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Roadmap
• Previous: Image formation, filtering, local features, (Texture)…

• Tues: Feature-based Alignment 

– Stitching images together

– Homographies, RANSAC, Warping, Blending

– Global alignment of planar models

• Today: Dense Motion Models

– Local motion / feature displacement– Local motion / feature displacement

– Parametric optic flow

• No classes next week: ICCV conference

• Oct 6th: Stereo / ‘Multi-view’: Estimating depth with known 

inter-camera pose

• Oct 8th: ‘Structure-from-motion’: Estimation of pose and 3D 

structure

– Factorization approaches

– Global alignment with 3D point models



Last Time: Alignment

• Homographies

• Rotational Panoramas

• RANSAC•

• Global alignment

• Warping

• Blending



Today: Motion and Flow

• Motion estimation

• Patch-based motion 

(optic flow)

• Regularization and line 

processes

• Parametric (global) 

motion

• Layered motion models



Why estimate visual motion?

• Visual Motion can be annoying

– Camera instabilities, jitter

– Measure it; remove it (stabilize)

• Visual Motion indicates dynamics in the scene• Visual Motion indicates dynamics in the scene

– Moving objects, behavior

– Track objects and analyze trajectories

• Visual Motion reveals spatial layout 

– Motion parallax

Szeliski



Classes of Techniques

• Feature-based methods

– Extract visual features (corners, textured areas) and track them

– Sparse motion fields, but possibly robust tracking

– Suitable especially when image motion is large (10s of pixels)

• Direct-methods• Direct-methods

– Directly recover image motion from spatio-temporal image 

brightness variations

– Global motion parameters directly recovered without an 

intermediate feature motion calculation

– Dense motion fields, but more sensitive to appearance variations

– Suitable for video and when image motion is small (< 10 pixels)
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Patch-based motion estimation



Image motion

How do we determine correspondences?

Assume all change between frames is due to motion:
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• Brightness Constancy Equation:
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Or, equivalently, minimize :
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The Brightness Constraint
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Linearizing   (assuming small (u,v))

using Taylor series expansion:
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Gradient Constraint (or the Optical 

Flow Constraint)
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Minimizing

Assume a single velocity for all pixels within an image patch

Patch Translation [Lucas-Kanade]
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Local Patch Analysis

• How certain are the motion estimates?
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The Aperture Problem
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T

IIMLet

• Algorithm:  At each pixel compute      by solving

• M is singular if all gradient vectors point in the same direction

and
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• M is singular if all gradient vectors point in the same direction

• e.g., along an edge
• of course, trivially singular if the summation is over a single pixel
or there is no texture
• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK
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SSD Surface – Textured area



SSD Surface -- Edge



SSD – homogeneous area



Iterative Refinement

• Estimate velocity at each pixel using one 

iteration of Lucas and Kanade estimation

• Warp one image toward the other using the 

estimated flow fieldestimated flow field

(easier said than done)

• Refine estimate by repeating the process

Szeliski



Optical Flow: Iterative Estimation

Initial guess: 

Estimate:

estimate 

update

xx0

Estimate:

(using d for displacement here instead of u)
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Optical Flow: Iterative Estimation

estimate 

update
Initial guess: 

Estimate:

xx0

Estimate:
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Optical Flow: Iterative Estimation

Initial guess: 

Estimate:

Initial guess: 

Estimate:

estimate 

update

xx0

Estimate:Estimate:
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Optical Flow: Iterative Estimation

xx0
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Optical Flow: Iterative Estimation

• Some Implementation Issues:

– Warping is not easy (ensure that errors in warping 
are smaller than the estimate refinement)

– Warp one image, take derivatives of the other so 
you don’t need to re-compute the gradient after you don’t need to re-compute the gradient after 
each iteration.

– Often useful to low-pass filter the images before 
motion estimation (for better derivative 
estimation, and linear approximations to image 
intensity)
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 

images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct? 

actual shift

nearest match is correct 

(no aliasing)

nearest match is incorrect 

(aliasing)

To overcome aliasing: coarsecoarse--toto--fine estimationfine estimation.

actual shift

estimated shift
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Limits of the gradient method

Fails when intensity structure in window is poor

Fails when the displacement is large (typical 
operating range is motion of 1 pixel)

Linearization of brightness is suitable only for small Linearization of brightness is suitable only for small 
displacements

• Also, brightness is not strictly constant in 
images

actually less problematic than it appears, since we 
can pre-filter images to make them look similar
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Spatial Coherence

Assumption

* Neighboring points in the scene typically belong to the same   

surface and hence typically have similar motions.

* Since they also project to nearby points in the image, we expect 

spatial coherence in image flow.

Black



Formalize this Idea

Noisy 1D signal:

u

x

Noisy measurementsu(x)

Black



Regularization

Find the “best fitting” smoothed function v(x)

u
v(x)

x

Noisy measurementsu(x)

Black



Membrane model

Find the “best fitting” smoothed function v(x)

u
v(x)
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Membrane model

Find the “best fitting” smoothed function v(x)
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Membrane model

Find the “best fitting” smoothed function v(x)

u
v(x)

Black



Regularization
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Spatial smoothness 
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Bayesian Interpretation
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Discontinuities

x

u
v(x)

x

What about this discontinuity?
What is happening here?
What can we do?

Black



Robust Estimation

Noise distributions are often non-Gaussian, having much heavier tails.  Noise 

samples from the tails are called outliers.

• Sources of outliers (multiple motions):

– specularities / highlights

– jpeg artifacts / interlacing / motion blur

– multiple motions (occlusion boundaries, transparency)– multiple motions (occlusion boundaries, transparency)

velocity spacevelocity space

u1

u2

++

Black



Occlusion

occlusion disocclusion shear

Multiple motions within a finite region.

Black



Coherent Motion

Possibly Gaussian.

Black



Multiple Motions

Definitely not Gaussian.

Black



Weak membrane model
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Analog line process

Penalty function Family of quadratics
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Analog line process

Infimum defines a robust error function.
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Robust Regularization
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Robust Estimation

Problem: Least-squares estimators penalize deviations between 

data & model with quadratic error fn (extremely sensitive to outliers)

error penalty function influence function

Redescending error functions (e.g., Geman-McClure) help to reduce 

the influence of outlying measurements.

error penalty function influence function

Black



Optical flow

Outlier with 
respect to 
neighbors.neighbors.
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Robust formulation of spatial coherence term
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“Dense” Optical Flow
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Optimization
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Optimization

• Gradient descent

• Coarse-to-fine (pyramid)

• Deterministic annealing

Black



Example

Black



Example

Black



Quadratic:

Robust:

Black



Magnitude of horizontal flow

Black



Outliers

Points where the influence is reduced

Spatial term Data term

Black



With 5% uniform 

random noise 

added to the 

images.

Black



Horizontal Component

Black



More Noise

Quadratic:

Quadratic data term, 

robust spatial term:

Black



Both Terms Robust

Spatial and 

data outliers:

Black



Pepsi

Black



Real Sequence

Deterministic annealing.

First stage (large σ):

Black



Real Sequence

Final result 

after 

annealing:

Black



Parametric motion estimation



Global (parametric) motion models

• 2D Models:

• Affine

• Quadratic

• Planar projective transform (Homography)• Planar projective transform (Homography)

• 3D Models:

• Instantaneous camera motion models 

• Homography+epipole

• Plane+Parallax

Szeliski



Motion models

Translation Affine Perspective 3D rotation

2 unknowns 6 unknowns 8 unknowns 3 unknowns

Szeliski



0)()( 654321 ≈++++++ tyx IyaxaaIyaxaaI

• Substituting into the B.C. Equation:

yaxaayxv

yaxaayxu

654

321

),(

),(

++=

++=

0≈+⋅+⋅ tyx IvIuI

Example:  Affine Motion

Each pixel provides 1 linear constraint in 6 global unknowns

[ ] 2

∑ ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321

r

Least Square Minimization  (over all pixels):
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Last lecture: Alignment / motion warping
• “Alignment”: Assuming we know the correspondences, 

how do we get the transformation?
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• Expressed in terms of absolute 

coordinates of corresponding 

points…

• Generally presumed features 

separately detected in each frame

e.g., affine model in abs. coords…



Today: “flow”, “parametric motion”

• Two views presumed in temporal sequence…track
or analyze spatio-temporal gradient

),( ii yx
),( ii yx ′′

• Sparse or dense in first frame

• Search in second frame

• Motion models expressed in 

terms of position change
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Today: “flow”, “parametric motion”

• Two views presumed in temporal sequence…track
or analyze spatio-temporal gradient
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Today: “flow”, “parametric motion”

• Two views presumed in temporal sequence…track
or analyze spatio-temporal gradient

(ui,vi)

• Sparse or dense in first frame

• Search in second frame

• Motion models expressed in 

terms of position change



Today: “flow”, “parametric motion”

• Two views presumed in temporal sequence…track
or analyze spatio-temporal gradient

(ui,vi)
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Previous Alignment model:

Now, Displacement model:

• Sparse or dense in first frame

• Search in second frame

• Motion models expressed in 

terms of position changeyaxaayxv
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Quadratic – instantaneous approximation 

to planar motion 
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Correlation and SSD

• For larger displacements, do template 
matching

– Define a small area around a pixel as the template

– Match the template against each pixel within a 
search area in next image.

– Match the template against each pixel within a 
search area in next image.

– Use a match measure such as correlation, 
normalized correlation, or sum-of-squares 
difference

– Choose the maximum (or minimum) as the match

– Sub-pixel estimate (Lucas-Kanade)

Szeliski



Shi-Tomasi feature tracker

1. Find good features (min eigenvalue of 2×2 
Hessian)

2. Use Lucas-Kanade to track with pure 
translationtranslation

3. Use affine registration with first feature 
patch

4. Terminate tracks whose dissimilarity gets too 
large

5. Start new tracks when needed

Szeliski



Tracking results
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Tracking - dissimilarity
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Tracking results

Szeliski



How well do these

techniques work?techniques work?



A Database and Evaluation 

Methodology for Optical Flow

Simon Baker, Daniel Scharstein, J.P Lewis, Stefan 
Roth, Michael Black, and Richard Szeliski 

ICCV 2007

http://vision.middlebury.edu/flow/



Limitations of Yosemite

• Only sequence used for quantitative evaluation

Yo
se

m
it

e

• Limitations:

• Very simple and synthetic

• Small, rigid motion

• Minimal motion discontinuities/occlusions

Image 7 Image 8

Yo
se

m
it

e

Ground-Truth Flow
Flow Color

Coding
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Limitations of Yosemite

• Only sequence used for quantitative evaluation

Yo
se

m
it

e

• Current challenges:

• Non-rigid motion
• Real sensor noise
• Complex natural scenes
• Motion discontinuities
• Need more challenging and more realistic benchmarks

Image 7 Image 8

Yo
se

m
it

e

Ground-Truth Flow
Flow Color

Coding
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Realistic synthetic imagery

• Randomly generate scenes with “trees” and “rocks”

• Significant occlusions, motion, texture, and blur

• Rendered using Mental Ray and “lens shader” plugin

Motion estimation 84
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Modified stereo imagery

• Recrop and resample ground-truth stereo 

datasets to have appropriate motion for OF
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• Paint scene with textured fluorescent paint

• Take 2 images: One in visible light, one in UV light

• Move scene in very small steps using robot

• Generate ground-truth by tracking the UV images

Dense flow with hidden texture

Setup

Visible

UV

Lights Image Cropped

Szeliski



Experimental results

• Algorithms:

• Pyramid LK: OpenCV-based implementation of 
Lucas-Kanade on a Gaussian pyramid

• Black and Anandan: Author’s implementation• Black and Anandan: Author’s implementation

• Bruhn et al.: Our implementation

• MediaPlayerTM: Code used for video frame-
rate upsampling in Microsoft MediaPlayer

• Zitnick et al.: Author’s implementation

Szeliski



Experimental results

Motion estimation 88
Szeliski



Conclusions

• Difficulty: Data substantially more 

challenging than Yosemite

• Diversity: Substantial variation in difficulty 

across the various datasetsacross the various datasets

• Motion GT vs Interpolation: Best algorithms 

for one are not the best for the other

• Comparison with Stereo: Performance of 

existing flow algorithms appears weak

Szeliski



Layered Scene Representations



Motion representations

• How can we describe this scene?

Szeliski



Block-based motion prediction

• Break image up into square blocks

• Estimate translation for each block

• Use this to predict next frame, code difference  

(MPEG-2)(MPEG-2)
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Layered motion

• Break image sequence up into “layers”:

• ÷ =

• Describe each layer’s motion

Szeliski



Layered motion

• Advantages:

• can represent occlusions / disocclusions

• each layer’s motion can be smooth

• video segmentation for semantic processing• video segmentation for semantic processing

• Difficulties:

• how do we determine the correct number?

• how do we assign pixels?

• how do we model the motion?

Szeliski



Layers for video summarization
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Background modeling (MPEG-4)

• Convert masked images into a background 

sprite for layered video coding

• + + +• + + +

•
=
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What are layers?

• [Wang & Adelson, 

1994; Darrell & 

Pentland 1991]

• intensities• intensities

• alphas

• velocities
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Fragmented Occlusion



Results



Results



How do we form them?
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How do we estimate the layers?

1. compute coarse-to-fine flow

2. estimate affine motion in blocks (regression)

3. cluster with k-means

4. assign pixels to best fitting affine region4. assign pixels to best fitting affine region

5. re-estimate affine motions in each region…

Szeliski



Layer synthesis

• For each layer:

• stabilize the sequence with the affine motion

• compute median value at each pixel

• Determine occlusion relationships• Determine occlusion relationships

Szeliski



Results

Szeliski



Recent results: SIFT Flow



Recent GPU Implementation

• http://gpu4vision.icg.tugraz.at/

• Real time flow exploiting robust norm + 

regularized mapping



Today: Motion and Flow

• Motion estimation

• Patch-based motion (optic flow)

• Regularization and line processes

• Parametric (global) motion

• Layered motion models



Slide Credits

• Rick Szeliski

• Michael Black



Roadmap
• Previous: Image formation, filtering, local features, (Texture)…

• Tues: Feature-based Alignment 

– Stitching images together

– Homographies, RANSAC, Warping, Blending

– Global alignment of planar models

• Today: Dense Motion Models

– Local motion / feature displacement– Local motion / feature displacement

– Parametric optic flow

• No classes next week: ICCV conference

• Oct 6th: Stereo / ‘Multi-view’: Estimating depth with known 

inter-camera pose

• Oct 8th: ‘Structure-from-motion’: Estimation of pose and 3D 

structure

– Factorization approaches

– Global alignment with 3D point models



Final project

• Significant novel implementation of technique 

related to course content

• Teams of 2 encouraged (document role!)

• Or journal length review article (no teams)• Or journal length review article (no teams)

• Three components:

– proposal document (no more than 5 pages)

– in class results presentation (10 minutes)

– final write-up (no more than 15 pages)



Project Proposals
• Due next Friday!

• No more than 5 pages

• Explain idea:
– Motivation

– Approach

– Datasets

– Evaluation– Evaluation

– Schedule

• Proposal should convince me (and you) that project is 
interesting and doable given the resources you have.

• You can change topics after proposal (at your own risk!)

• I’ll consider proposal, final presentation, and report 
when evaluating project: a well-thought out proposal 
can have significant positive weight.

• Teams OK; overlap with thesis or other courses OK.



Project Ideas?

• Face annotation with online social networks?

• Classifying sports or family events from photo 

collections?

• Optic flow to recognize gesture?• Optic flow to recognize gesture?

• Finding indoor structures for scene context?

• Shape models of human silhouettes? 

• Salesin: classify aesthetics?

– Would gist regression work?


