C280, Computer Vision

Prof. Trevor Darrell
trevor@eecs.berkeley.edu

Lecture 11: Structure from Motion

Roadmap

- Previous: Image formation, filtering, local features, (Texture)...
- Tues: Feature-based Alignment
- Stitching images together
- Homographies, RANSAC, Warping, Blending
- Global alignment of planar models
- Today: Dense Motion Models
- Local motion / feature displacement
- Parametric optic flow
- No classes next week: ICCV conference
- Oct 6th: Stereo / 'Multi-view': Estimating depth with known inter-camera pose
- Oct 8 ${ }^{\text {th: }}$ 'Structure-from-motion': Estimation of pose and 3D structure
- Factorization approaches
- Global alignment with 3D point models

Last time: Stereo

- Human stereopsis \& stereograms
- Epipolar geometry and the epipolar constraint
- Case example with parallel optical axes
- General case with calibrated cameras
- Correspondence search
- The Essential and the Fundamental Matrix
- Multi-view stereo

Today: SFM

- SFM problem statement
- Factorization
- Projective SFM
- Bundle Adjustment
- Photo Tourism
- "Rome in a day:

Structure from motion

Lazebnik

Multiple-view geometry questions

- Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding points in 3D?
- Correspondence (stereo matching): Given a point in just one image, how does it constrain the position of the corresponding point in another image?
- Camera geometry (motion): Given a set of corresponding points in two or more images, what are the camera matrices for these views?

Structure from motion

- Given: m images of n fixed 3D points

$$
\mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and $n 3$ points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{x}_{i j}$

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

$$
\mathbf{x}=\mathbf{P X}=\left(\frac{1}{k} \mathbf{P}\right)(k \mathbf{X})
$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same
- More generally: if we transform the scene using a transformation \mathbf{Q} and apply the inverse transformation to the camera matrices, then the images do not change

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P} \mathbf{Q}^{-1}\right)(\mathbf{Q X})
$$

Projective ambiguity

Projective ambiguity

Lazebnik

Affine ambiguity

Affine ambiguity

Lazebnik

Similarity ambiguity

Similarity

$$
\mathbf{x}=\mathbf{P X}=\left(\mathbf{P} \mathbf{Q}_{\mathrm{S}}^{-1}\right)\left(\mathbf{Q}_{\mathrm{S}} \mathbf{X}\right)
$$

Similarity ambiguity

Lazebnik

Hierarchy of 3D transformations

Projective
15dof

Affine 12dof

Similarity
7dof

Euclidean
6dof

Preserves intersection and tangency

Preserves parallellism, volume ratios

Preserves angles, ratios of length

Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a projective reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Structure from motion

- Let's start with affine cameras (the math is easier)

Recall: Orthographic Projection

Special case of perspective projection

- Distance from center of projection to image plane is infinite

- Projection matrix:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Affine cameras

Orthographic Projection

Parallel Projection

Lazebnik

Affine cameras

- A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

$$
\mathbf{P}=[3 \times 3 \text { affine }]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right][4 \times 4 \text { affine }]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]
$$

- Affine projection is a linear mapping + translation in inhomogeneous coordinates

Affine structure from motion

- Given: m images of n fixed 3D points:

$$
\mathbf{x}_{i j}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}, \quad i=1, \ldots, m, j=1, \ldots, n
$$

- Problem: use the $m n$ correspondences $\mathbf{x}_{i j}$ to estimate m projection matrices \mathbf{A}_{i} and translation vectors \mathbf{b}_{i}, and n points \mathbf{X}_{j}
- The reconstruction is defined up to an arbitrary affine transformation \mathbf{Q} (12 degrees of freedom):

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \mathbf{Q}^{-1}, \quad\binom{\mathbf{X}}{\mathbf{1}} \rightarrow \mathbf{Q}\binom{\mathbf{X}}{\mathbf{1}}
$$

- We have $2 m n$ knowns and $8 m+3 n$ unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have $2 m n>=8 m+3 n-12$
- For two views, we need four point correspondences

Affine structure from motion

- Centering: subtract the centroid of the image points

$$
\begin{aligned}
\hat{\mathbf{x}}_{i j} & =\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}\right) \\
& =\mathbf{A}_{i}\left(\mathbf{X}_{j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k}\right)=\mathbf{A}_{i} \hat{\mathbf{X}}_{j}
\end{aligned}
$$

- For simplicity, assume that the origin of the world coordinate system is at the centroid of the 3D points
- After centering, each normalized point $\mathbf{x}_{i j}$ is related to the 3D point X_{i} by

$$
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \mathbf{X}_{j}
$$

Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

The measurement matrix $\mathbf{D}=\mathbf{M S}$ must have rank 3!
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Factorizing the measurement matrix

Factorizing the measurement matrix

- Singular value decomposition of D :

3

Factorizing the measurement matrix

- Singular value decomposition of D :

Factorizing the measurement matrix

- Obtaining a factorization from SVD:

Factorizing the measurement matrix

- Obtaining a factorization from SVD:

This decomposition minimizes
$|\mathrm{D}-\mathrm{MS}|^{\mathbf{2}}$

Affine ambiguity

- The decomposition is not unique. We get the same \mathbf{D} by using any 3×3 matrix \mathbf{C} and applying the transformations \mathbf{M} $\rightarrow \mathrm{MC}, \mathrm{S} \rightarrow \mathrm{C}^{-1} \mathrm{~S}$
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)

Eliminating the affine ambiguity

- Orthographic: image axes are perpendicular and scale is 1

- This translates into $3 m$ equations in $\mathbf{L}=\mathbf{C C}{ }^{\top}$:

$$
\mathrm{A}_{\mathrm{i}} \mathrm{LA}_{\mathrm{i}}^{\top}=\mathrm{Id}, \quad i=1, \ldots, m
$$

- Solve for L
- Recover C from L by Cholesky decomposition: $\mathbf{L}=\mathbf{C C}^{\top}$
- Update \mathbf{M} and $\mathbf{S}: \mathbf{M}=\mathbf{M C}, \mathbf{S}=\mathbf{C}^{-1} \mathbf{S}$

Algorithm summary

- Given: m images and n features $\mathbf{x}_{i j}$
- For each image i, center the feature coordinates
- Construct a $2 m \times n$ measurement matrix \mathbf{D} :
- Column j contains the projection of point j in all views
- Row i contains one coordinate of the projections of all the n points in image i
- Factorize D:
- Compute SVD: D = U W V ${ }^{\boldsymbol{\top}}$
- Create \mathbf{U}_{3} by taking the first 3 columns of \mathbf{U}
- Create \mathbf{V}_{3} by taking the first 3 columns of \mathbf{V}
- Create \mathbf{W}_{3} by taking the upper left 3×3 block of \mathbf{W}
- Create the motion and shape matrices:
- $\mathbf{M}=\mathbf{U}_{3} \mathbf{W}_{3}{ }^{1 / 2}$ and $\mathbf{S}=\mathbf{W}_{3}{ }^{1 / 2} \mathbf{V}_{3}{ }^{\boldsymbol{\top}}\left(\right.$ or $\mathbf{M}=\mathbf{U}_{3}$ and $\left.\mathbf{S}=\mathbf{W}_{3} \mathbf{V}_{3}{ }^{\top}\right)$
- Eliminate affine ambiguity

Reconstruction results

1

120

60

150

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

Dealing with missing data

- Possible solution: decompose matrix into dense subblocks, factorize each sub-block, and fuse the results
- Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement
(1) Perform
factorization on a dense sub-block

(2) Solve for a new 3D point visible by at least two known cameras (linear least squares)

(3) Solve for a new camera that sees at least three known 3D points (linear least squares)
F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

Further Factorization work

Factorization with uncertainty
(Irani \& Anandan, IJCV'02)
Factorization for indep. moving objects (now)
(Costeira and Kanade ‘94)
Factorization for articulated objects (now)
(Yan and Pollefeys '05)
Factorization for dynamic objects (now)
(Bregler et al. 2000, Brand 2001)
Perspective factorization (next week)
(Sturm \& Triggs 1996, ...)
Factorization with outliers and missing pts.
(Jacobs ‘97 (affine), Martinek \& Pajdla‘01 Aanaes’02 (perspective))

Structure from motion of multiple moving objects

The Shape Interaction Matrix

$$
\mathcal{Q} \stackrel{\text { def }}{=} \mathcal{V}_{r} \mathcal{V}_{r}^{T}=\mathcal{P}^{T}\left(B^{T} B\right) \mathcal{P} \quad C \stackrel{\text { def }}{=}\left(\mathcal{P} \mathcal{P}^{T}\right)^{-1}
$$

$$
\mathcal{Q}=\left(\begin{array}{cccc}
\mathcal{P}^{(1) T} C \mathcal{P}^{(1)} & 0 & \ldots & 0 \\
0 & \mathcal{P}^{(2) T} C \mathcal{P}^{(2)} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \mathcal{P}^{(k) T} C \mathcal{P}^{(k)}
\end{array}\right)
$$

$$
\begin{aligned}
& \mathcal{D}^{(i)} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\boldsymbol{p}_{11}^{(i)} & \ldots & \boldsymbol{p}_{1 n_{i}}^{(i)} \\
\boldsymbol{p}_{m 1}^{(i)} & \ldots & \boldsymbol{p}_{m n_{i}}^{(i)}
\end{array}\right) \\
& \mathcal{D}^{(i)}=\mathcal{M}^{(i)} \mathcal{P}^{(i)} \quad \mathcal{M}^{(i)} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathcal{M}_{1}^{(i)} & \boldsymbol{o}_{1}^{(i)} \\
\ddot{\mathcal{M}}_{m}^{(i)} & \boldsymbol{o}_{m}^{(i)}
\end{array}\right) \quad \mathcal{P}^{(i)} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{(i)} & \ldots & \boldsymbol{P}_{n_{i}}^{(i)} \\
1 & \ldots & 1
\end{array}\right) \\
& \mathcal{D} \stackrel{\text { def }}{=}\left(\mathcal{D}^{(1)} \mathcal{D}^{(2)} \ldots \mathcal{D}^{(k)}\right) \\
& \mathcal{D}=\mathcal{M P} \quad \mathcal{M} \stackrel{\text { def }}{=}\left(\mathcal{M}^{(1)} \mathcal{M}^{(2)} \ldots \mathcal{M}^{(k)}\right) \\
& \mathcal{P} \xlongequal{\text { def }}\left(\begin{array}{ccccc}
\mathcal{P}^{(1)} & 0 & \ldots & 0 & 0 \\
0 & \mathcal{P}^{(2)} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & \mathcal{P}^{(k)}
\end{array}\right) \\
& \mathcal{D} \text { has rank } 4 k \text { (or less) }
\end{aligned}
$$

Structure from motion of multiple moving objects

Shape interaction matrix

Shape interaction matrix for articulated objects looses block diagonal structure

Costeira and Kanade's approach is not usable for articulated bodies (assumes independent motions)

Articulated motion subspaces

Motion subspaces for articulated bodies intersect
Joint (1D intersection)
(Yan and Pollefeys, CVPR'05)

$$
\underset{(\text { rank }=8-1)}{\mathbf{W}}=\left[\begin{array}{cc}
\mathbf{R}_{1} \mid \mathrm{t}_{1} & \mathbf{R}_{1} \mathbf{R}_{1}^{\prime} \mid \mathrm{t}_{1} \\
\vdots & \vdots \\
\mathbf{R}_{m} \mid \mathrm{t}_{m} & \mathbf{R}_{m} \mathbf{R}_{m}^{\prime} \mid \mathrm{t}_{m}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{S}_{1} & 0 \\
0 & \mathbf{S}_{2}
\end{array}\right] \text { (joint=origin) }
$$

Hinge (2D intersection)

$$
\begin{array}{r}
\underset{(\text { rank }=8-2)}{\mathbf{W}}=\left[\begin{array}{cc}
\mathbf{R}_{1} \mid \mathrm{t}_{1} & \mathbf{R}_{1} \mathbf{R}_{1}^{\prime} \mid \mathrm{t}_{1} \\
\vdots & \vdots \\
\mathbf{R}_{m} \mid \mathrm{t}_{m} & \mathbf{R}_{m} \mathbf{R}_{m}^{\prime} \mid \mathrm{t}_{m}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{S}_{1} & 0 \\
0 & \mathbf{S}_{2}
\end{array}\right] \text { (hinge=z-axis) } \\
\mathbf{R}_{i}^{\prime}=\left[\begin{array}{ccc}
\cos \theta_{i} & \sin \theta_{i} & 0 \\
-\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Exploit rank constraint to obtain better estimate
Also for non-rigid parts if $\quad \sum_{i=1}^{K} c_{i}^{f}=1$ (Yan \& Pollefeys, 06?)

Results

Toy truck
Segmentation

$\left(\mathbf{W}_{1} \cap \mathbf{W}_{2}\right)$
Intersection

Student
Segmentation

$\left(\mathbf{W}_{1} \cap \mathbf{W}_{2}\right)$
Intersection

Pollefeys

Articulated shape and motion factorization

(Yan and Pollefeys, 2006?)
Automated kinematic chain building for articulated \& non-rigid obj.

- Estimate principal angles between subspaces
- Compute affinities based on principal angles
- Compute minimum spanning tree

	larm	lleg	hip	rarm	body
rleg	0.0111	0.0007	$\mathbf{0 . 0 0 0 2}$	0.0126	0.0006
larm		0.0110	0.0060	0.0250	$\mathbf{0 . 0 0 0 8}$
lleg			$\mathbf{0 . 0 0 0 2}$	0.0170	0.0006
hip				0.0175	$\mathbf{0 . 0 0 0 5}$
rarm					$\mathbf{0 . 0 0 0 3}$

	luarm	ruarm	body	narm	llarm
head	0.0015	0.0033	$\mathbf{0 . 0 0 1 1}$	0.0035	0.0065
luarm		0.0036	$\mathbf{0 . 0 0 0 8}$	0.0058	$\mathbf{0 . 0 0 0 9}$
ruarm			$\mathbf{0 . 0 0 0 8}$	$\mathbf{0 . 0 0 0 3}$	0.0145
body				0.0018	0.0033
rlarm					0.0103

Structure from motion of deforming objects

(Bregler et al '00; Brand '01)

Extend factorization approaches to deal with dynamic shapes

Representing dynamic shapes

(fig. M.Brand)
represent dynamic shape as
varying linear combination of basis shapes

Results

(Bregler et al '00)

Dynamic SfM factorization

$$
\mathbf{c}^{\prime} \otimes \mathbf{R}
$$

constraints to be satisfied for M

$$
\forall_{\hat{\mathbf{M}}_{f} \in \hat{\mathbf{M}}} \quad\left(\underset{3}{\operatorname{vec}} \hat{\mathbf{M}}_{f}^{\top}\right)^{\top}\left(\underset{3}{\operatorname{vec}} \hat{\mathbf{M}}_{f}^{\top}\right)=\frac{1}{D} \mathbf{I}_{D} \otimes\left(\left(\underset{3 D}{\operatorname{vec}} \hat{\mathbf{M}}_{f}\right)^{\top}\left(\underset{3 D}{\operatorname{vec}} \hat{\mathbf{M}}_{f}\right)\right)
$$

constraints to be satisfied for M, use to compute J $\hat{\mathrm{M}}=\tilde{\mathrm{M}} \mathbf{J}^{-1} \quad$ hard!
(different methods are possible, not so simple and also not optimal)

Non-rigid 3D subspace flow

Same is also possible using optical flow in stead of features, also takes uncertainty into account
(Brand '01)

$$
\left[\begin{array}{ll}
\sum_{w} I_{x} * I_{x} & \sum_{w} I_{x} * I_{y} \\
\sum_{w} I_{x} * I_{y} & \sum_{w} I_{x} * I_{x}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum_{w} I_{x} * I_{t} \\
\sum_{w} I_{y} * I_{t}
\end{array}\right]
$$

Results

(Brand '01)

Pollefeys

Results

(Bregler et al '01)

Pollefeys

Projective structure from motion

- Given: m images of n fixed 3D points

$$
z_{i j} \mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and n 3D points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{x}_{i j}$

Projective structure from motion

- Given: m images of n fixed 3D points

$$
z_{i j} \mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and n 3D points \mathbf{X}_{j} from the $m n$ correspondences $\mathbf{x}_{i j}$
- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation \mathbf{Q} :

$$
X \rightarrow Q X, P \rightarrow P Q^{-1}
$$

- We can solve for structure and motion when

$$
2 m n>=11 m+3 n-15
$$

- For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

- Compute fundamental matrix \mathbf{F} between the two views
- First camera matrix: [II0]
- Second camera matrix: [Alb]
- Then $z \mathbf{x}=[\mathbf{I} \mid \mathbf{0}] \mathbf{X}, \quad z^{\prime} \mathbf{x}^{\prime}=[\mathbf{A} \mid \mathbf{b}] \mathbf{X}$

$$
\begin{gathered}
z^{\prime} \mathbf{x}^{\prime}=\mathbf{A}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}+\mathbf{b}=z \mathbf{A} \mathbf{x}+\mathbf{b} \\
z^{\prime} \mathbf{x}^{\prime} \times \mathbf{b}=z \mathbf{A} \mathbf{x} \times \mathbf{b} \\
\left(z^{\prime} \mathbf{x}^{\prime} \times \mathbf{b}\right) \cdot \mathbf{x}^{\prime}=(z \mathbf{A} \mathbf{x} \times \mathbf{b}) \cdot \mathbf{x}^{\prime}
\end{gathered}
$$

$$
\mathbf{x}^{\prime \mathrm{T}}\left[\mathbf{b}_{\star}\right] \mathbf{A} \mathbf{x}=0
$$

$$
\mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A} \quad \mathbf{b}: \text { epipole }\left(\mathbf{F}^{\top} \mathbf{b}=0\right), \quad \mathbf{A}=-\left[\mathbf{b}_{\times}\right] \mathbf{F}
$$

Projective factorization

$\mathbf{D}=\left[\begin{array}{cccc}z_{11} \mathbf{x}_{11} & z_{12} \mathbf{x}_{12} & \cdots & z_{1 n} \mathbf{x}_{1 n} \\ z_{21} \mathbf{x}_{21} & z_{22} \mathbf{x}_{22} & \cdots & z_{2 n} \mathbf{x}_{2 n} \\ & & \ddots & \\ z_{m 1} \mathbf{x}_{m 1} & z_{m 2} \mathbf{x}_{m 2} & \cdots & z_{m n} \mathbf{x}_{m n}\end{array}\right]=\left[\begin{array}{c}\mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \vdots \\ \mathbf{P}_{m}\end{array}\right]\left[\begin{array}{ccc}\mathbf{X}_{1} & \begin{array}{lll}\mathbf{X}_{1} & \mathbf{X}_{2} & \cdots \\ \text { cameras } \\ (3 m \times 4)\end{array} & \mathbf{X}_{n}\end{array}\right]$

D = MS has rank 4

- If we knew the depths z, we could factorize \mathbf{D} to estimate \mathbf{M} and \mathbf{S}
- If we knew \mathbf{M} and \mathbf{S}, we could solve for z
- Solution: iterative approach (alternate between above two steps)

Sequential structure from motion

- Initialize motion from two images
using fundamental matrix
- Initialize structure
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image calibration

Sequential structure from motion

- Initialize motion from two images
using fundamental matrix
- Initialize structure
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image calibration
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - triangulation

Sequential structure from motion

- Initialize motion from two images
using fundamental matrix
- Initialize structure
- For each additional view:
- Determine projection matrix of new camera using all the known 3D points that are visible in its image calibration
- Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - triangulation

- Refine structure and motion:
bundle adjustment

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

Self-calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images
- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images
- Compute initial projective reconstruction and find 3D projective transformation matrix \mathbf{Q} such that all camera matrices are in the form $\mathbf{P}_{\mathrm{i}}=\mathbf{K}\left[\mathbf{R}_{\mathrm{i}} \mid \mathbf{t}_{\mathrm{i}}\right]$
- Can use constraints on the form of the calibration matrix: zero skew

Summary: Structure from motion

- Ambiguity
- Affine structure from motion: factorization
- Dealing with missing data
- Projective structure from motion: two views
- Projective structure from motion: iterative factorization
- Bundle adjustment
- Self-calibration

Photo Tourism: Exploring Photo Collections in 3D

Noah Snavely

Steven M. Seitz
University of Washington
Richard Szeliski
Microsoft Research
© 2006 Noah Snavely

Building Rome in a Day

Sameer Agarwal ${ }^{1, *}$ Noah Snavely ${ }^{2}$ Ian Simon ${ }^{1}$ Steven M. Seitz ${ }^{1}$ Richard Szeliski ${ }^{3}$
${ }^{1}$ University of Washington ${ }^{2}$ Cornell University ${ }^{3}$ Microsoft Research

We present a system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo sharing sites. Our system uses a collection of novel parallel distributed matching and reconstruction algorithms, designed to maximize parallelism at each stage in the pipeline and minimize serialization bottlenecks. It is designed to scale gracefully with both the size of the problem and the amount of available computation. We have experimented with a variety of alternative algorithms at each stage of the pipeline and report on which ones work best in a parallel computing environment. Our experimental results demonstrate that it is now possible to reconstruct cities consisting of 150 K images in less than a day on a cluster with 500 compute cores.

Time (hrs)

					Time (hrs)			
Data set	Images	Cores	Registered	Pairs verified	Pairs found	Matching	Skeletal sets	Reconstruction
Dubrovnik	57,845	352	11,868	$2,658,264$	498,982	5	1	16.5
Rome	150,000	496	36,658	$8,825,256$	$2,712,301$	13	1	7
Venice	250,000	496	47,925	$35,465,029$	$6,119,207$	27	21.5	16.5

Table 1. Matching and reconstruction statisics for the three data sets.

"Rome in a day": Coliseum video

http://grail.cs.washington.edu/rome/

"Rome in a day": Trevi video

http://grail.cs.washington.edu/rome/

"Rome in a day": St. Peters video

http://grail.cs.washington.edu/rome/

Slide Credits

- Svetlana Lazebnik
- Marc Pollefeys
- Noah Snaveley \& co-authors

Today: SFM

- SFM problem statement
- Factorization
- Projective SFM
- Bundle Adjustment
- Photo Tourism
- "Rome in a day:

Roadmap

- Previous: Image formation, filtering, local features, (Texture)...
- Tues: Feature-based Alignment
- Stitching images together
- Homographies, RANSAC, Warping, Blending
- Global alignment of planar models
- Today: Dense Motion Models
- Local motion / feature displacement
- Parametric optic flow
- No classes next week: ICCV conference
- Oct 6th: Stereo / 'Multi-view': Estimating depth with known inter-camera pose
- Oct 8 ${ }^{\text {th: }}$ 'Structure-from-motion': Estimation of pose and 3D structure
- Factorization approaches
- Global alignment with 3D point models

