random fields," in Advances in Neural Information Processing Systems 17 (NIPS), 2005.
- D. Hoiem, A. A. Efros, and M. Hebert, "Putting objects in perspective," in Computer Vision and Pattern Recognition, 2006
- G. Heitz and D. Koller, "Learning spatial context: Using stuff to find things," in ECCV 2008, pp. 30-43.

Why is detection hard?



Is local information enough?

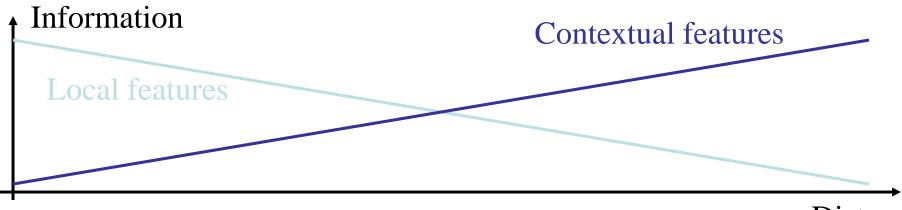
With hundreds of categories



If we have 1000 categories (detectors), and each detector produces 1 fa every 10 images, we will have 100 false alarms per image... pretty much garbage...

Is local information even enough?

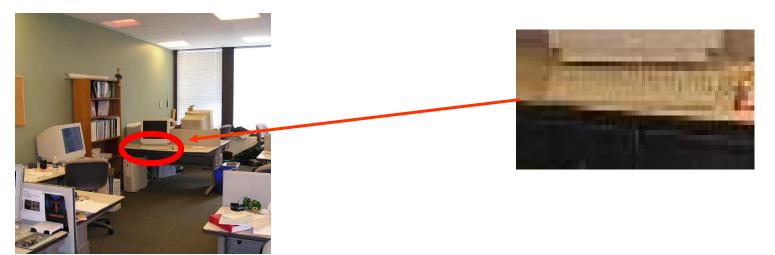
Is local information even enough?



Distance Slide credit: A. Torralba

The system does not care about the scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.



We know there is no keyboard present in this scene

... even if there is one indeed.

The multiple personalities of a blob



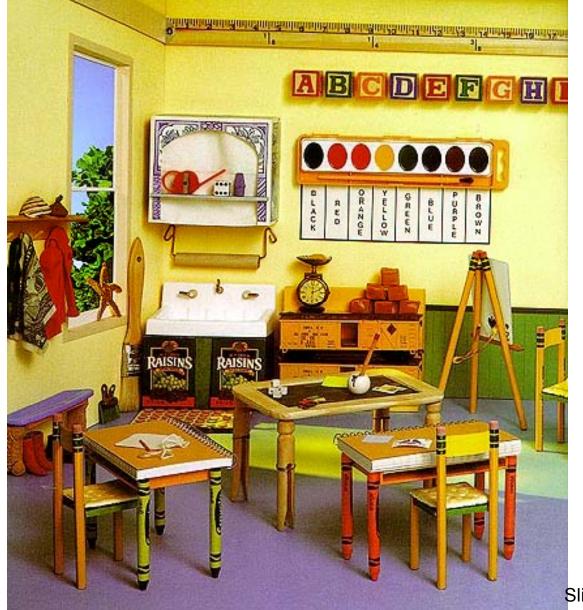
The multiple personalities of a blob

ABC

12 A 13 C

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

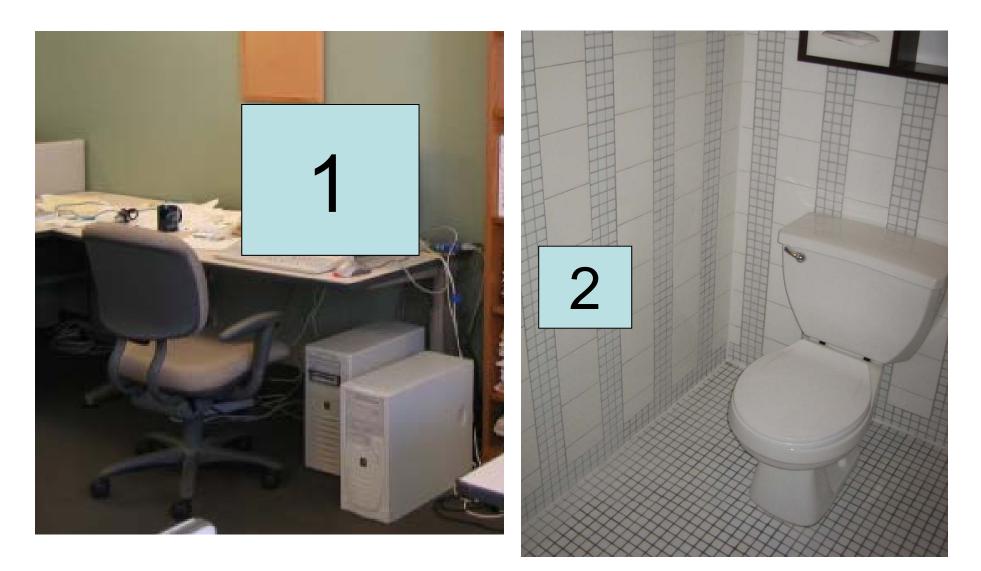


Look-Alikes by Joan Steiner

The context challenge

How far can you go without using an object detector?

What are the hidden objects?



What are the hidden objects?

The importance of context

- Cognitive psychology
 - Palmer 1975
 - Biederman 1981

- ..

- Computer vision
 - Noton and Stark (1971)
 - Hanson and Riseman (1978)
 - Barrow & Tenenbaum (1978)
 - Ohta, kanade, Skai (1978)
 - Haralick (1983)
 - Strat and Fischler (1991)
 - Bobick and Pinhanez (1995)
 - Campbell et al (1997)

Class	Contrast alements	On constant
Class	Context elements	Operator
SKY	ALWAYS	ABOVE-HORIZON
SKY	SKY-IS-CLEAR ^ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY ∧ RGB-IS-AVAILABLE	BLUE
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-OVERCAST \land TIME-IS-DAY \land	WHITE
	RGB-IS-AVAILABLE	
SKY	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGE-IS-UNDEFINED
SKY	CAMERA-IS-HORIZONTAL	NEAR-TOP
SKY	CAMERA-IS-HORIZONTAL A	ABOVE-SKYLINE
	CLIQUE-CONTAINS(complete-sky)	
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-INTENSITY
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-TEXTURE
SKY	RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky)	SIMILAR-COLOR
GROUND	CAMERA-IS-HORIZONTAL	HORIZONTALLY-STRIATED
GROUND	CAMERA-IS-HORIZONTAL	NEAR-BOTTOM
GROUND	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGES-FORM-HORIZONT/
GROUND	DENSE-RANGE-IS-AVAILABLE	DENSE-RANGES-FORM-HORIZONTA
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-SKYLINE
	CLIQUE-CONTAINS(complete-ground)	
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-GEOMETRIC-HORIZON
	CLIQUE-CONTAINS(geometric-horizon) <	
	- CLIQUE-CONTAINS(skyline)	
GROUND	TIME-IS-DAY	DARK
		1

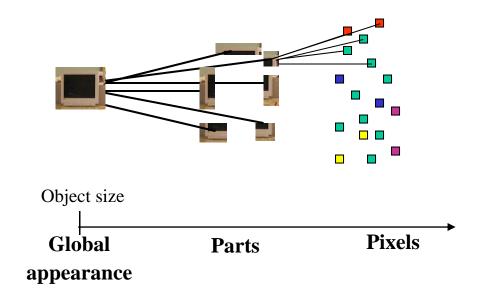
Multiclass object detection and context modeling

Antonio Torralba

In collaboration with Kevin P. Murphy and William T. Freeman

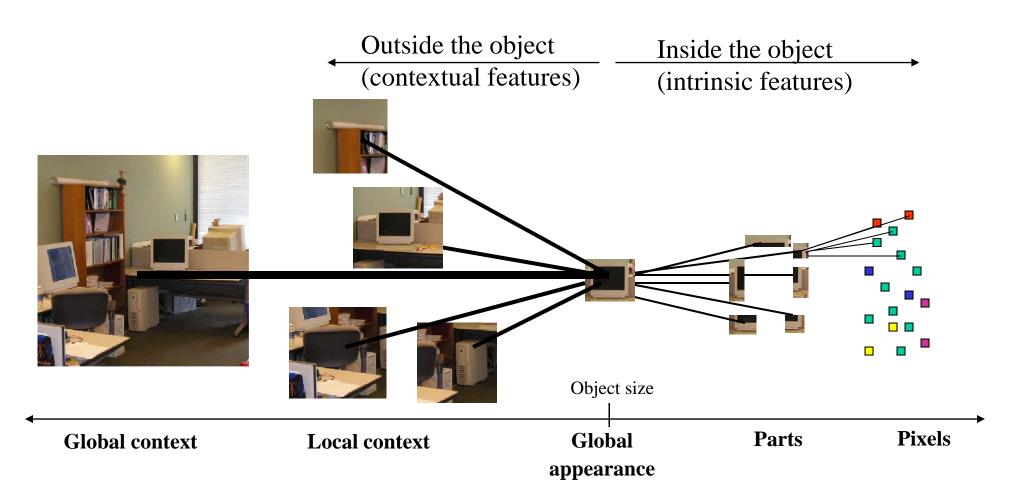
Object representations

Inside the object (intrinsic features)



Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91), Vidal-Naquet, Ullman, (03) Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03) Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99) Etc.

Object representations



Kruppa & Shiele, (03), Fink & Perona (03)
Carbonetto, Freitas, Barnard (03), Kumar, Hebert, (03)
He, Zemel, Carreira-Perpinan (04), Moore, Essa, Monson, Hayes (99)
Strat & Fischler (91), Murphy, Torralba & Freeman (03)

Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91), Vidal-Naquet, Ullman, (03) Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03) Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99) Etc.

• Strat & Fischler (91)

Context defined using hand-written rules about relationships between objects

#	Class	Context elements	Operator
41	SKY	ALWAYS	ABOVE-HORIZON
42	SKY	SKY-IS-CLEAR ^ TIME-IS-DAY	BRIGHT
43	SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY	UNTEXTURED
44	SKY	SKY-IS-CLEAR TIME-IS-DAY RGB-IS-AVAILABLE	BLUE
45	SKY	SKY-IS-OVERCAST \land TIME-IS-DAY	BRIGHT
46	SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	UNTEXTURED
47	SKY	SKY-IS-OVERCAST \land TIME-IS-DAY \land	WHITE
		RGB-IS-AVAILABLE	
48	SKY	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGE-IS-UNDEFINED
49	SKY	CAMERA-IS-HORIZONTAL	NEAR-TOP
50	SKY	CAMERA-IS-HORIZONTAL A	ABOVE-SKYLINE
		CLIQUE-CONTAINS(complete-sky)	
51	SKY	CLIQUE-CONTAINS(sky)	SIMILAR-INTENSITY
52	SKY	CLIQUE-CONTAINS(sky)	SIMILAR-TEXTURE
53	SKY	RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky)	SIMILAR-COLOR
61	GROUND	CAMERA-IS-HORIZONTAL	HORIZONTALLY-STRIATED
62	GROUND	CAMERA-IS-HORIZONTAL	NEAR-BOTTOM
63	GROUND	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGES-FORM-HORIZONTAL-SURFACE
64	GROUND	DENSE-RANGE-IS-AVAILABLE	DENSE-RANGES-FORM-HORIZONTAL-SURFACE
65	GROUND	CAMERA-IS-HORIZONTAL A	BELOW-SKYLINE
		CLIQUE-CONTAINS(complete-ground)	
66	GROUND	CAMERA-IS-HORIZONTAL A	BELOW-GEOMETRIC-HORIZON
		CLIQUE-CONTAINS(geometric-horizon) ^	
67	GROUND	TIME-IS-DAY	DARK
71	FOLIAGE	ALWAYS	HIGHLY-TEXTURED
72	FOLIAGE	ALWAYS	HIGH-VEGETATIVE-TRANSPARENCY
73	FOLIAGE	CAMERA-IS-HORIZONTAL	NEAR-TOP
74	FOLIAGE	RGB-IS-AVAILABLE	GREEN
76	RAISED-OBJECT	SPARSE-RANGE-IS-AVAILABLE	SPARSE-HEIGHT-ABOVE-GROUND
77	RAISED-OBJECT	DENSE-RANGE-IS-AVAILABLE	DENSE-HEIGHT-ABOVE-GROUND
78	RAISED-OBJECT	CAMERA-IS-HORIZONTAL ∧	ABOVE-SKYLINE
		CLIQUE-CONTAINS(complete-sky)	

Table 5: Type II Context Sets: Candidate Evaluation

• Fink & Perona (03)

Use output of boosting from other objects at previous iterations as input into boosting for this iteration

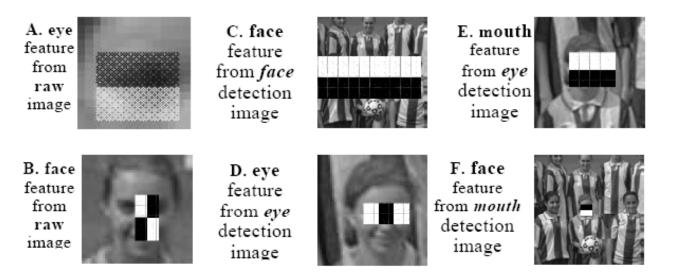
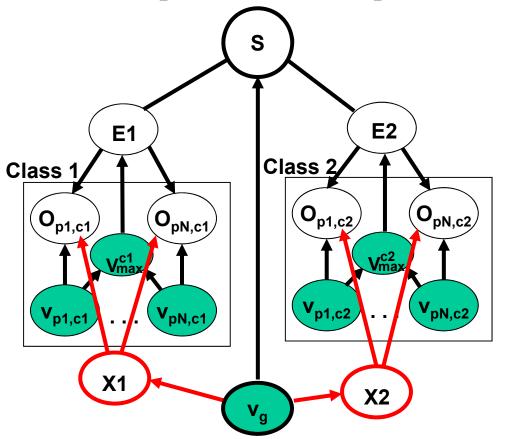


Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows of raw images for legibility). The windows' scale is defined by the detected object size and by the map mode (local or contextual). C. faces are detected using face detection maps H^{Face}, exploiting the fact that faces tend to be horizontally aligned.

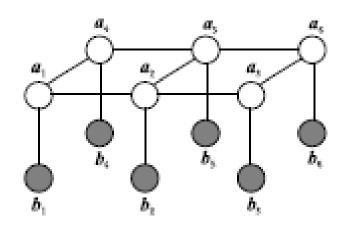
• Murphy, Torralba & Freeman (03)

Use global context to predict objects but there is no modeling of spatial relationships between objects.

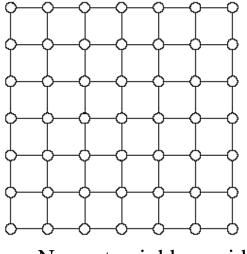


Keyboards

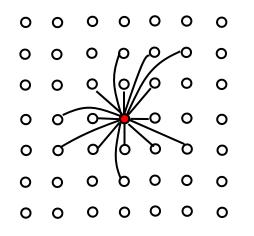
- Carbonetto, de Freitas & Barnard (04)
- Enforce spatial consistency between labels using MRF



Graphical models for image labeling



Nearest neighbor grid

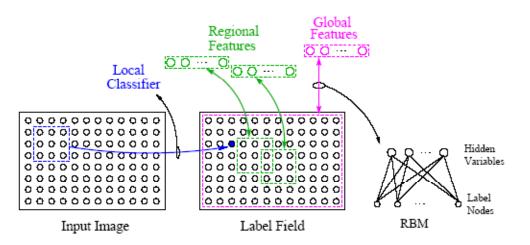


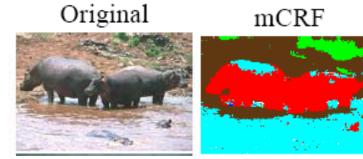
Densely connected graphs with low informative connections

Want to model long-range correlations between labels

• He, Zemel & Carreira-Perpinan (04)

Use latent variables to induce long distance correlations between labels in a Conditional Random Field (CRF)



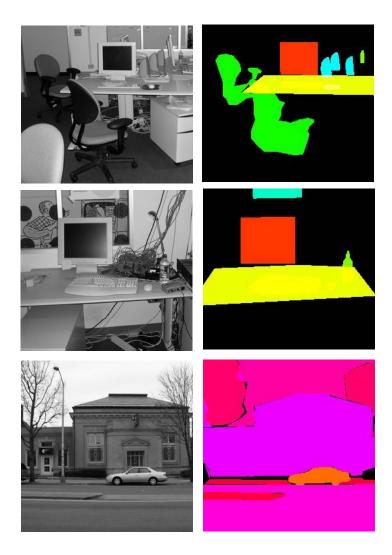


Outline of this talk

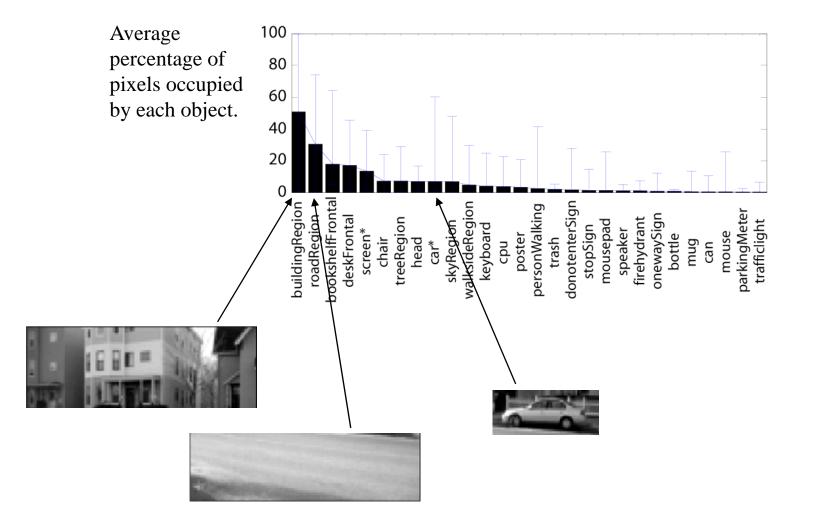
- Use global image features (as well as local features) in boosting to help object detection
- Learn structure of dense CRF (with long range connections) using boosting, to exploit spatial correlations

Image database

- ~2500 hand labeled images with segmentations
- ~30 objects and stuff
- Indoor and outdoor
- Sets of images are separated by locations and camera (digital/webcam)
- No graduate students or low-incomestudent-class exploited for labeling.



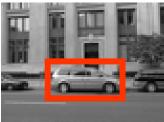
Which objects are important?



Object representation

• **Discrete**/bounded/rigid

Screen, car, pedestrian, bottle, ...

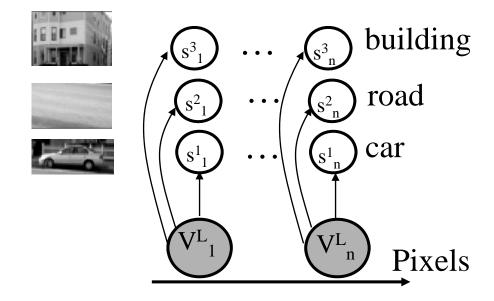


• Extended/unbounded/deformable

Building, sky, road, shelves, desk, ...

We will use region labeling as a representation.

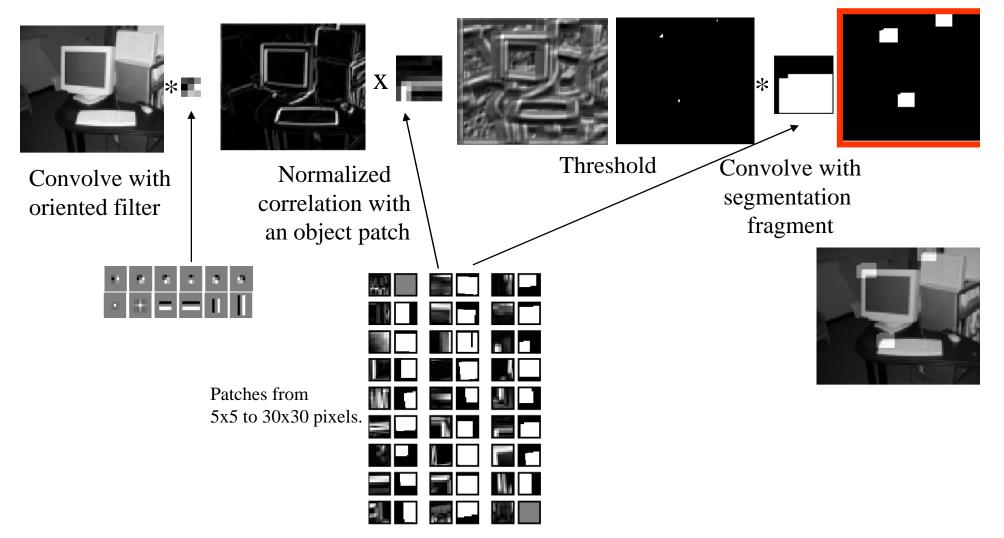
Learning local features (intrinsic object features)



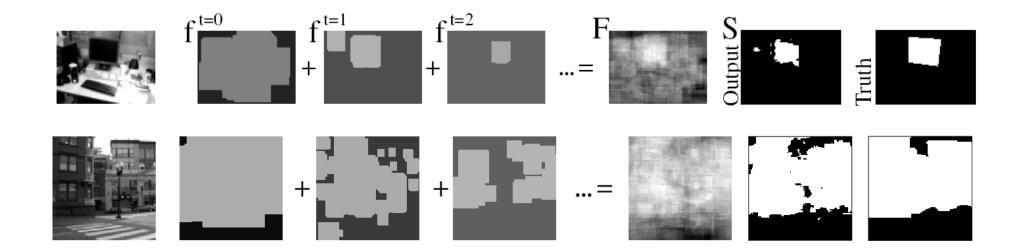
We maximize the probability of the true labels using Boosting.

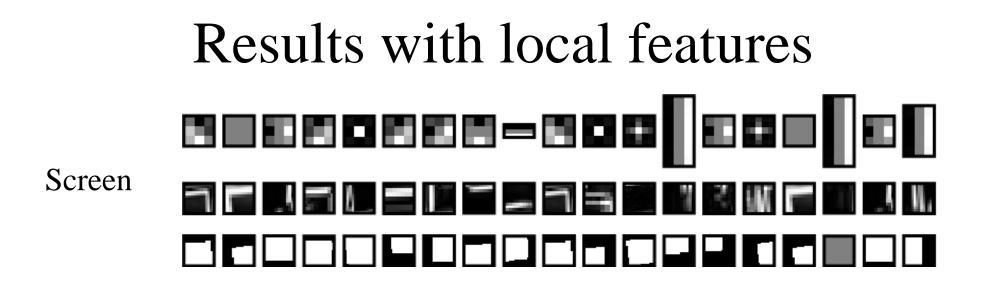
Object local features

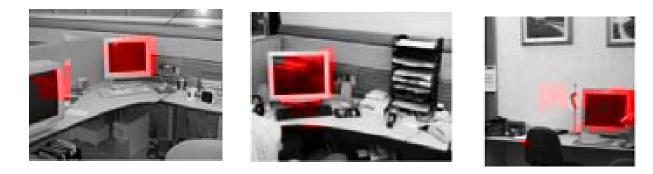
(Borenstein & Ullman, ECCV 02)



Results with local features

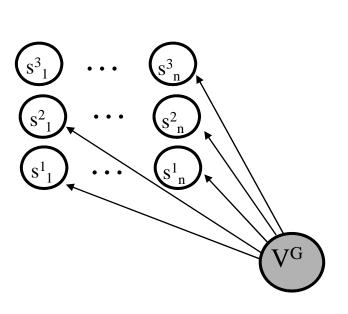






Results with local features

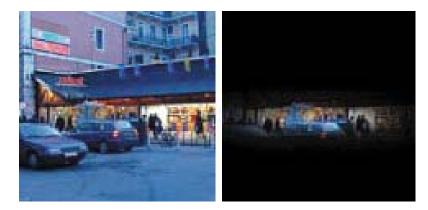
Global context: location priming How far can we go without object detectors?



Context features that represent the scene instead of other objects.

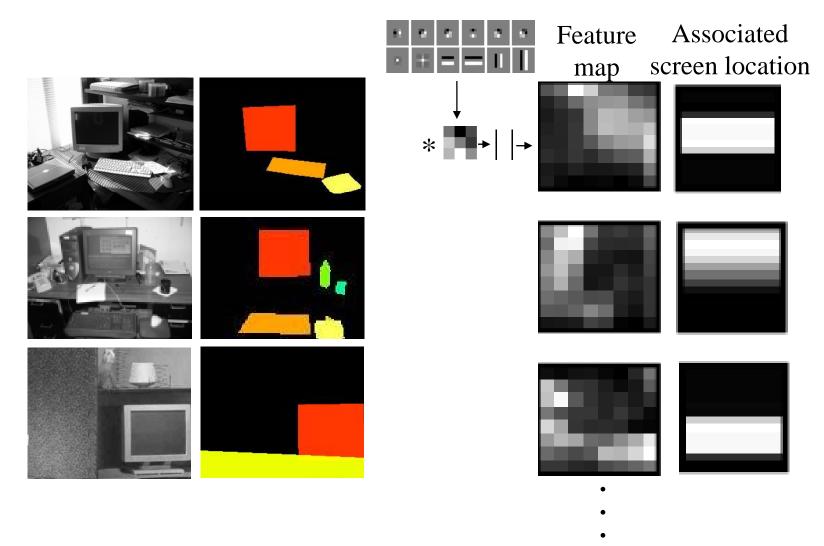
The global features can provide:

- Object presence
- Location priming
- Scale priming



Object global features

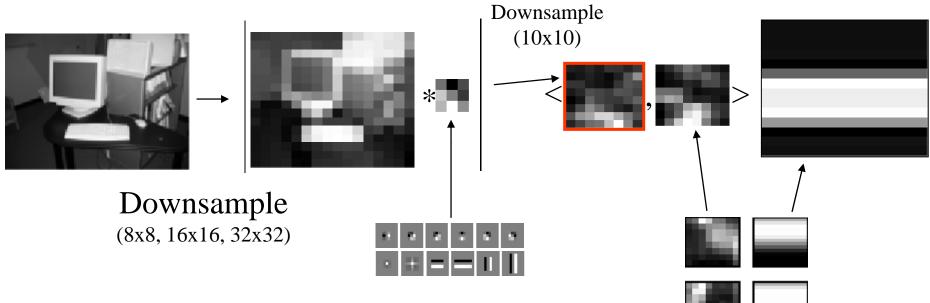
First we create a dictionary of scene features and object locations:

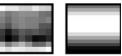


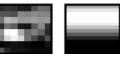
Only the vertical position of the object is well constrained by the global features

Object global features

How to compute the global features

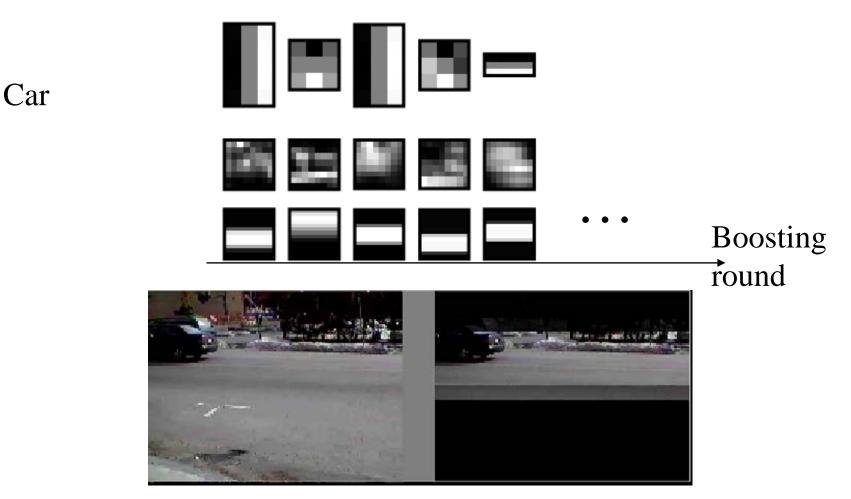




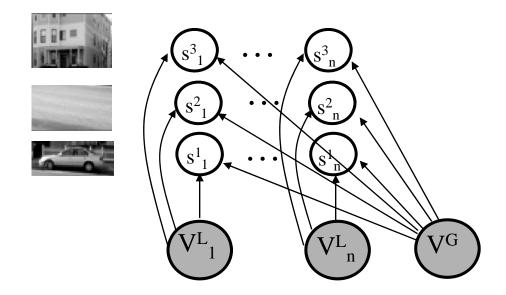


Car detection with global features

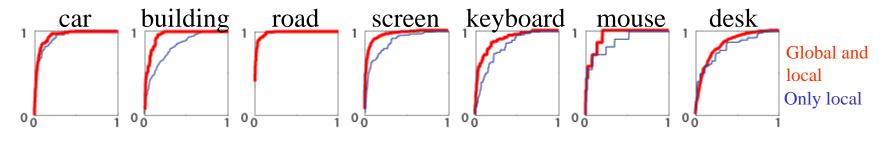
Features selected by boosting:



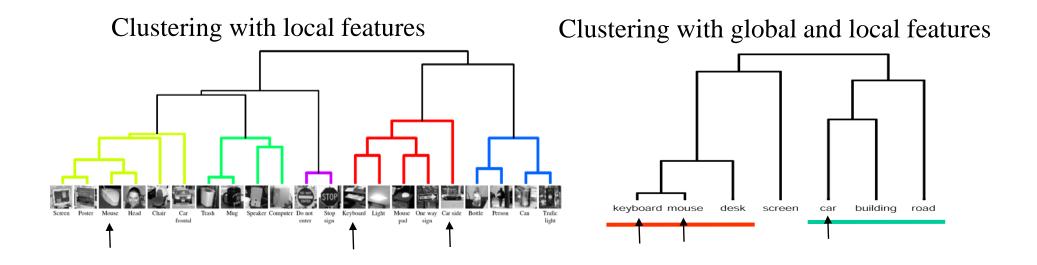
Combining global and local



ROC for same total number of features (100 boosting rounds):



Clustering of objects with local and global feature sharing

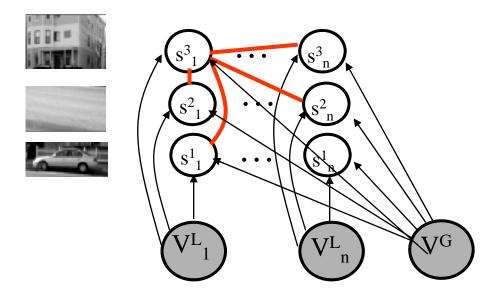


Objects are similar if they share local features and they appear in the same contexts.

Outline of this talk

- Use global image features (as well as local features) in boosting to help object detection
- Learn structure of dense CRF (with long range connections) using boosting, to exploit spatial correlations

Adding correlations between objects



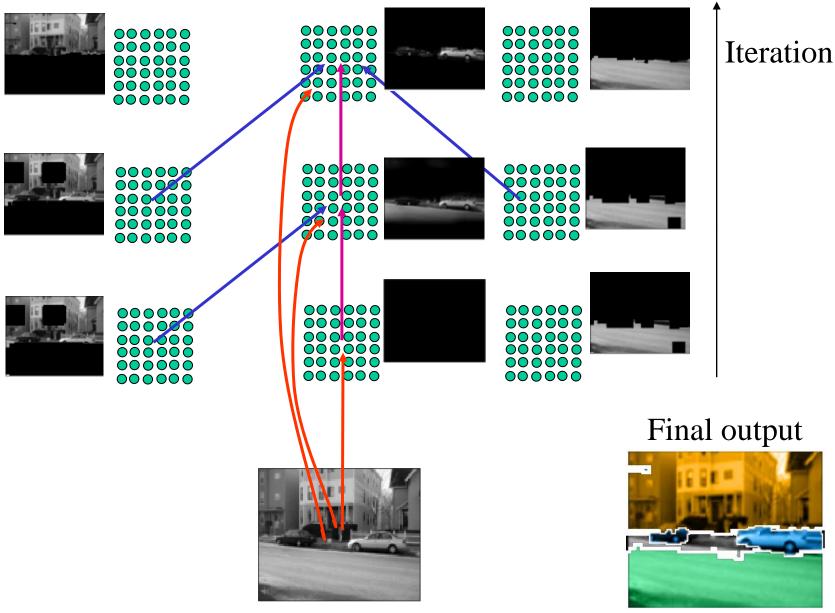
We need to learn

- The structure of the graph
- The pairwise potentials

Learning in CRFs

- Parameters
 - Lafferty, McCallum, Pereira (ICML 2001)
 - Find global optimum using gradient methods plus exact inference (forwards-backwards) in a chain
 - Kumar & Herbert, NIPS 2003
 - Use pseudo-likelihood in 2D CRF
 - Carbonetto, de Freitas & Barnard (04)
 - Use approximate inference (loopy BP) and pseudo-likelihood on 2D MRF
- Structure
 - He, Zemel & Carreira-Perpinan (CVPR 04)
 - Use contrastive divergence
 - Torralba, Murphy, Freeman (NIPS 04)
 - Use boosting

Sequentially learning the structure



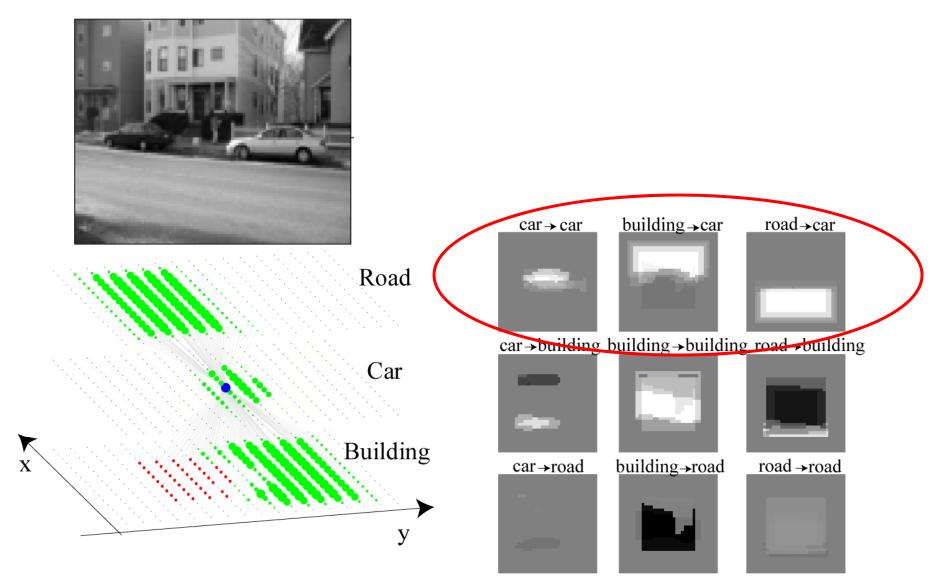
Sequentially learning the structure

At each iteration of boosting

•We pick a weak learner applied to the image (local or global features)

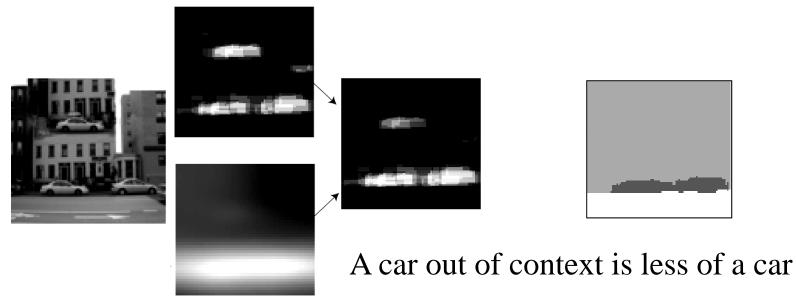
•We pick a weak learner applied to a subset of the label-beliefs at the previous iteration. These subsets are chosen from a dictionary of labeled graph fragments from the training set.

Car detection



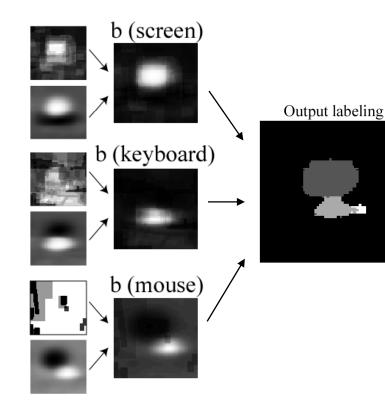
Car detection

From intrinsic features

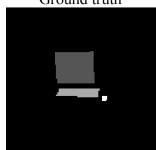


From contextual features

Screen/keyboard/mouse



Ground truth



Cascade

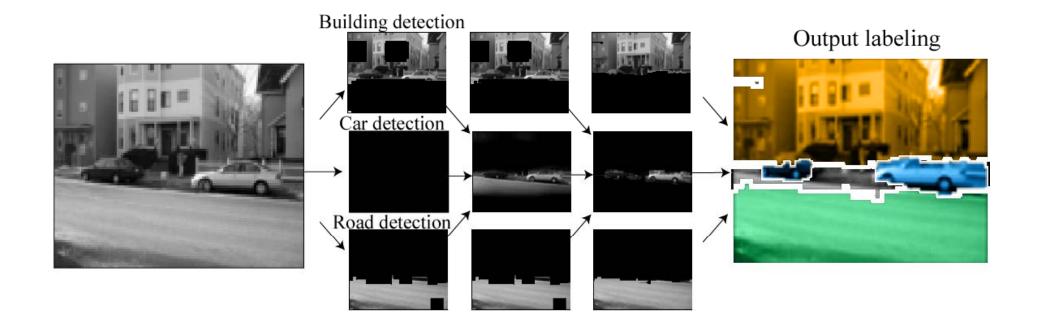
Viola & Jones (2001)

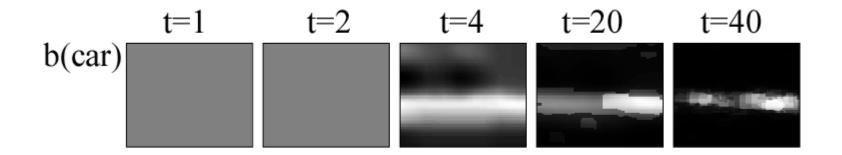
Set to zero the beliefs of nodes with low probability of containing the target.

Perform message passing only on undecided nodes

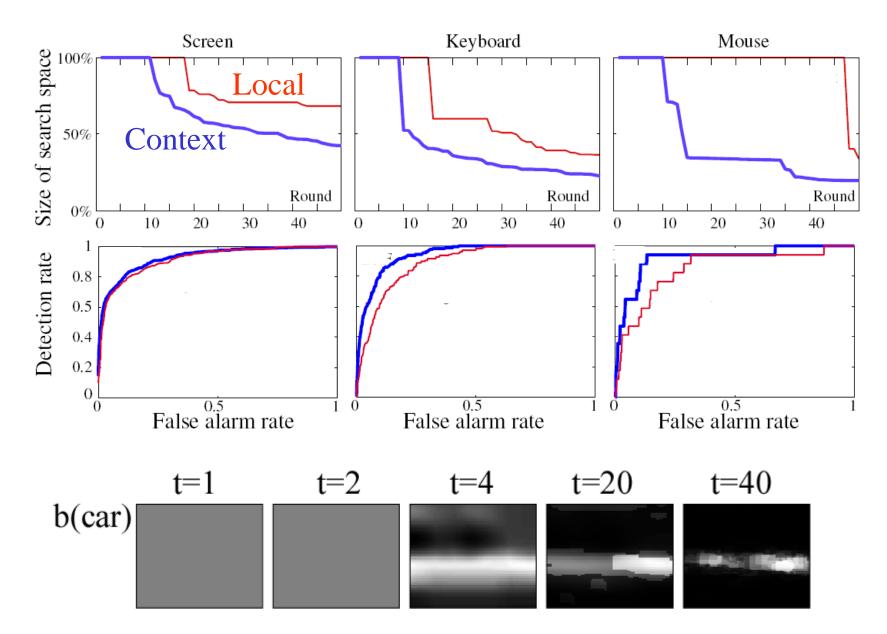
The detection of the screen reduces the search space for the mouse detector.

Cascade





Cascade



Putting Objects in Perspective

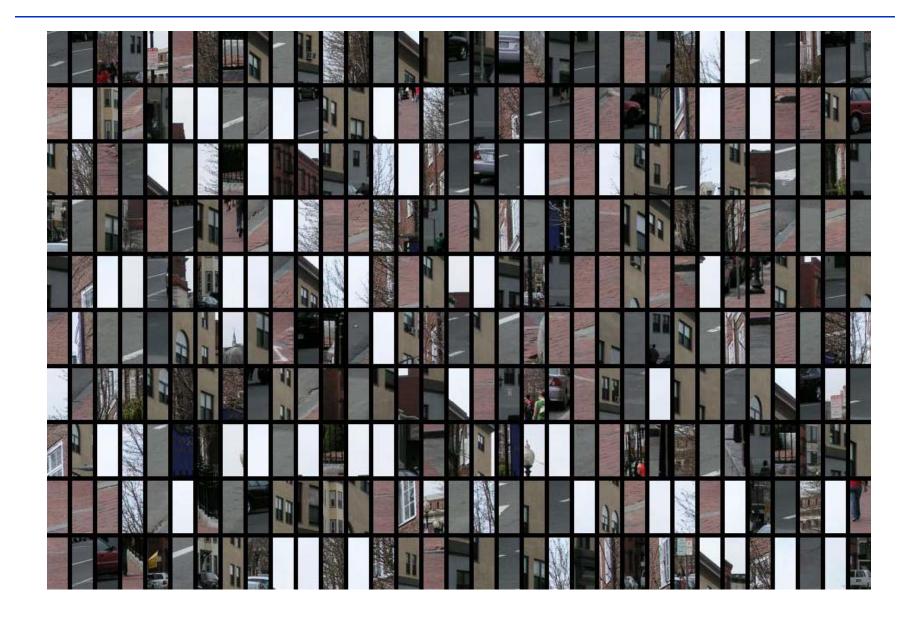
Derek Hoiem Alexei A. Efros Martial Hebert

Carnegie Mellon University Robotics Institute

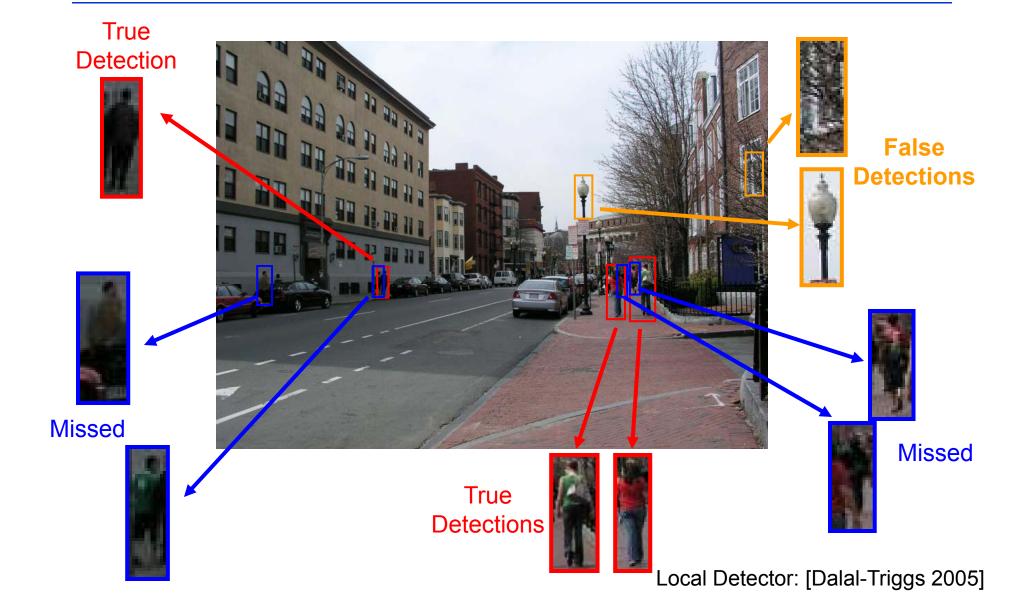
Understanding an Image

Today: Local and Independent

What the Detector Sees



Local Object Detection



Work in Context

Image understanding in the 70's

Guzman (*SEE*) 1968 Hansen & Riseman (*VISIONS*) 1978 Barrow & Tenenbaum 1978 Yakimovsky & Feldman 1973 Brooks (ACRONYM) 1979

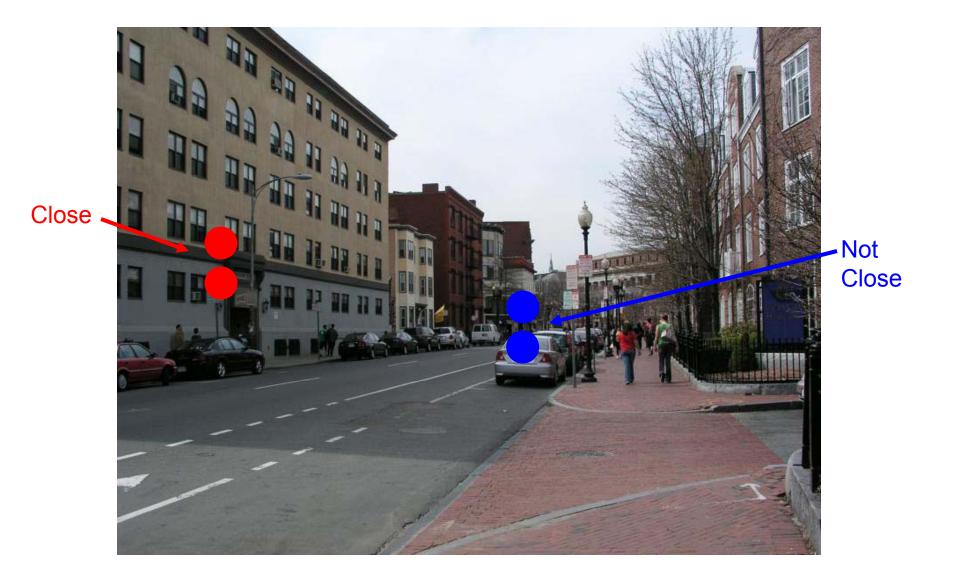
Marr 1982

Ohta & Kanade 1973

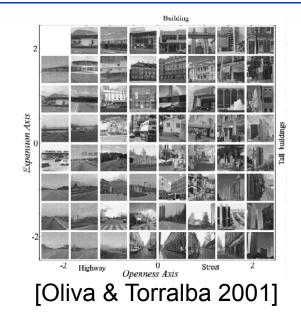
Recent work in 2D context

Kumar & Hebert 2005 Torralba, Murphy, Freeman 2004 Fink & Perona 2003 He, Zemel, Cerreira-Perpiñán 2004 Carbonetto, Freitas, Banard 2004 Winn & Shotton 2006

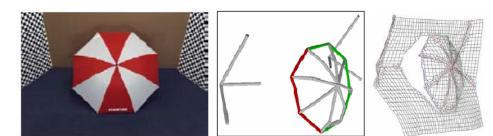
Real Relationships are 3D



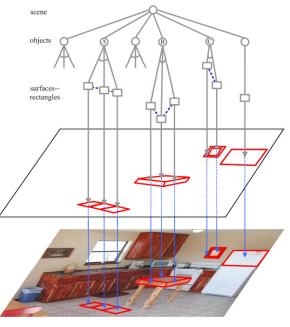
Recent Work in 3D



[Torralba, Murphy & Freeman 2003]

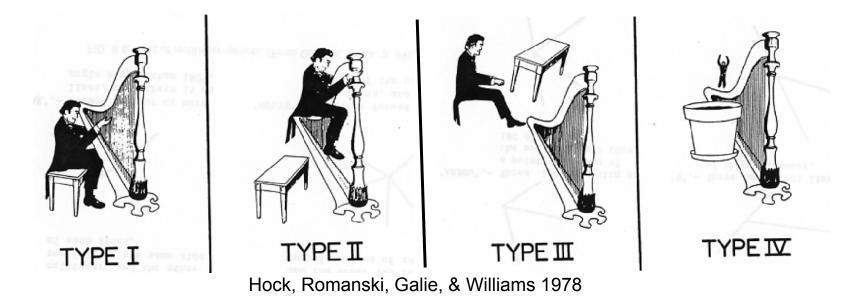


```
[Han & Zu 2003]
```



[Han & Zu 2005]

Objects and Scenes

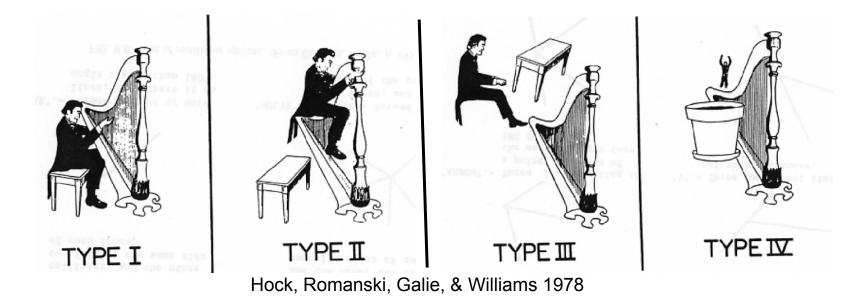


- Biederman's Relations among Objects in a Well-Formed Scene (1981):
 - Support

– Size

- Position
- Interposition
- Likelihood of Appearance

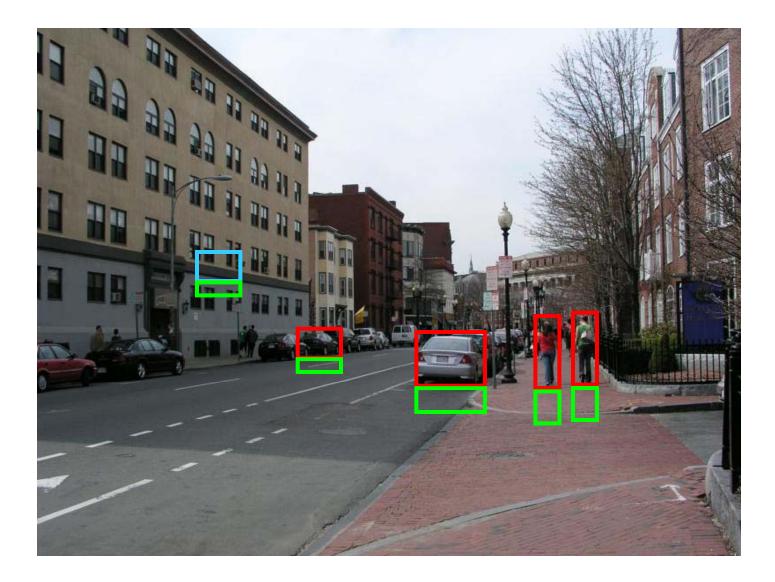
Contribution of this Paper



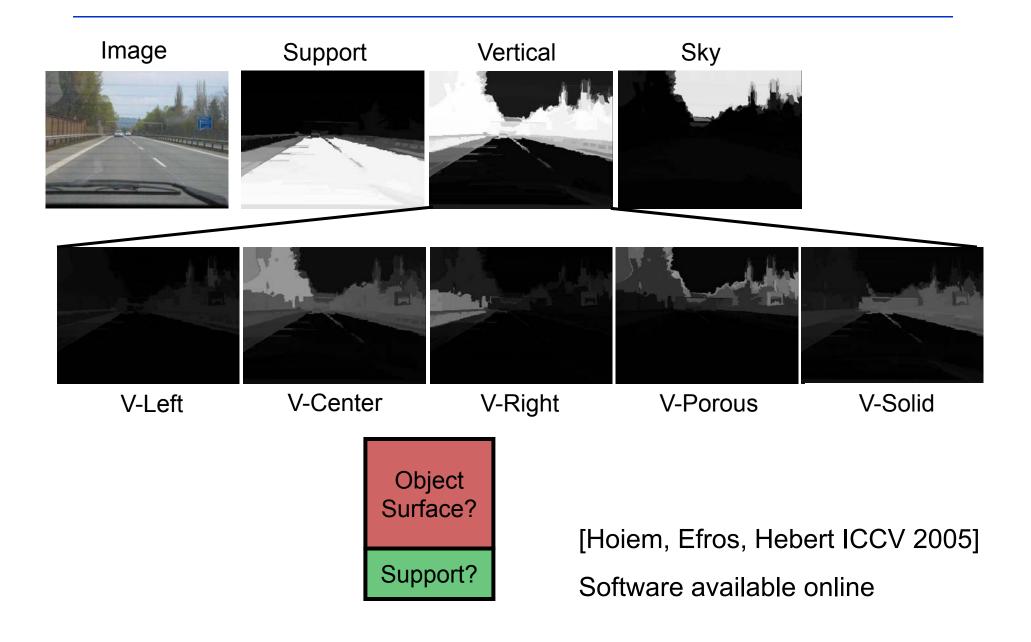
 Biederman's Relations among Objects in a Well-Formed Scene (1981):

- Position
- Interposition
- Likelihood of Appearance

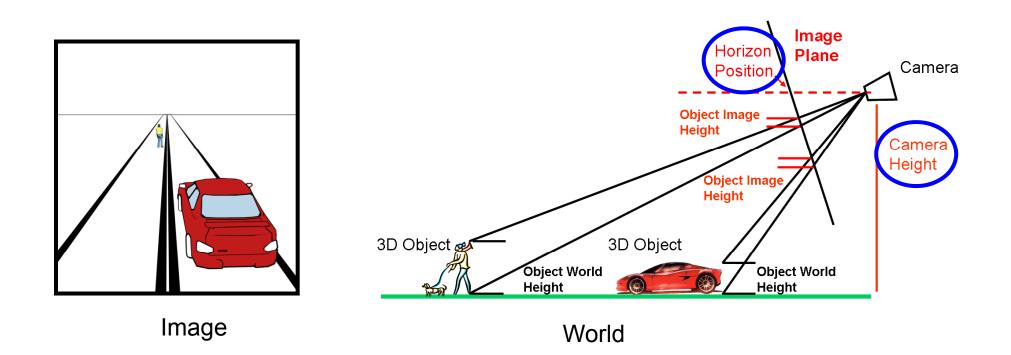
Object Support



Surface Estimation



Object Size in the Image



Object Size \leftrightarrow **Camera Viewpoint**

Input Image

Loose Viewpoint Prior



Input Image

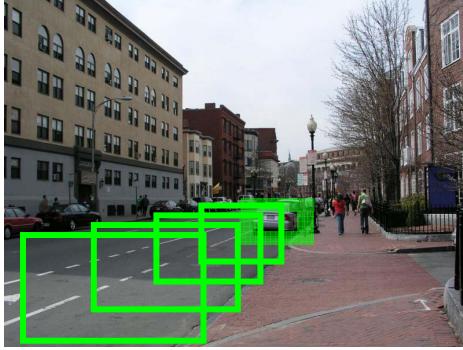
Loose Viewpoint Prior

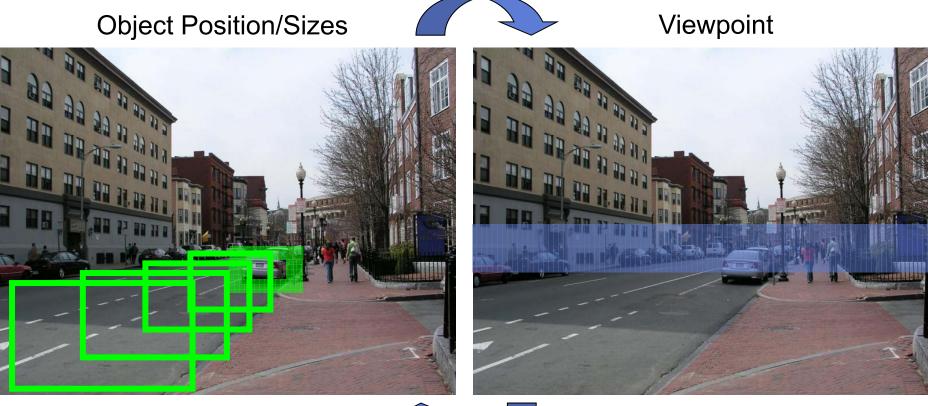


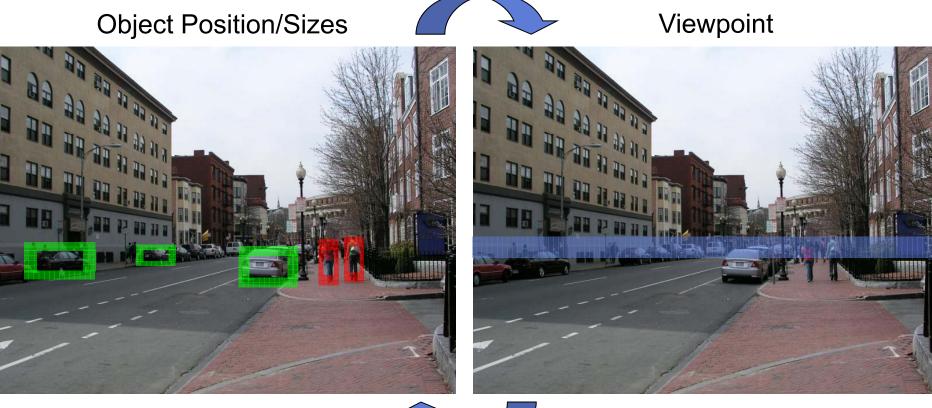
Object Position/Sizes

Object Position/Sizes

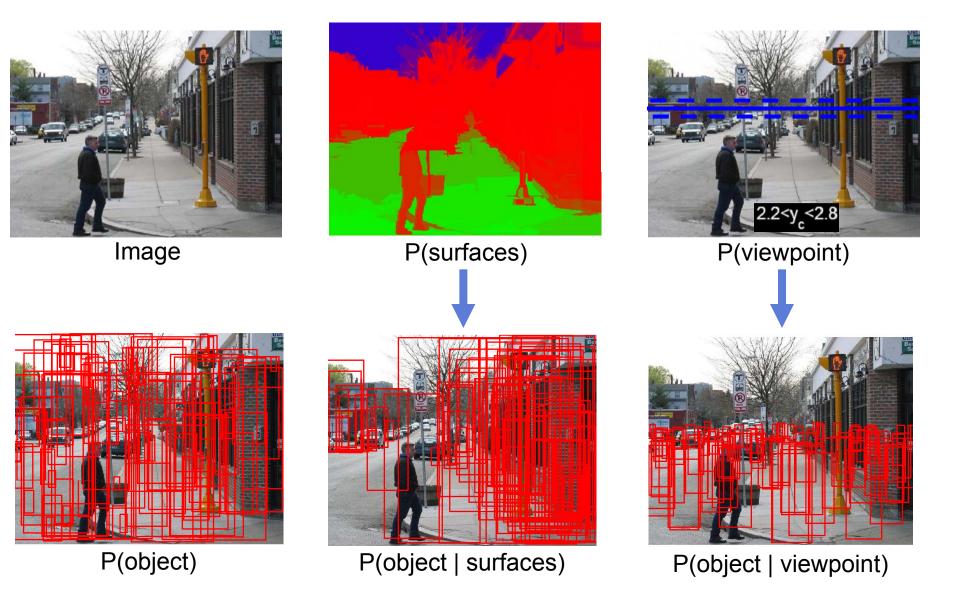
Viewpoint



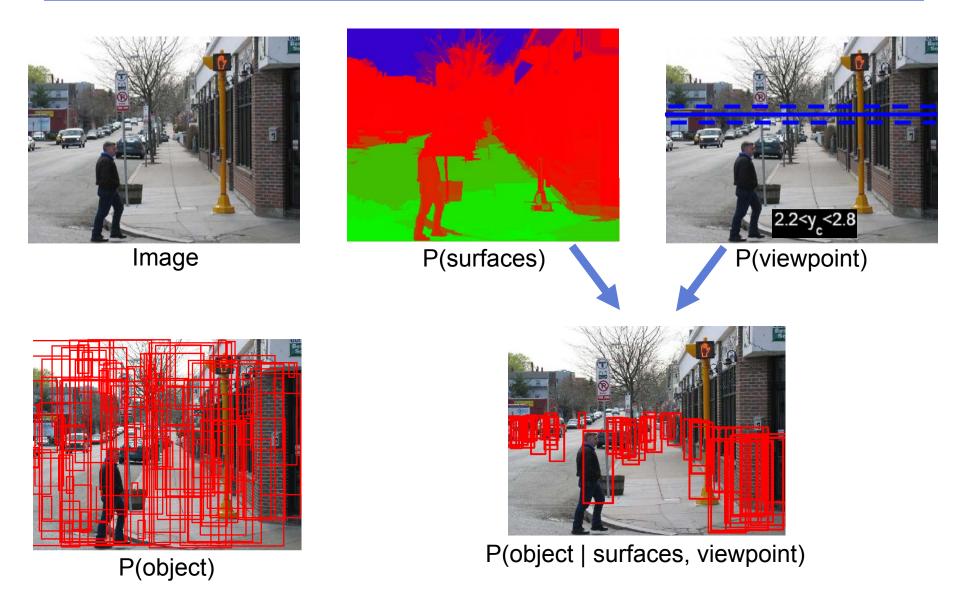




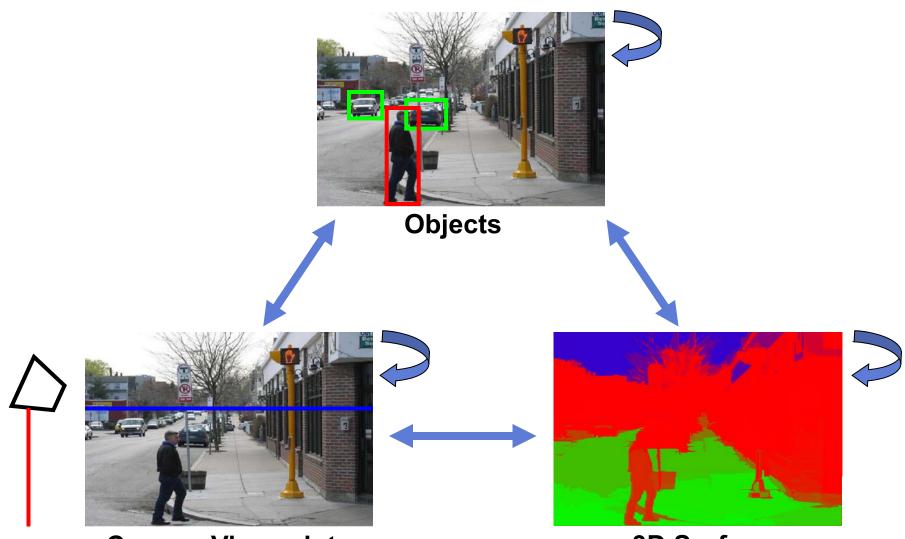
What does surface and viewpoint say about objects?



What does surface and viewpoint say about objects?



Scene Parts Are All Interconnected

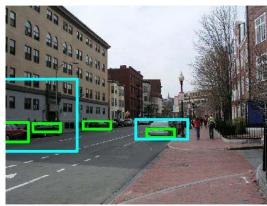


Camera Viewpoint

3D Surfaces

Input to Our Algorithm

Object Detection



Local Car Detector

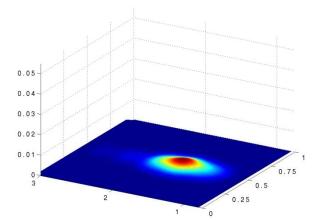
Local Ped Detector

Local Detector: [Dalal-Triggs 2005]

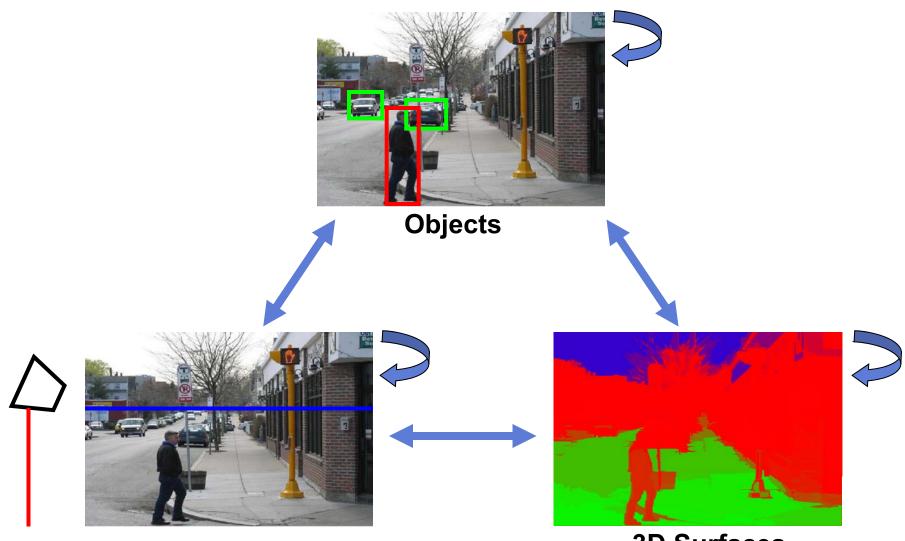
Surface Estimates

Viewpoint Prior

Surfaces: [Hoiem-Efros-Hebert 2005]



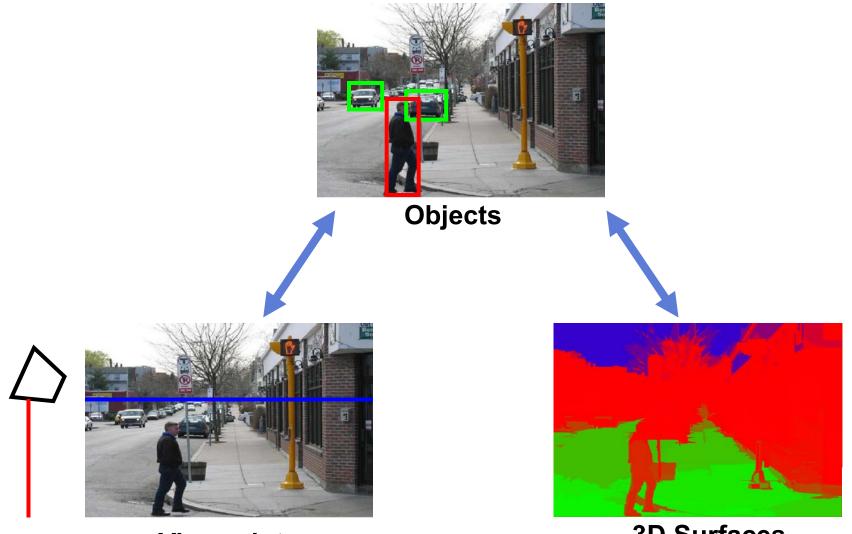
Scene Parts Are All Interconnected



Viewpoint

3D Surfaces

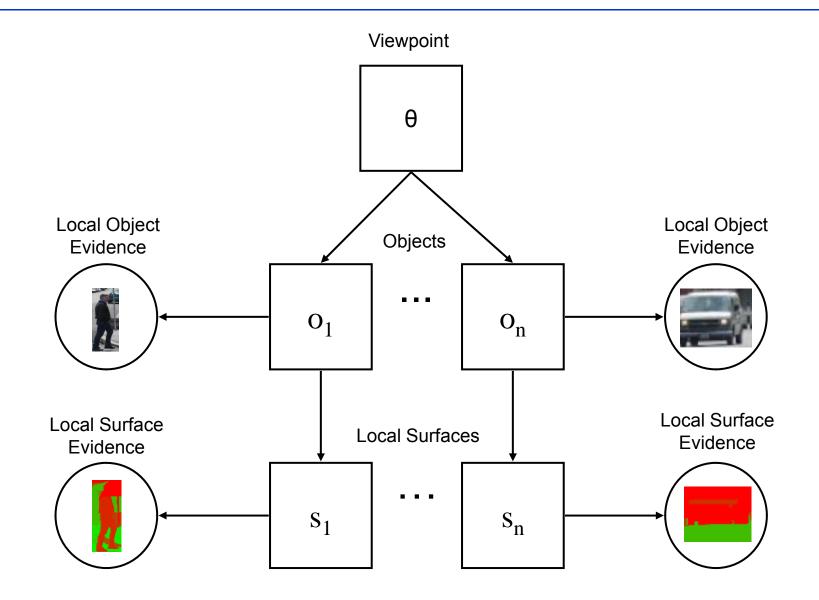
Our Approximate Model



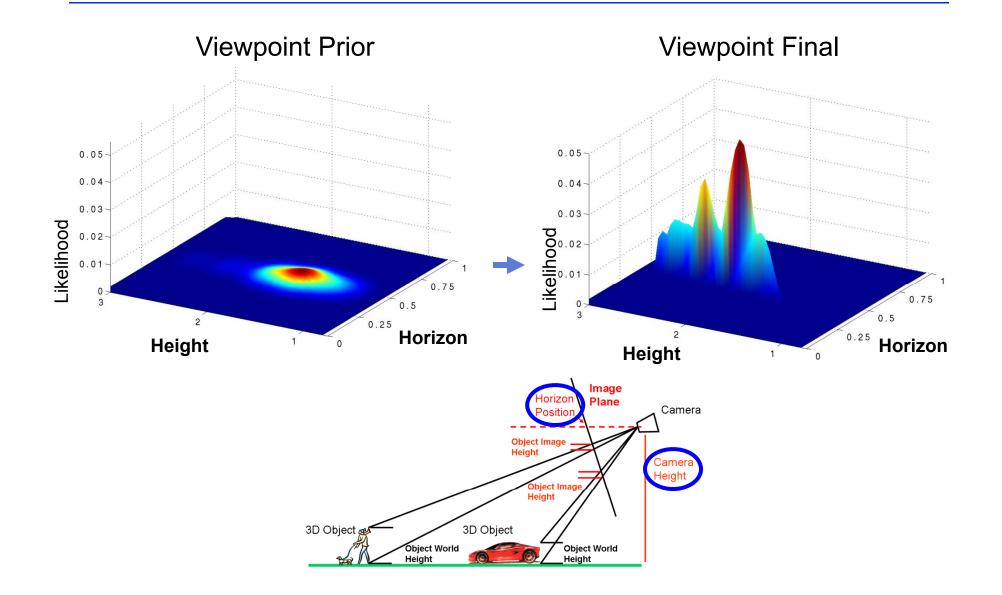
Viewpoint

3D Surfaces

Inference over Tree Easy with BP



Viewpoint estimation



Object detection

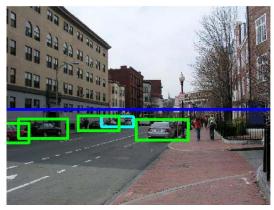
Car: TP / FP Ped: TP / FP

Car Detection

Initial (Local)

4 TP / 2 FP

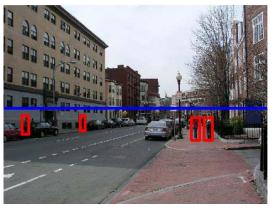
Final (Global)



4 TP / 1 FP

Ped Detection

3 TP / 2 FP

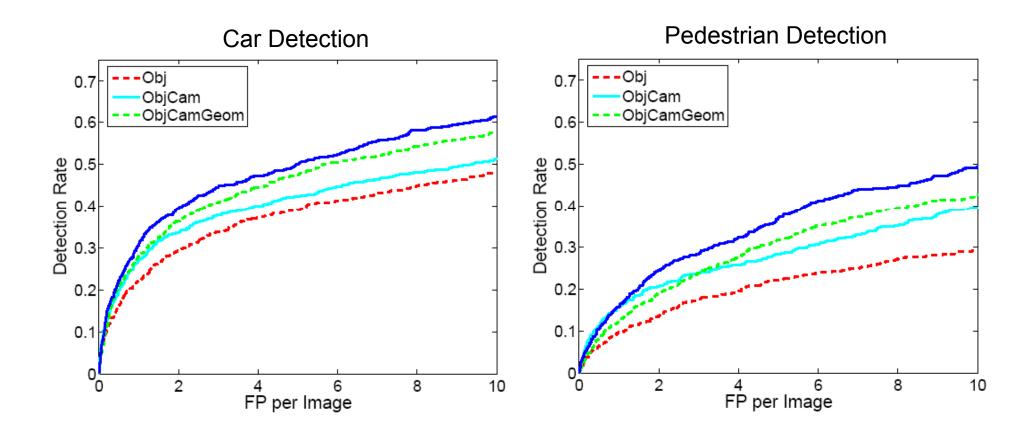


4 TP / 0 FP Local Detector: [Dalal-Triggs 2005]

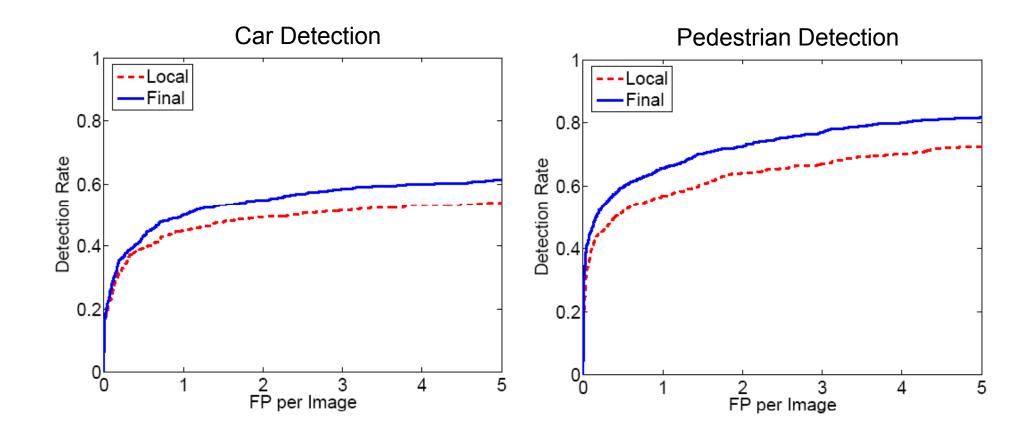
Experiments on LabelMe Dataset

- Testing with LabelMe dataset: 422 images
 - 923 Cars at least 14 pixels tall
 - 720 Peds at least 36 pixels tall

Each piece of evidence improves performance

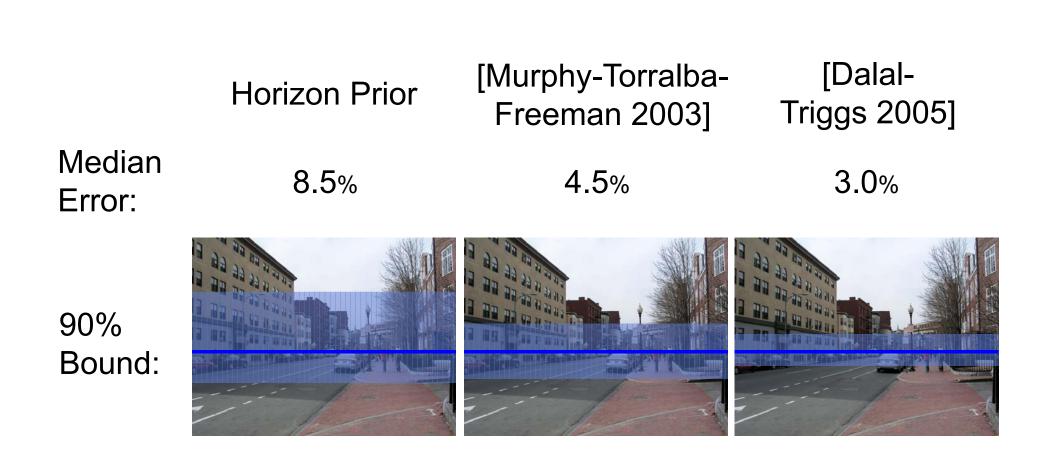


Can be used with any detector that outputs confidences

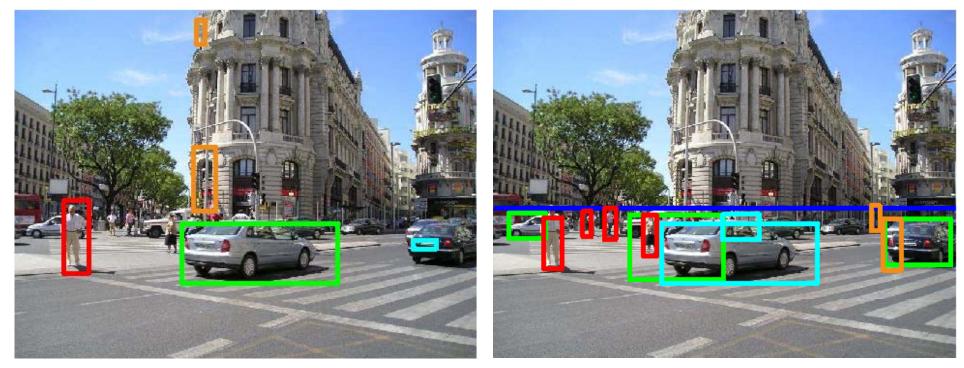


Local Detector: [Dalal-Triggs 2005] (SVM-based)

Accurate Horizon Estimation



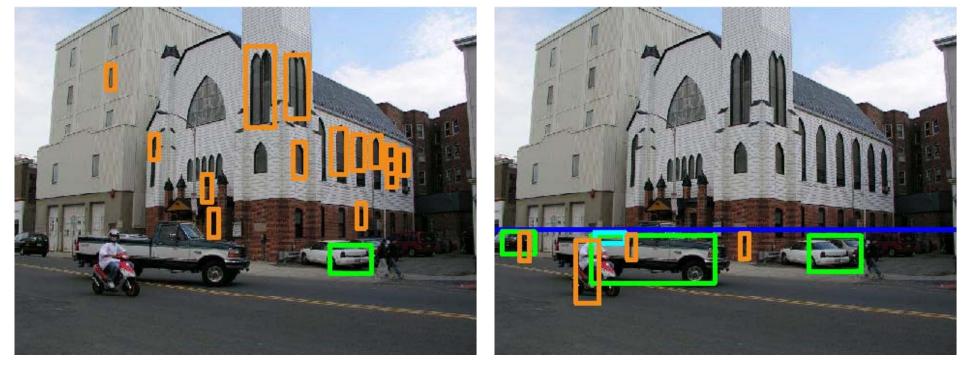
Car: TP / FP Ped: TP / FP



Initial: 2 TP / 3 FP

Final: 7 TP / 4 FP

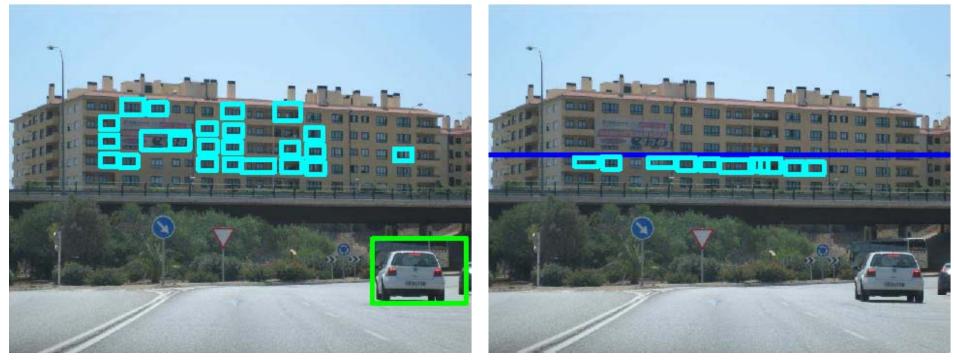
Car: TP / FP Ped: TP / FP



Initial: 1 TP / 14 FP

Final: 3 TP / 5 FP

Car: TP / FP Ped: TP / FP



Initial: 1 TP / 23 FP

Final: 0 TP / 10 FP

Car: TP / FP Ped: TP / FP

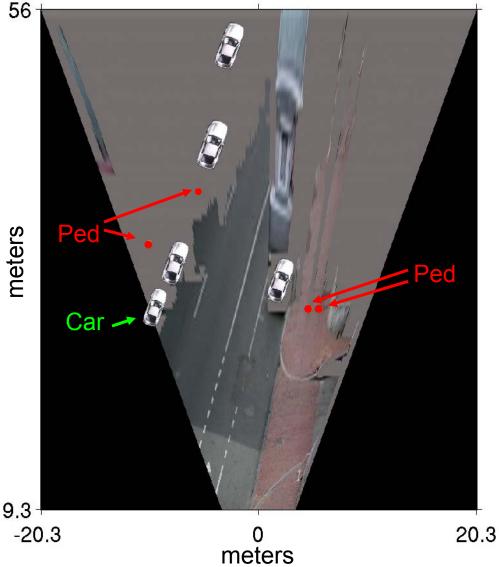
Initial: 0 TP / 6 FP

Final: 4 TP / 3 FP

Summary & Future Work

Reasoning in 3D:

- Object to object
- Scene label
- Object segmentation



Conclusion

- Image understanding is a 3D problem
 - Must be solved jointly

- This paper is a small step
 - Much remains to be done

Learning Spatial Context: Using stuff to find things

Geremy Heitz Daphne Koller

Stanford University

October 13, 2008 ECCV 2008

From: Forsyth et al. Finding pictures of objects in large collections of images. *Object Representation in Computer Vision*, 1996.

Thing (n): An object with a specific size and shape.

Stuff (n): Material defined by a homogeneous or repetitive pattern of fine-scale properties, but has no specific or distinctive spatial extent or shape.

Context is key!

- What is Context?
- The Things and Stuff (TAS) model
- Results

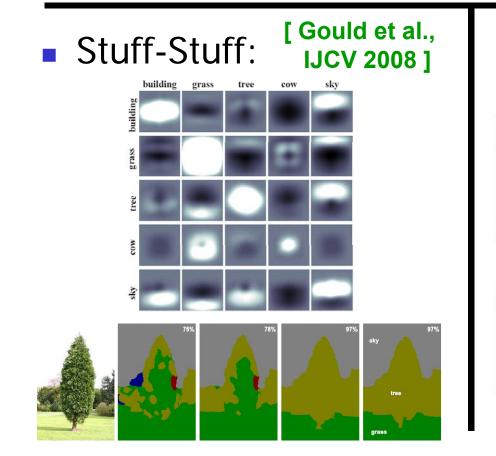
False Positives are OUT OF CONTEXT

We need to look outside the bounding box!

Scene-Thing: [Torralba et al., LNCS 2005]

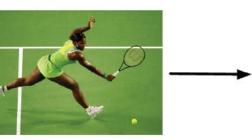
car "likely"

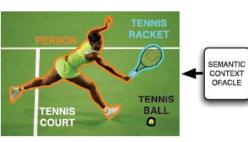
keyboard "unlikely"



Thing-Thing:

[Rabinovich et al., ICCV 2007]





- Stuff-Thing:
 - Based on spatial relationships
- Intuition:
 - "Cars drive on roads"
 - "Cows graze on grass"
 - "Boats sail on water"

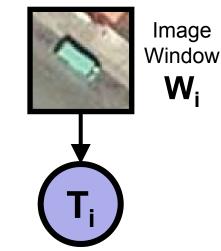
What is Context?

The Things and Stuff (TAS) modelResults

- Detection "candidates"
 - Low detector threshold -> "over-detect"
 - Each candidate has a detector score

- Candidate detections
 - Image Window W_i + Score
- Boolean R.V. T_i
 - T_i = 1: Candidate is a positive detection
- Thing model

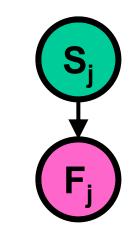
$$P(T_i|W) = \frac{1}{1 + \exp(\alpha + \beta \cdot D(W))}$$



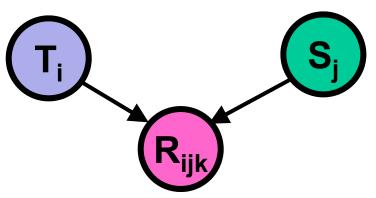
- Coherent image regions
 - Coarse "superpixels"
 - Feature vector F_i in Rⁿ
 - Cluster label S_j in {1...C}

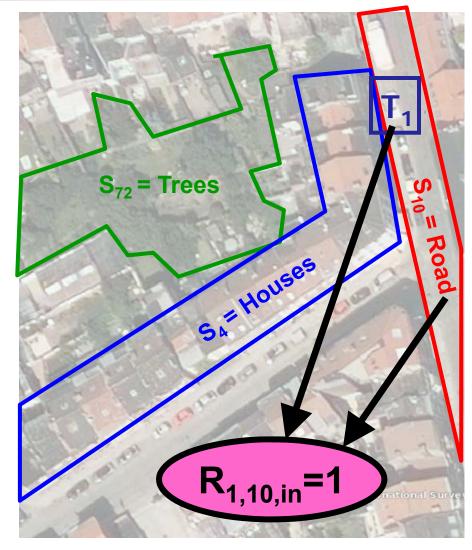
- Stuff model
 - Naïve Bayes

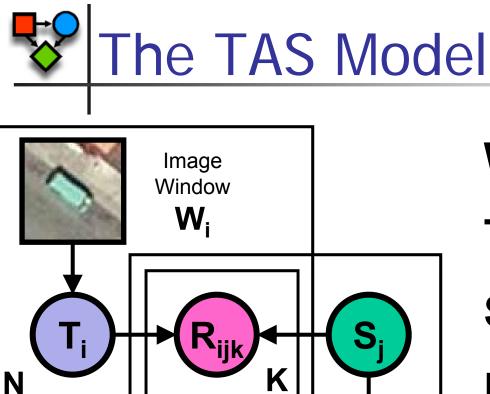
$$P(S_j, F_j) = P(S_j) P(F_j | S_j)$$
$$F_j | (S_j = s) \sim N(\mu_s, \Sigma_s)$$



- Descriptive Relations
 - "Near", "Above", "In front of", etc.
- Choose set $\mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_K\}$
- R_{ijk}=1: Detection i and region j have relation k
- Relationship model





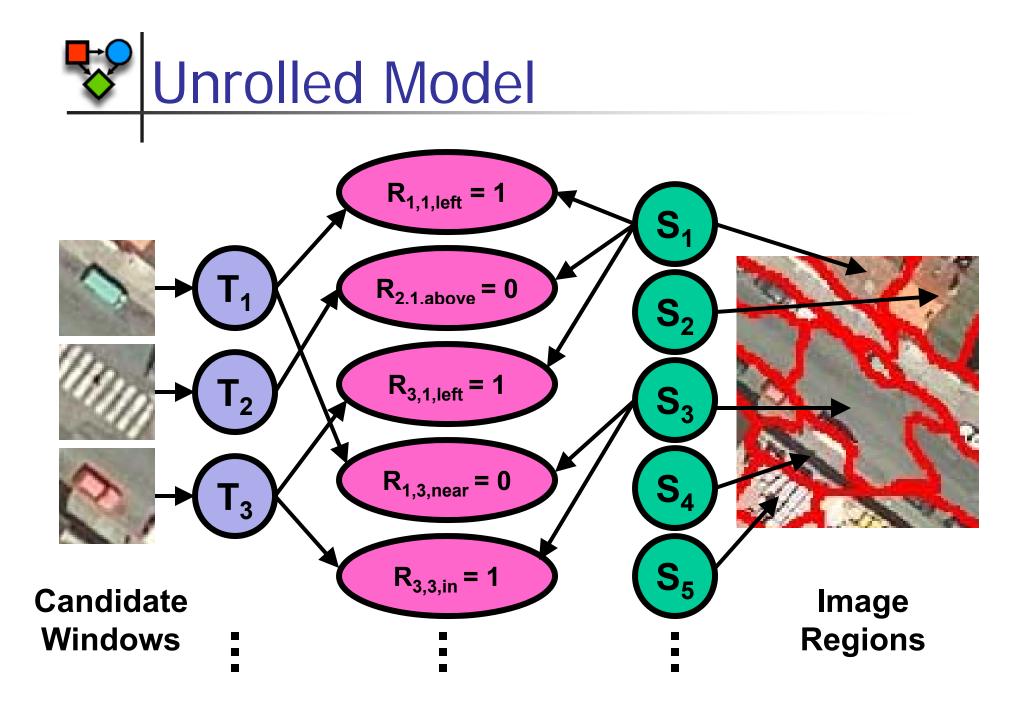


J

- W_i: Window
- **T_i: Object Presence**
- S_j: Region Label
- **F**_j: **Region Features**
- **R**_{ijk}: Relationship

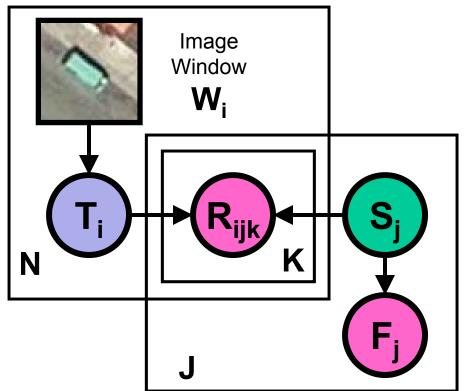
Supervised	Always	Always
in Training Set	Observed	Hidden
	0.0001100.	

F,



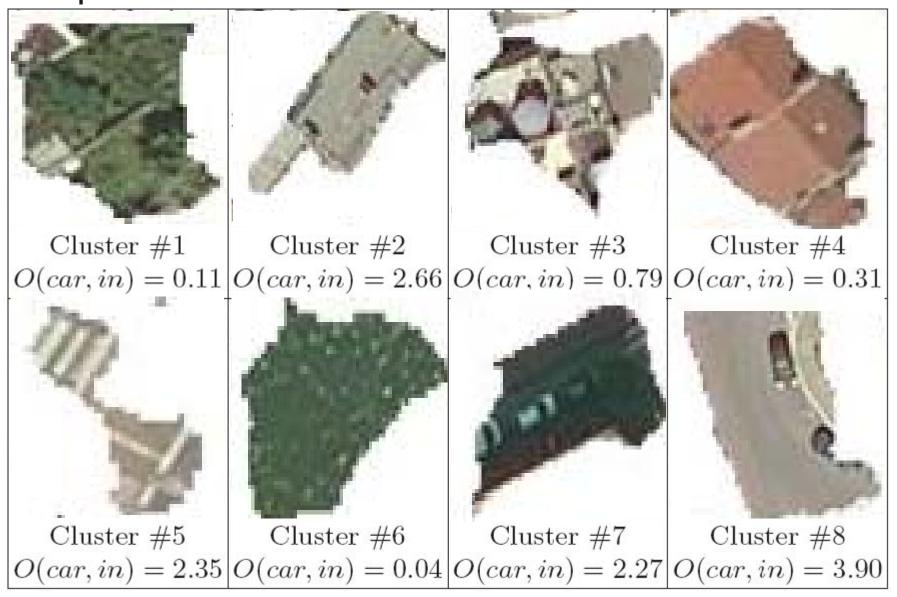
Learning the Parameters

- Assume we know R
- S_i is hidden
 - Everything else observed
- Expectation-Maximization
 - "Contextual clustering"
- Parameters are readily interpretable



SupervisedAlwaysin Training SetObserved	Always Hidden
---	------------------

Learned Satellite Clusters



Rijk = spatial relationship between candidate i and region j

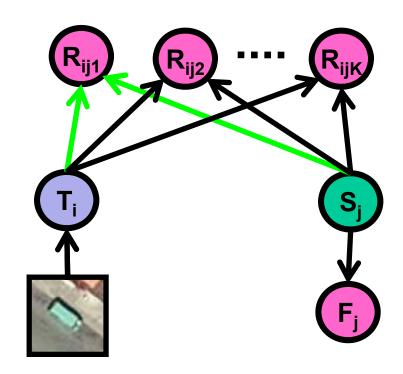
Rij1 = candidate in region

How do we avoid overfitting?

RijK = candidate near region boundary

Learning the Relationships

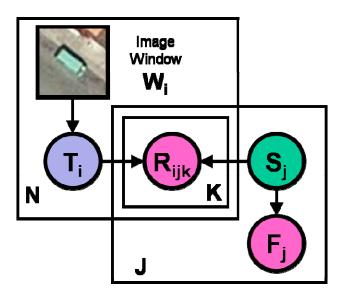
- Intuition
 - "Detached" R_{ijk} = inactive relationship
- Structural EM iterates:
 - Learn parameters
 - Decide which edge to toggle
- Evaluate with *ℓ*(T|F,W,R)
 - Requires inference
 - Better results than using standard E[l(T,S,F,W,R)]



Goal:

$$P(\boldsymbol{T} \mid \boldsymbol{F}, \boldsymbol{R}, \boldsymbol{W}) = \sum_{\boldsymbol{S}} P(\boldsymbol{T}, \boldsymbol{S} \mid \boldsymbol{F}, \boldsymbol{R}, \boldsymbol{W})$$

- Block Gibbs Sampling
 - Easy to sample T_i's given S_j's and vice versa



 $P(S_j \mid \boldsymbol{T}, \boldsymbol{F}, \boldsymbol{R}, \boldsymbol{W}) \propto P(S_j) P(F_j \mid S_j) \prod_i P(R_{ij} \mid T_i, S_j)$ $P(T_i \mid \boldsymbol{S}, \boldsymbol{F}, \boldsymbol{R}, \boldsymbol{W}) \propto P(T_i \mid W_i) \prod_j P(R_{ij} \mid T_i, S_j).$

What is Context? The Things and Stuff (TAS) model Results

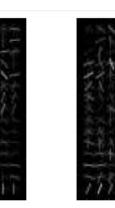
HOG Detector: [Dalal & Triggs, CVPR, 2006]

Feature Vector X

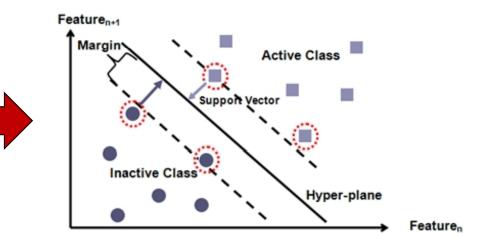
weighted

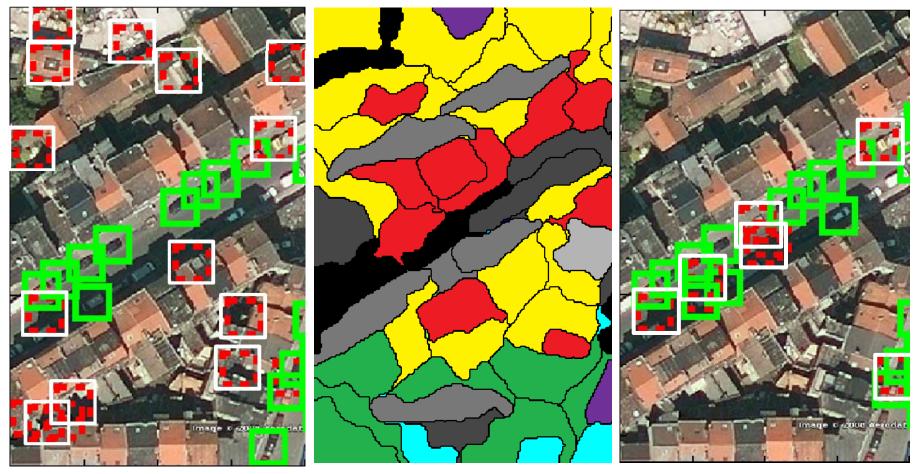
pos wts

input image

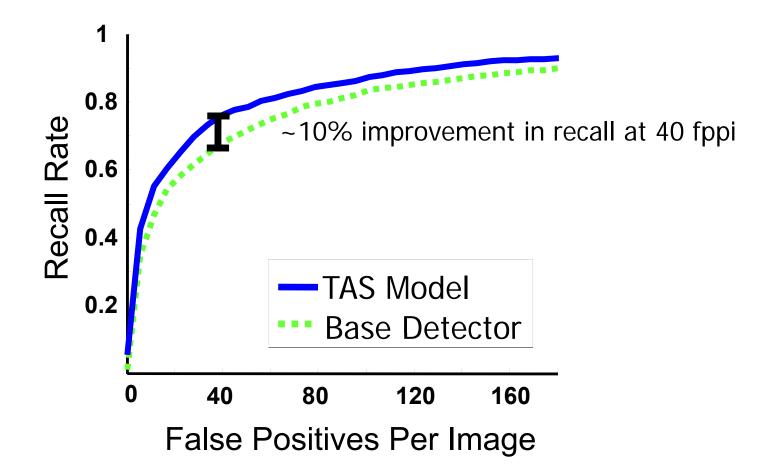


weighted neg wts

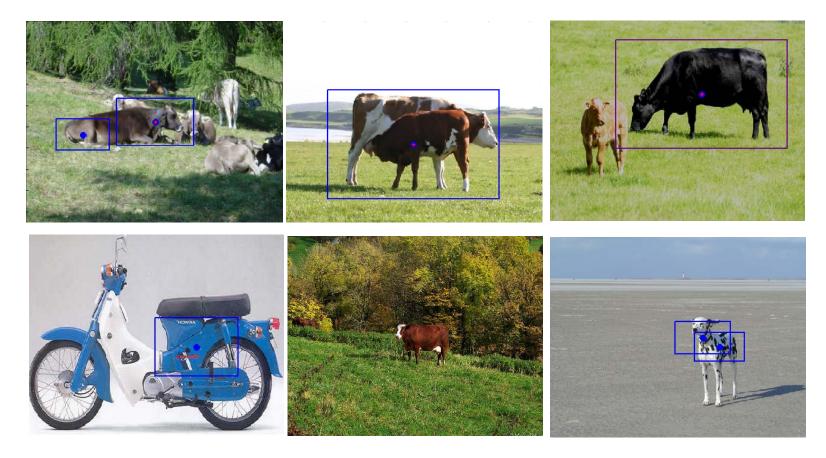




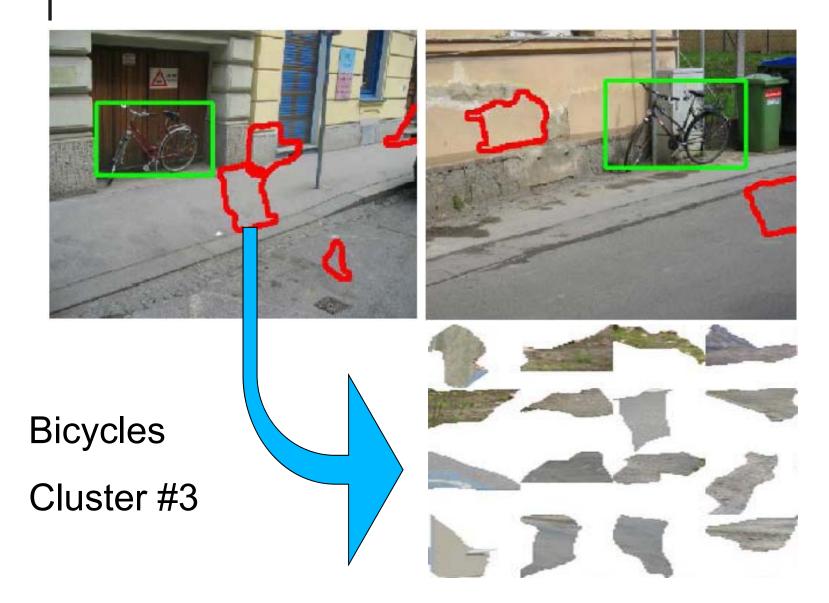
Prior: Detector Only Posterior: Region Labels Posterior: Detections



- 2005 Challenge
 - 2232 images split into {train, val, test}
 - Cars, Bikes, People, and Motorbikes
- 2006 Challenge
 - 5304 images plit into {train, test}
 - 12 classes, we use Cows and Sheep

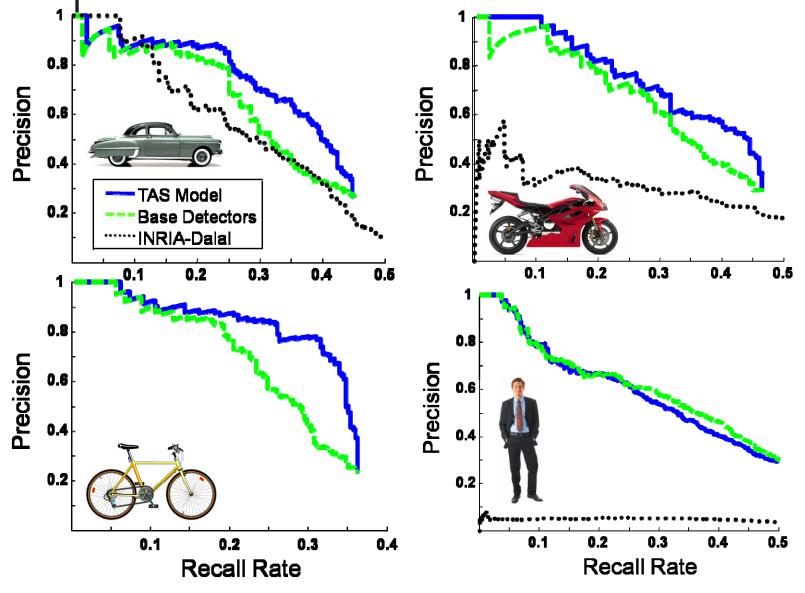


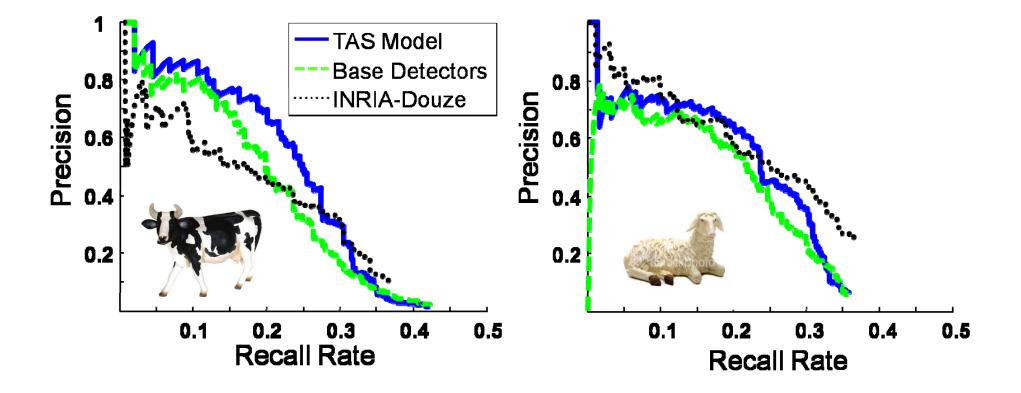
Cows



TAS Results – Bicycles

- Examples
 - Discover "true positives"
 - Remove "false positives"





- Detectors can benefit from context
- The TAS model captures an important type of context
- We can improve *any* sliding window detector using TAS
- The TAS model can be interpreted and matches our intuitions
- We can learn which relationships to use

Today: Three papers on computational models of context:

- A. Torralba, K. P. Murphy, and W. T. Freeman, "Contextual models for object detection using boosted random fields," in Advances in Neural Information Processing Systems 17 (NIPS), 2005.
- D. Hoiem, A. A. Efros, and M. Hebert, "Putting objects in perspective," in Computer Vision and Pattern Recognition, 2006
- G. Heitz and D. Koller, "Learning spatial context: Using stuff to find things," in ECCV 2008, pp. 30-43.

Who needs context anyway? We can recognize objects even out of context

Slide credit: A. Torralba