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Lecture 11: Structure from Motion



Roadmap
• Previous: Image formation, filtering, local features, (Texture)…

• Tues: Feature-based Alignment 

– Stitching images together

– Homographies, RANSAC, Warping, Blending

– Global alignment of planar models

• Today: Dense Motion Models

– Local motion / feature displacement– Local motion / feature displacement

– Parametric optic flow

• No classes next week: ICCV conference

• Oct 6th: Stereo / ‘Multi-view’: Estimating depth with known 

inter-camera pose

• Oct 8th: ‘Structure-from-motion’: Estimation of pose and 3D 

structure

– Factorization approaches

– Global alignment with 3D point models



Last time: Stereo

• Human stereopsis & stereograms

• Epipolar geometry and the epipolar constraint

– Case example with parallel optical axes

– General case with calibrated cameras

• Correspondence search

• The Essential  and the Fundamental Matrix

• Multi-view stereo



Today: SFM

• SFM problem statement

• Factorization

• Projective SFM

• Bundle Adjustment• Bundle Adjustment

• Photo Tourism

• “Rome in a day:



Structure from motion

Lazebnik



Multiple-view geometry questions

• Scene geometry (structure): Given 2D point matches in 
two or more images, where are the corresponding 
points in 3D?

• Correspondence (stereo matching): Given a point in just 
one image, how does it constrain the position of the 
corresponding point in another image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more images, what are 
the camera matrices for these views?
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Structure from motion

• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 

n 3D points Xj from the mn correspondences xij

Xj
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x3j
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Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at the 

same time, scale the camera matrices by the factor of 1/k, 

the projections of the scene points in the image remain 

exactly the same:

It is impossible to recover the absolute scale of the scene!
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Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at the 

same time, scale the camera matrices by the factor of 1/k, 

the projections of the scene points in the image remain 

exactly the same 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse transformation to transformation Q and apply the inverse transformation to 

the camera matrices, then the images do not change
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Projective ambiguity
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Projective ambiguity
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Affine ambiguity

Affine
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Affine ambiguity
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Similarity ambiguity
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Similarity ambiguity
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Hierarchy of 3D transformations
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Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the scene, 
we get a projective reconstruction

• Need additional information to upgrade the reconstruction to affine, 
similarity, or Euclidean
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Structure from motion

• Let’s start with affine cameras (the math is easier)

center at
infinity

Lazebnik



Recall: Orthographic Projection

Special case of perspective projection

• Distance from center of projection to image plane is infinite

Image World

• Projection matrix:

Slide by Steve SeitzLazebnik



Orthographic Projection

Affine cameras

Parallel Projection

Lazebnik



Affine cameras

• A general affine camera combines the effects of an affine 

transformation of the 3D space, orthographic projection, 

and an affine transformation of the image:
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• Affine projection is a linear mapping + translation in 

inhomogeneous coordinates
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Affine structure from motion

• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate m
projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 

transformation Q (12 degrees of freedom):transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 12 dof 
for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12

• For two views, we need four point correspondences
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Affine structure from motion

• Centering: subtract the centroid of the image points
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• For simplicity, assume that the origin of the world 

coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to the 

3D point Xi by

jiij XAx =ˆ
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Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 



Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 



Factorizing the measurement matrix

Source: M. HebertLazebnik



Factorizing the measurement matrix

• Singular value decomposition of D:

Source: M. HebertLazebnik



Factorizing the measurement matrix

• Singular value decomposition of D:

Source: M. HebertLazebnik



Factorizing the measurement matrix

• Obtaining a factorization from SVD:

Source: M. HebertLazebnik



Factorizing the measurement matrix

• Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes

|D-MS|2

Lazebnik



Affine ambiguity

• The decomposition is not unique. We get the same D by 

using any 3×3 matrix C and applying the transformations M 

→ MC, S →C-1S

• That is because we have only an affine transformation and 

we have not enforced any Euclidean constraints (like 

forcing the image axes to be perpendicular, for example)

Source: M. HebertLazebnik



• Orthographic: image axes are perpendicular and scale is 1

Eliminating the affine ambiguity

x

a2

a1 · a2 = 0

|a1|
2 = |a2|

2 = 1

• This translates into 3m equations in L = CCT :

Ai L Ai
T = Id, i = 1, …, m

• Solve for L

• Recover C from L by Cholesky decomposition: L = CCT

• Update M and S: M = MC, S = C-1S

X
a1

Source: M. HebertLazebnik



Algorithm summary

• Given: m images and n features xij

• For each image i, center the feature coordinates

• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views

• Row i contains one coordinate of the projections of all the n 

points in image i

• Factorize D:• Factorize D:

• Compute SVD: D = U W VT

• Create U3 by taking the first 3 columns of U

• Create V3 by taking the first 3 columns of V

• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:

• M = U3W3
½  and S = W3

½ V3
T (or M = U3 and S = W3V3

T)

• Eliminate affine ambiguity

Source: M. HebertLazebnik



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 



Dealing with missing data

• So far, we have assumed that all points are visible in all 

views

• In reality, the measurement matrix typically looks 

something like this:

cameras

points

Lazebnik



Dealing with missing data

• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results

• Finding dense maximal sub-blocks of the matrix is NP-complete 

(equivalent to finding maximal cliques in a graph)

• Incremental bilinear refinement

(1) Perform 

factorization on a 

dense sub-block

(2) Solve for a new 

3D point visible by 

at least two known 
cameras (linear 

least squares)

(3) Solve for a new 

camera that sees at 

least three known 
3D points (linear 

least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and 

Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.



Further Factorization work

Factorization with uncertainty

Factorization for indep. moving objects (now)

Factorization for articulated objects (now)

(Irani & Anandan, IJCV’02)

(Costeira and Kanade ‘94)

Factorization for articulated objects (now)

Factorization for dynamic objects (now)

Perspective factorization (next week)

Factorization with outliers and missing pts.

(Bregler et al. 2000, Brand 2001)

(Jacobs ‘97 (affine), Martinek & Pajdla‘01 Aanaes’02 (perspective))

(Sturm & Triggs 1996, …)

(Yan and Pollefeys ‘05)

Pollefeys



Structure from motion of multiple moving 

objects

Pollefeys



Structure from motion of multiple moving 

objects

Pollefeys



Shape interaction matrix

Shape interaction matrix for articulated objects looses 

block diagonal structure

Costeira and Kanade’s approach is not usable for articulated bodies
(assumes independent motions)

Pollefeys



Articulated motion subspaces

Joint (1D intersection)

(joint=origin)

Motion subspaces for articulated bodies intersect

(rank=8-1)

(Yan and Pollefeys, CVPR’05)

(Tresadern and Reid, CVPR’05)

Hinge (2D intersection)

(hinge=z-axis)
(rank=8-2)

Exploit rank constraint to obtain better estimate

(Yan & Pollefeys, 06?)Also for non-rigid parts if 



Student 

Segmentation

Results

Toy truck

Segmentation

IntersectionIntersection

Pollefeys



Articulated shape and motion factorization

Automated kinematic chain building for articulated & non-rigid 

obj.

• Estimate principal angles between subspaces 

• Compute affinities based on principal angles

• Compute minimum spanning tree

(Yan and Pollefeys, 2006?)

Pollefeys



Structure from motion of deforming objects

Extend factorization approaches to deal with dynamic 

shapes 

(Bregler et al ’00;
Brand ‘01)

Pollefeys



Representing dynamic shapes

∑=
k

kk (t)ScS(t)

represent dynamic shape as 
varying linear combination of basis shapes

(fig. M.Brand)
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Results

(Bregler et al ’00)

Pollefeys



Dynamic SfM factorization

(Brand ’01)

constraints to be satisfied for M

constraints to be satisfied for M, use to compute J

hard!

(different methods are possible, 
not so simple and also not optimal)

Pollefeys



Non-rigid 3D subspace flow

Same is also possible using optical flow in stead of features, also 

takes uncertainty into account (Brand ’01)

Pollefeys



(Brand ’01)

Results 

Pollefeys



Results

(Bregler et al ’01)

Pollefeys



Projective structure from motion

• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij

Xj

x1j

x2j

x3j

P1

P2

P3

Lazebnik



Projective structure from motion

• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only be 

recovered up to a 4x4 projective transformation Q:recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when 

2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed

Lazebnik



Projective SFM: Two-camera case

• Compute fundamental matrix F between the two views

• First camera matrix: [I|0]

• Second camera matrix: [A|b]

• Then

bAxbX0|IAx +=+=′′ zz ][

XbAxX0|Ix ]|[,][ =′′= zz

bAxbx ×=×′′ zz

xbAxxbx ′⋅×=′⋅×′′ )()( zz

0][T =′
× Axbx

AbF ][ ×= b: epipole (FTb = 0),    A = –[b×]F

F&P sec. 13.3.1Lazebnik



Projective factorization

[ ]n

mmnmnmmmm

nn

nn

zzz

zzz

zzz

XXX

P

P

P

xxx

xxx

xxx

D L
M

L

O

L

L

21

2

1

2211

2222222121

1112121111



















=



















=

cameras

(3m × 4)

points (4 × n)

• If we knew the depths z, we could factorize D to estimate 

M and S

• If we knew M and S, we could solve for z

• Solution: iterative approach (alternate between above 

two steps)

(3m × 4)

D = MS has rank 4

Lazebnik



Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure

•For each additional view:

• Determine projection matrix 

of new camera using all the 

known 3D points that are 

visible in its image –

c
a

m
e

ra
s

points

visible in its image –

calibration

c
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m
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Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure

•For each additional view:

• Determine projection matrix 

of new camera using all the 

known 3D points that are 

visible in its image –

c
a

m
e

ra
s

points

visible in its image –

calibration

• Refine and extend structure: 

compute new 3D points, 

re-optimize existing points 

that are also seen by this 

camera – triangulation 
c
a

m
e
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s
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Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure

•For each additional view:

• Determine projection matrix 

of new camera using all the 

known 3D points that are 

visible in its image –

c
a

m
e

ra
s

points

visible in its image –

calibration

• Refine and extend structure: 

compute new 3D points, 

re-optimize existing points 

that are also seen by this 

camera – triangulation 

•Refine structure and motion: 

bundle adjustment
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Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error
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Self-calibration

• Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 

uncalibrated images

• For example, when the images are acquired by a single 

moving camera, we can use the constraint that the 

intrinsic parameter matrix remains fixed for all the images

• Compute initial projective reconstruction and find 3D projective • Compute initial projective reconstruction and find 3D projective 

transformation matrix Q such that all camera matrices are in the 

form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration matrix: 

zero skew

Lazebnik



Summary: Structure from motion

• Ambiguity

• Affine structure from motion: factorization

• Dealing with missing data

• Projective structure from motion: two views

• Projective structure from motion: iterative factorization

• Bundle adjustment• Bundle adjustment

• Self-calibration

Lazebnik



Photo Tourism:Photo Tourism:
Exploring Photo Collections in 3DExploring Photo Collections in 3D

Noah Snavely     

(Included presentation…available from
http://phototour.cs.washington.edu/)

© 2006 Noah Snavely

Noah Snavely     

Steven M. Seitz 

University of Washington 

Richard Szeliski 

Microsoft Research

© 2006 Noah Snavely



http://grail.cs.washington.edu/rome/



“Rome in a day”: Coliseum video

http://grail.cs.washington.edu/rome/



“Rome in a day”: Trevi video

http://grail.cs.washington.edu/rome/



“Rome in a day”: St. Peters video

http://grail.cs.washington.edu/rome/



Slide Credits

• Svetlana Lazebnik

• Marc Pollefeys

• Noah Snaveley & co-authors



Today: SFM

• SFM problem statement

• Factorization

• Projective SFM

• Bundle Adjustment• Bundle Adjustment

• Photo Tourism

• “Rome in a day:



Roadmap
• Previous: Image formation, filtering, local features, (Texture)…

• Tues: Feature-based Alignment 

– Stitching images together

– Homographies, RANSAC, Warping, Blending

– Global alignment of planar models

• Today: Dense Motion Models

– Local motion / feature displacement– Local motion / feature displacement

– Parametric optic flow

• No classes next week: ICCV conference

• Oct 6th: Stereo / ‘Multi-view’: Estimating depth with known 

inter-camera pose

• Oct 8th: ‘Structure-from-motion’: Estimation of pose and 3D 

structure

– Factorization approaches

– Global alignment with 3D point models


