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Lecture 15: Part-based models



Last Lecture: Discriminative

Kernels

SVM-BOW

Pyramid and Spatial-Pyramid match
Fast Intersection Kernels
Latent-part SVM models



Recognition Lectures Summary

e Tues. 10/13: Introduction to Recognition

Scanning window paradigm
GIST

HOG

Boosted Face Detection

Local-feature Alignment; from Roberts to
Lowe...

BOW Indexing

e Thur. 10/15: Topic models for Recognition

Topic models for category discovery
[Sivic05]

Category discovery from web [Fergus05]
Bootstrapping a category model [Li07]
Using text in addition to image [Berg06]

Learning objects from a dictionary
[Saenko08]

e Tues. 10/20: Discriminative
Kernels

SVM-BOW

Pyramid and Spatial-Pyramid
match

Fast Intersection Kernels
Latent-part SVM models

e Thurs. 10/22: Voting and Part
Based Models

Naive-Bayes Nearest Neighbor
[Irani]

Implicit Shape Model (ISM)
Constellation Models

Transformed LDA Models
[Sudderth]

3-D view models [Saravese]




Today

Naive-Bayes Nearest Neighbor (lrani)
ISM (Liebe)

Constellation Models (Fergus)
Transformed LDA Models (Sudderth)
3-D view models (Saravese)



Multiple Features...

Wide variety of proposed local feature representations:

!E.-ﬁ.-- C .

Maximally Stable Extremal
Regions [Matas et al.]

Shape context Sdperplxels [Réh
[Belongie et al.] et al.]

-3 T i 5,1l % Spin images
Salient regions Harris-Affine [Johnson and Geometric Blur
[Kadir et al.] [Schmid et al.] Hebert] [Berg et al.]



Discriminative Paradigm: Learning the Kernel

 |earn the kernel parameters
 Improve accuracy and generalisation
 Perform feature component selection
 Perform dimensionality reduction

e Learn a linear combination of base kernels
* K(X;%;) = 2 de K (X;,%))
e Combine heterogeneous sources of data

e Perform feature selection [Varmal
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Gaussian Processes for Object Categorization
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Fig. 1 The active learning framework. The goal of the system is to
query labels for images that are most useful in training

1. GP uncertainty model facilitates active learning
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2. Kernel weights and kernel
hyperparameters can be efficiently
learned in a 1-vs-all setting (vs. SVM
MKL)



The power of discriminative
kernels?

Caltech 101: Comparison to Existing Methods

== Our Approach
D1 Boiman, Shechtman & Irani (CVPRO08)
=== Jain, Kulis, and Grauman (CVPRO08)
- | =8 =Frome, Singer, Sha, & Malik (ICCV0T)
—&— Zhang, Berg, Maire, & Malik(CVPRO08)
Lazebnik, Schmid, & Ponce (CVPRO0E)
O Berg (thesis)
Mutch, & Lowe(CVPROE)
—&— Grauman & Darrell(ICCV 2005)
O Berg, Berg. & Malik(CVPRO5)

Zhang, Marszalek, Lazebnik, & Schmid
—&— Wang, Zhang, & Fei—-Fei (CVPR06)
== Holub, Welling. & Perona(lCCV05)

Serre, Wolf, & Poggio(CVPRO05)

O Fei-Fei, Fergus, & Perona

SSD baseline

mean recognition rate per class

10 ! ! ! ! ! |
0 10 20 30 40 50 60
number of training examples per class



In Defense of Nearest-Neighbor Based Image Classification

Oren Boiman

The Weizmann Institute of Science
Rehovot. ISRAEL

Abstract

State-of-the-art image classification methods require an
intensive learning/training stage (using SVM, Boosting,
efc) In contrast, non-parametric Nearest-Neighbor (NN)
based image classifiers require no training time and have
other favorable properties. However, the large performance
gap between these two families of approaches rendered NN-
based image classifiers useless.

We claim that the effectiveness af nen-parametric NN-
based image classification has been considerably under-
valued. We argue that two practices commonly used in im-
age classification methods, have led to the inferior perfor-
mance of NN-based image classifiers: (i) Quantization of
local image descriptors (used to generate “bags-of-words ",
codebooks). (ii) Computation of ‘Tmage-to-Image’ dis-
tance, instead of Tmage-to-Class’ distance.

Eli Shechtman

Adobe Systems Inc. &
University of Washington

Moichal Irani

The Weizmann Institute of Science
Rehovot. ISRAEL

We propose a trivial NN-based classifier — NBNN,
(Naive-Bayves Nearest-Neighbor), which employs NN-
distances in the space of the local image descriptors (and
not in the space of images). NBNN computes direct ‘Tmage-
to-Class* distances without descriptor quantization. We fur-
ther show that under the Naive-Bayes assumption, the theo-
retically aptimal image classifier can be accurately approx-
imated by NBNN.

Although NBNN is extremely simple, efficient, and re-
quires no learning/training phase, its performance ranks
among the top leading learning-based image classifiers.
Empirical comparisons are shown on several challenging
databases (Caltech-101, Caltech-256 and Graz-01).
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Figure 1. Effects of descriptor quantization — Informative de-
scriptors have low database frequency, leading to higch quan-
tization error. (a) An image from the Face class in Cal-
techl0l. (b) Cuantization error of densely computed image de-
scriptors (SIFI) using a large codebook (size 6, 000) of Caltech-
101 (eenerated using [14]). Red = high error; Blue = low error
The most informative descriptors (eve, nose, etc.) have the highest
quantization ervor. (c) Green marks the 8% of the descriptors in
the image that are most frequent in the database (simple edges).
(d) Magenia marks the 3% of the descriptors in the image that are
least frequent in the database (mostly facial features).




Figure 3. “Image-to-Image™ vs. “Image-to-Class™ distance. A
Ballet class with large variability and small mumber (three) of la-
belled” images (bottom row). Even though the “Query-to-Image”
distance is large to each individual “labelled” image, the “Cuery-
fo-Class " distance is small. Top right image: For each descrip-
for at each point in () we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new quary configuration is more likely given the three images,
than each individual image seperately. (Images taken from [4].)
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Figure 2. Effects of descriptor quantization — Severe drop in
descriptor discriminative power. e generated a scatter plot
of descriptor discriminative power bgfore and after quantization
(for a very large sample set of SIFT descriptors d in Caltech-101,
each for its respective class C). We then averaged this scatfer plot
along the y-axis. This yields the “Average discriminative power
after quantization” (the RED graph). The display is in logarithmic
scale in both axes. NOIE: The more informative (discriminative)
a descriptor d is, the larger the drop in its discriminative power.
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Figure 4. NN descriptor estimation preserves descriptor den-
sity distribution and discriminativity. (a) A scatter plot of
the 1-NN probability density distribution Pﬂmr[dlf-_'r: vs. the frue

distribution p(d|C'). Brightmess corresponds fo the concentration
of points in the scatter plot. The plot shows that 1-NN distribu-
tion provides a very accurate approximation of the frue distribu-
tion. (b) 20-NN descriptor approximation (Green graph) and 1-
NN descriptor approximation (Blue graph) preserve guite well the
discriminative power of descriptors. In contrast, descriptor quan-
tization (Red graph) severely reduces discriminative power of de-
scriptors. Displavs are in logarithmic scale in all axes.



NBNN

The NBNN Algorithm:
1. Compute descriptors dq, ..., d,, of the query image ().
2. Vd; vC compute the NN of d; in C: NNg(d;).

4

3. C=argming Y ., || d; — NNg(d;) |2

with multiple feature types:



85
NN-based method Performance 15 |
SPM NN Image [27] 42.1 = 0.81% -
GBDist NN Image [27] 45.2 £ 0.96% %65 l
GB Vote NN [3] 52% § 55 |
SVM-KNN [30] 59.1 £+ 0.56% E
NBNN (1 Desc) 65.0 + 1.14% -l E—
. - ? d ; ; g == NENN (5 Desc)
MNBNM (5 D‘ES[‘) T72.8 += (0.3004 1 J SR AR — e e Rscl Trees (RO
: : : =@ Bosch SV
; ; i —#— Learnlist
Table 1. Comparing the performance of non-parametric NN-based =~ 2° 777" T I . Vo
approaches on the Caltech-101 dataset (Nigper = 15). All the 15 . ,0 KIA

listed methods do not require a learning phase. 0 5 10 15 20 25 30
Number of training examples per class

Bosch Kernels used in original Varma paper have been
withdrawn...



Back to shape: Parts-based
Representation

Object as set of parts

Generative representation

Model;

Relative locations between parts

Appearance of part

Issues:

How to model location

How to represent appearance
Sparse or dense (pixels or regions)

How to handle occlusion/clutter

Figure from [Fischler & Elschlager/73]



History of Parts and Structure
approaches

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. “93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99

Perona et al. “95, ‘96, 98, 00, ’03, ‘04, ‘05
Felzenszwalb & Huttenlocher *00, 04
Crandall & Huttenlocher ’05, 06

L eibe & Schiele ’03, 04

MOUTH

Many papers since 2000



Object class recognition using
unsupervised scale-invariant
learning

Rob Fergus
Pietro Perona
Andrew Zisserman

Oxford University
California Institute of Technology




Goal

- Recognition of object categories

- Unassisted learning




Some object
categories

Learn from examples

Difficulties:

e Sjze variation

« Background clutter
 Qceclusion

* Intra-class variation

kes

Airplanes
- _

Cars (Rear)

Spotted Gats

Background



Malin issues

- Represamtdiomn
. Learning

- Recognition



Sparse representation

+ Computationally tractable (10° pixels = 10! -- 102 parts)
+ (Generative representation of class

+ Avoid modeling global variability

+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes



Detection & Representation of regions

* Find regions within image

» Use Kadir and Brady's
salient region operator [IJCV '01]

Location

(x,y) coords. of region center

Scale

Diameter of region (pixels)

Projection onto

& 11x11 patch E PCA basis




Generative probabilistic model

Foreground model based on Burl, Weber et al. [ECCV "98, "00]

Gaussian shape pdf Gaussian part appearance pdf Qaussian
4 relative scale pdf

VAN

log(scale)

Prob. of detection

Clutter model

Gaussian background

Uniform shape pdf appearance pdf N _Uniform
relative scale pdf
e =

>
- log(scale)
@€ Poission pdf on #
detections




Motorbikes

Samples from appearance model Shape model
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The correspondence problem

* Model with P parts
e Image with N possible assignments for each part
e Consider mapping to be 1-1

/ T

T ——— Ny
— P

NP combinations!!!




The correspondence problem

1 -1 mapping

Each part assigned to unique feature

As opposed to:

1 - Many

Bag of words approaches

Sudderth, Torralba, Freeman 05
Loeff, Sorokin, Arora and Forsyth ‘05

e Many — 1

- Quattoni, Collins
and Darrell, 04




Learning

e Task:  Estimation of model parameters

» Chicken and Egg type problem, since we initially know neither:
- Model parameters

- Assignment of regions to foreground / background

* Let the assignments be a hidden variable and use EM algorithm to
learn them and the model parameters



Learning procedure
*Find regions & their location, scale & appearance
eInitialize model parameters

Use EM and iterate to convergence:
E-step: Compute assignments for which regions are foreground / background

M-step: Update model parameters

*Trying to maximize likelihood — consistency in shape & appearance



Experimental procedure

Two series of experiments:

» Fixed-scale model - Objects the same size (manual normalization)
» Scale-invariant model - Objects between 100 and 550 pixels in width
Datasets
Training Motorbikes Airplanes Frontal Faces

« 50% images
 No identifcation of
object within image

Testing Cars (Rear)
« 50% images _ ® v

« Simple object Tt
present/absent test




Motorbikes

Shape model
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Background images evaluated with
bike model




Frontal faces

Face shape model
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Airplanes

Airplane shape model
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Spotted cats

Spotted cat shape model
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Summary of results

Fixed scale | Scale invariant
Dataset . .
experiment experiment
Motorbikes 7.5 6.7
Faces 4.6 4.6
Airplanes 9.8 7.0
Cars (Rear) 15.2 0.7
Spotted cats 10.0 10.0

% equal error rate

Note: Within each series, same settings used for all datasets



Comparison to other methods

Dataset Ours | Others

. Weber et al.

Motorbikes | 7.5 16.0 [ECCV ‘00]
Faces 4.6 6.0 Weber
Airplanes 9.8 32.0 Weber
Agarwal

Cars (Side) | 11.5 | 21.0 Roth [ECCV

'02]

% equal error

rate
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% correct

100

Robustness of Algorithm

Face dataset
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Summary -- Fergus

 Comprehensive probabilistic model for object classes

e Learn appearance, shape, relative scale, occlusion etc.
simultaneously in scale and translation invariant manner

e Same algorithm gives <= 10% error across 5 diverse datasets with
identical settings

Limitations — future work

 Very reliant on region detector
Different part types (e.g. edgel curves)

* Only learns a single viewpoint
Use mixture models

* Need lots of images to learn
Bayesian learning - fewer images [ICCV '03 (Fei Fei, Fergus, Perona)]

* Need more through testing Datasets available from:
Looking towards testing 100’s of datasets| http://www.robots.ox.ac.uk/~vgg/data







Implicit Shape Model

[Leibe,Schiele04]

Mario Fritz







Learning Object Appearance Models
via
Transformed Dirichlet Processes

Erik Sudderth

University of California, Berkeley

, Antonio Torralba H
Joint work e
with  William Freeman I I

Alan Willsky




« GOAL.: Visually recognize and localize object categories

* Robustly learn appearance models from few examples
> Hierarchical model transfers knowledge among categories

» Nonparametric, Dirichlet process prior gives flexibility



Scenes, Objects, and Parts

Scene

Objects

l

Parts

|

Features



Outline

Object Recognition with Shared Parts

» Learning parts via Dirichlet processes

» Hierarchical DP model for 16 object categories

Multiple Object Scenes

» Transformed Dirichlet processes
» Part-based models for 2D scenes

» Joint object detection & 3D reconstruction

] o e
T
e
"




Describing Objects with Parts

HIGHT
KIGE

MOUTH

Pictorial Structures
Fischler & Elschlager, IEEE Trans. Comp. 1973

Cascaded SVM Detectors
Heisele, Poggio, et. al., NIPS 2001

Constellation Model Model-Guided Segmentation
Fergus, Perona, & Zisserman, CVPR 2003 Mori, Ren, Efros, & Malik, CVPR 2004



Counting Objects & Parts

How many parts? How many objects?



From Images to Features

Harris Corners Extremal Regions of Canny Edges

e Some Iinvariance to lighting & pose variations
 Dense, multiscale, over-segmentation of image



A Discrete Feature Vocabulary

-
SIFT Descriptors i [T Ql% N4
» Normalized histograms  |F3347=5% —>

of orientation energy nETnas % %
e Compute ~1,000 word g ardnts Lo, 110 2004

dictionary via K-means
wyz ___, appearance of

feature 1in Image |

 Map each feature to

nearest visual word Vjj — 2D positionof -
feature 1 In Image |




Generative Model for Objects

ONe®

0.

& For each feature:

» Randomly choose one part
» Sample from that part’s feature distribution

SR

oMe

<

S|

For each image: Sample a reference position

L

EME




Objects as Mixture Models

* For a fixed reference position, our generative
model Is equivalent to a finite mixture model.

K
p(wjs, viilps) = Y meng(win) N (vis; pg + o4, Ak)
‘ t k=1 N X Ry -
Feature Pr(part) ‘
appearance
Feature Pr(appearance | part)
position Pr(position | part)

« How many parts should we choose?
» Too few reduces model accuracy
» Too many causes overfitting & poor generalization



Dirichlet Process Mixtures

p(z) = ) wf (x| 6g)

k=1

» Dirichlet processes define a prior distribution
on weights assigned to mixture components:

0 1
 — s weLe—e .
\\ _J

Y G ~- _J

]

o i ,
7]'3 Y .......
T = Bk H (1 — Be) o concentration
(=1 parameter

B ~ Beta(1l, o)

Stick-Breaking Construction: Sethuraman, 1994



Why the Dirichlet Process?

oo
p(x) = > mpf (x| k)
k=1
Nonparametric ;é No Parameters II.I..l_
 Model complexity grows as data observed:

» Small training sets give simple, robust predictions
» Reduced sensitivity to prior assumptions

Flexible but Tractable
e Literature showing attractive asymptotic properties

« Leads to simple, effective computational methods
» Avoids challenging model selection issues



Objects as Distributions

o0
p(wji, viile;) = D Wk"?k('wji?-ﬁf (vjs: bk + Pj; /\@

| = 1
Feature  Feature Pr(appearance | part) Pr(position | part)

appearance  position

e Parts are defined by parameters, which
encode distributions on visual features:

Qk;:{nka 9 }

e Objects are defined by distributions on the
infinitely many potential part parameters:

GO) = > m,6(6,6) 7 ~ Stick(a)
k=1



Dirichlet Process Object Model

Part-based object model
sampled from DP prior:

G ~ DP(a, H)

L | © @

GO) = 3 1506, 0%)
k=1

For each of J
Q « images, sample a
reference position:

pj ~ N (p; ¢)

T~ Sthk(Of) 0, ~ H
For each of N features,

sample part parameters: -

3; ~ G(0)

Sample multinomial ‘

feature appearance:
Wgq ™~ ﬁjz'(’w) _ L ’sz' ~ N(v; ﬁjz’ —|- pj, Ajz')
05i = {nji> Bji, Nji}

- Sample Gaussian

Nfj| feature position:




Learning DPs: Gibbs Sampling

Part Scale &

i : Image Scale
Visual Sparsity - (insensitive)

(insensitive)

Sample ‘
Integrate parameters
defining feature distributions Q _ Sample

ek — {nka HE, Ak}

Sample assignments
clustering features to parts

(wjs, vji) — kj

N|J

Dirichlet processes have many desirable analytic properties,
which lead to efficient Rao-Blackwellized learning algorithms



Decomposing Faces into Parts

Images



Generallzmg Across Categorles

Can we transfer knowledge from one object category to another?



Learning Shared Parts

* Objects are often locally similar in appearance

* Discover parts shared across categories
» How many total parts should we share?
» How many parts should each category use?



Hierarchical DP Object Model




o Caltech 101 Dataset (Li & Perona) » Bikes from Graz-02 (Opelt & Pinz)
» Horses (Borenstein & Ullman) » Google...
» Cat & dog faces (Vidal-Naquet & Uliman)



Visualization of Shared Parts

o

Pr(position | part)

Pr(appearance | part)




Visualization of Shared Parts

O

Pr(position | part)

Pr(appearance | part)




Visualization of Shared Parts

Pr(position | part)

Py

i A-v'r -'~.'.- ay o

Pr(appearance | part)




Visualization of Part Densities

MDS Embedding of Pr(part | object)



Visualization of Part Densities

Wheelchair
Llama Body
Horse Face
Llama Face
Cow Face
Dog Face
Leopard Face
Cougar Face
Cat Face
Cannon
Bicycle
Motorbike
Leopard Body
Horse Body
Rhino Body
Elephant Body

Hierarchical Clustering of Pr(part | object)



Detection Task




Detection Rate

Detection Results

0.2 - Position & Appearance, HDP
== Position & Appearance, DP
0.1 = = = Appearance Only, HDP

= = = Appearance Only, DP

 <— Shared Parts

more accurate than

Modeling feature positions
Improves shared detection, but
hurts unshared detection

0 0.1 0.2 0.3
False Alarm Rate

0.4

6 Training Images per Category

(ROC Curves)



Detection Rate

Detection Results

- Position & Appearance, HDP
== Position & Appearance, DP
0.1 = = = Appearance Only, HDP

= = = Appearance Only, DP

0 0.1 0.2 0.3 0.4
False Alarm Rate

6 Training Images per Category
(ROC Curves)

Average Area Under ROC

0.95
0.9
0.85
0.8
0.75 Position & Appearance, HDP
- Position & Appearance, DP
= = = Appearance Only, HDP
= = = Appearance Only, DP
0.7 :

5 10 15 20 25 30
Number of Training Images

Detection vs. Training Set Size
(Area Under ROC)



Sharing

Number of Global Parts

500

450

400

350

300

250

200

150

100

50

0

Simplifies Models

- Position & Appearance, HDP
Position & Appearance, DP
= = = Appearance Only, HDP

15 20 25 30
Number of Training Images



Recognition Task

bR U NDY




Detection Rate

Recognition Results

0.2 Position & Appearance, HDP

- Position & Appearance, DP
0.1 = = = Appearance Only, HDP
= = = Appearance Only, DP

0 0.1 0.2 0.3
False Alarm Rate

6 Training Images per Category
(ROC Curves)

0.4

Average Area Under ROC

1

0.95

0.75

= Position & Appearance, HDP
—— Position & Appearance, DP
= = = Appearance Only, HDP

- = = Appearance Only, DP

0.7
3)

10 15 20 25 30
Number of Training Images

Detection vs. Training Set Size
(Area Under ROC)



Outline

Object Recognition with Shared Parts

» Learning parts via Dirichlet processes

» Hierarchical DP model for 16 object categories

Multiple Object Scenes

» Transformed Dirichlet processes
» Part-based models for 2D scenes

» Joint object detection & 3D reconstruction




ervised Learning
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Object vs. Visual Categories

Supervised

Unsupervised

« Assume training data contains object category labels
« Discover underlying visual categories automatically



Object Scenes

e How many cars are there?
e Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate



Spatial Transformations

* Let global DP clusters model objects
In a canonical coordinate frame

e Generate Images via a random
set of transformations:

T((,N); p) = (=4 p, A\)

1 1

Parameterized family  Shift cluster from canonical
of transformations coordinate frame to object
location in a given image

Layered Motion Models (wang & Adelson, Jojic & Frey)
Nonparametric Transformation Densities (Learned-Miller & Viola)



A Toy World: Bars & Blobs




Transformed Dirichlet Process




Importance of Transformations

--------




ting Objects

« How many cars are there? Dirichlet Processes
e Where are those cars in the scene? Transformations



Global

Density
Object category
Part size & shape

Transformation prior

Transformed

Densities
Object category
Part size & shape
Instance locations

2D Image
Features

Appearance
Location

Visual Scene TDP
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Street Scene Visual Categories
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IONS

Street scene segmentatia
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* “Bag of features” model, ignores feature positions
 Inferior segmentations, cannot count objects



Segmentation Performance
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Objects & 3D Reconstruction

Green «— Near
Red «— Far

An Office Scene

e Given 3D structure, segmentation Is easier
 |dentifying objects regularizes depth estimation



Office Scene Training Images

Objects at Multiple Scales

Computer Screens
Desks
Bookshelves



3D Structure from Stereo

Reference (left) Image

Potential Matches

Overhead View

2 4 6 8 10

Depth Densities

)
Disparity

Depth =



Greedy Depth Estlmates

Green «—» Near
Red «— Far




Global Density
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Part size & shape - | 88
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Single-Part Office Scene Model
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Multi-Part Office Scene Model

(Global classes

Computer Screen .- .
Desk Pims

Background Bookshelves
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Stereo Test Image I







Ongoing Work: Context

Screen

Keyboard lEEE

* Developed fixed-order contextual scene model
» Extension to Transformed DP model is an open problem
 Needed: Richer models for background scene structure



Sudderth Conclusions

Transformed Dirichlet Processes allow...
> flexible transfer of knowledge
among related object categories

» robust learning from small,
partially labeled datasets

» an integrated view of object
recognition & 3D reconstruction

» potential scaling of nonparametric
methods to complex domains







Learning a dense multi-view representation
for detection, viewpoint classification and
synthesis of object categories

*H. Su *M. Sun L. Fei-Fei and S. Savarese.

MICHIGAN

Min Sun Hao Su
University of Michigan, USA Beihang University, China
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Our goals

Viewing sphere
Azimuth 0, Zenith ¢

-~
—_——m -

e Detect objects under generic view points
e Estimate object pose
e Predict object appearance from novel views



Our goals

e Detect objects under generic view points
e Estimate object pose

* Predict object appearance from novel views
e Generic and work for any category



eLeung et al ‘99
eWeber et al. ’00
e Schneiderman et al. ’01

Current paradigm

eUllman et al. 02

eFelzenszwalb & eKumar & Hebert ‘04 eSudderth et al ‘05 *Vedaldi & Soatto ‘08
*Fergus etal."03 Huttenlocher ‘03 *Sivic et al.’05 *Torralba et al. ‘05 * Zhuetal 08
eTorralba et al. ‘03 eFei-Fei et al. ’04 eShotton et al ‘05 eLazebnik et al. ‘06

eTodorovic et al. ‘06

‘ G t al. ‘05
e Bartetal ‘04 eGrauman eta eBosh et al ‘07

eLeibe et al. ‘04

Single
Model

3D Category
: model

Single
Model

* Single view models are independent

eNo information is shared [except Torralba et al. ’03]
*No sense of correspondences of parts under 3D transformations

« Non scalable to large number of categories/view-points



A new recent paradigm

eThomas et al. ‘06 e Chiu et al. ‘07 e Liebelt et al., '08 e Sun et al 09

e Kushal, et al., '07 * Hoiem, et al., 07 e Xiao et al., /08 e Farhadilet al ICCV 09

e Savarese et al, 07, 08 e Yan, et al. ’07 e Liebelt et al., 08 e Arie-Nachimson & Basri, ‘ICCV 09
e Xiao et al.,’08

3D Category
model

Sparse set of interest points or parts of the objects
are linked across views.



A new recent paradigm

Savarese, Fei-Fei, ICCV 07
Savarese, Fei-Fei, ECCV 08

Sun, Su, Savarese, Fei-Fei, CVPR 09

e Canonical parts captures view invariant diagnostic appearance
information
e 2d % structure linking parts via weak geometry



Drawbacks

e Supervision
e Part labels required

* Pose labels required

°Except [Savarese & Fei-Fei 07, 08], but...
[Arie-Nachimson & Basri ICCV 09]

* No pose estimation

e Exce pt [Savarese & Fei-Fei 07, 08] [Sun et al 09] [Liebelt 08] [Arie-Nachimson & Basri ICCV 09]
* Few poses (at most 8 azimuth, 3 zenith) [Farhadi ICCV 09]
e Still inaccurate

* No or limited ability to synthesize novel views

e Tested on few categories
e Usually 1-2, but no more than 8 [Savarese & Fei-Fei 07, 08] [Sun et al 09]



Propose a new multi-view model to:

» Detect objects from any viewing angles
e Accurately estimate object pose
* Synthesize object appearance from novel views




Key contributions

* Representation

* LedDermge representation on the viewing sphere:

* Model object appearance and shape from any position on the viewing
sphere
e Enable view synthesis from novel view points

* Multi-view generative part-based model (sun et al. cvpr 09)

* Object is represented by collections of parts
e Parts are linked across views
 Parts and relationships are probabilistic

e Semi-supervised learning
* No part or pose labels are required

e Incremental:
* Training images can be provided sequentially



Dense representation on view-sphere

"a,
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ey
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* Triangle T
* Morphing parameter S






View morphing constraints
"'S.évitvz.&Dyer SIGGRAPH 96

(S) - Zg 1 mT 7 Xiao & Shah CVIU ‘04
W(S) = Z . WT .8,  Forfirst time used for
g=

modeling object categories!



established



2. Key views are rectified
by a pre-warping transformations H



Key contributions

*Representation:

* Dense representation on the viewing sphere:

* Multi-view generative part-based model (sun et al cvpr 09]
* Object is represented by collections of parts
* Parts are linked across views
 Parts and relationships are probabilistic



Multi-view generative part-based model

Yn=Codeword =~
Xn=Location

Yn=Codeword =~
Xn=Location




Multi-view generative part-based model

(X =Part Prop. Prior
7w ~ Dir(a)

R ~ Mult(r)
Yy, ~ Mult(n)
X, ~ N(theta)

77 = Part Appearance

9 = Part Location/shape

Yn=Codeword =~
Xn=Location
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Key contributions

*Representation:

* Dense representation on the viewing sphere:

* Multi-view generative part-based model (sun et al cvpr 09]

eLearning:
e Semi-supervised learning

* no part or pose labels are required

* Incremental:
* Training images can be provided sequentially



Semi-supervised

1 " e Class label
/ e Object bounding box
* No part labels
* No pose labels [uniike sun cvpr 09]

* No need to observe same object instance from multiple views
[unlike Savarese & Fei-Fei, 07, 08]




Incorporating geometrical constraints

* Parts are linked across views —
* Part topology is preserved under morphing transformation



Within-tria—rigle constraints

|— | . Encoded as a penalty term
in variational EM



Incremental learning

* Enable unorganized and on-line collection training images
* Increase efficiency in learning (no need large storage space)



Incremental learning
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e Sequentially assign new training images to triangles on view sphere



Key-view 1

See paper for detailed equations! :
: Key-view 3

=
S EEEEEEEEE NN EEEEEEEEEEEREEEEEEEnnmnn”

e Sequentially assign new training images to triangles on view sphere

e Evidence of training image used to update model parameters



Initializing the model

e Estimating key views and triangles
e Defining initial parts

k k K K y Sequential ransac : f e
TI _){P]_ y P21 P3 y O } J_Ilnkage 3 -4




Example of part learning




Examples of learnt part-based models

129



Examples of learnt part-based mo
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Examples of learnt part-based models

Binocular
Mmicro-
scope
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Examples of learnt part-based models

132



Let’s use our model!

e Detect objects from any viewing angles

e Accurate pose estimation

e Synthesize object shape and appearance from
novel views



DEtECtion — UIUC 3D dataset [Savarese & Fei-Fei 07]

bicycle

iron cellphone car

toaster stapler shoe mouse



Detection - uiuc 3D dataset
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Detection - Pascal 2006 dataset

Bicycle

Car




Precision

0.2}

Detection - Pascal 2006 dataset

Car

[CCYO9 (0.350)
Liebelt CVPROS (0.363)
ENSMP (0. 398)
INRTA Douze (0.444)
Cambridge (0.254)

TKE (0.222)

0.2

0.4 0.6
Recall

0.35(average p)

== Qur model

0.8

Bicycle

— (U1 approach (0.347)
e [NRIA_Domze (0.414)
e INRTA_Laptev (0.440)
e TEE (0. 303)
s (ambridge (0.249)

Precision

0 02 0.4 06 0.8
Recall

0.347(average p)
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Detection - Household Item Dataset
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Detection - Household Item Dataset

Detection rate

| | | |
0 0.2 04 0.6 0.8 1

False alarm



Viewpoint Classification
Car from UIUC 3D Dataset

0.2 0.4 0.6 0.8 1.I0 Classification Accuracy

- Our model
== Savarese & Fei-Fei ICCV 07



Viewpoint Classification

Car- Pascal 2006 dataset  First the time!
[Arie-Nachimson & Basri '09]

909

1802

27092

0.2 0.4 0.6 0.8 | ng Classification Accuracy

- Our model
== Min et al, CVPR 09
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Viewpoint Classification

Household Item Dataset

Avg. Accuracy

All



Notice the viewpoint variability in the dataset! 143



Binocular

144
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Travel Iron
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Novel view object synthesis from a
single image For the first time!

[For natural scenes, see Hoiem et al 07;
Saxena et al 07]




Novel view object synthesis from a
single image For the first time!

[For natural scenes, see Hoiem et al 07;
Saxena et al 07]

Affine
transformation
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Saravese Conclusions

A new part-based multi-view
representation for object
categories

Incremental learning scheme with
little supervision

Achieve accurate pose estimation
tested on up to 16 categories

Image based rendering from just
one single image!







Today

Naive-Bayes Nearest Neighbor (lrani)
ISM (Liebe)

Constellation Models (Fergus)
Transformed LDA Models (Sudderth)
3-D view models (Saravese)



