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Abstract

Decentralized overlapping feedback laws are designed for a formation of unmanned aerial vehicles. The dynamic model of the formation
with an information structure constraint in which each vehicle, except the leader, only detects the vehicle directly in front of it, is treated as
an interconnected system with overlapping subsystems. Using the mathematical framework of the inclusion principle, the interconnected
system is expanded into a higher dimensional space in which the subsystems appear to be disjoint. Then, at each subsystem, a static
state feedback controller is designed to robustly stabilize the perturbed nominal dynamics of the subsystem. The design procedure is
based on the application of convex optimization tools involving linear matrix inequalities. As a ;nal step, the decentralized controllers
are contracted back to the original interconnected system for implementation.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability to form and control long baseline apertures
(on the order of kilometers) with Unmanned Aerial Vehicles
(UAVs), is envisioned to provide an earth-based low cost
alternative to distributed sensing such as Synthetic Aper-
ture Radar (SAR)-interferometry (SAR Interferometry and
Surface Change Detection Report, 1994), covering a range
of applications, both military (target vertical damage as-
sessment, reconnaissance) and civilian (vegetation growth
analysis, rapid assessment of topographical changes as a re-
sult of natural events such as >ooding or earthquakes). In
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addition, enhanced coverage for both communication and
absolute positioning (via pseudo sources) for operations in
remote areas is an area of active research (DARPA ITO
Sponsored Research, 1999). Factors which make a UAV
system a low-cost alternative to a single large aircraft sys-
tem, such as rapid recon;gurability in the event of single
point failures and dispensability of vehicles, also represent
the main challenge from the control design perspective (Fax
& Murray, 2001, 2002; *Ogren, Fiorelli, & Leonard, 2002;
Richards, Bellingham, Tillerson, & How, 2002; Tabuada,
Pappas, & Lima, 2001). Thus, decentralized control, as a
concept for controlling dynamic systems, is chosen, since it
is well known (as stated in $Siljak (1991); Chapter 9: Reli-
able Control) that decentralized control schemes are superior
in terms of reliability with respect to structural recon;gura-
tions to centralized control schemes (e.g. Pachter, D’Azzo,
& Proud, 2001). In this paper, each vehicle is modeled us-
ing a lateral kinematic model, and an information structure
constraint in which each vehicle except the leading one has
state information about the vehicle in front of it, is assumed.
It is important to note that the imposed information struc-
ture is minimal in the sense that there is not more than one
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communication link between any pair of vehicles and there-
fore it is not information redundant (for more information
about information redundancy see Smith and Hadaegh
(2002)). As a result of this assumption, communication
overhead between vehicles is also minimal, and the for-
mation model can be treated as an interconnected system
of overlapping subsystems (the subsystems share com-
mon components). This allows one to consider control
structures based on overlapping: as introduced in $Siljak
(1978) and later developed in Iftar and *Ozg*uner (1990),
Ikeda, $Siljak, and White (1984), Ikeda and $Siljak (1986)
and $Siljak (1991), it has been shown that such systems
can be expanded into a higher-dimensional space in which
overlapping subsystems appear as disjoint. Then, fully de-
centralized control laws can be designed in this expanded
space, and contracted back to the original state space of
the formation, for implementation. A new method based
on the mathematical framework of the inclusion princi-
ple, as introduced in Ikeda et al. (1984), is used to ensure
that this expansion/contraction procedure is correctly car-
ried over, that is, that solutions of the original system
are included in the solutions of the expanded system. For
rigorous treatment of various expansion/contraction pro-
cedures the reader is referred to Bakule, Rodellar, and
Rossell (2000), Iftar and *Ozg*uner (1990), Ikeda et al.
(1984), Ikeda and $Siljak (1986), $Siljak (1991), and
Stankovi'c and $Siljak (2001).
In this paper, a novel method to design decentralized

overlapping control laws that ensure reliable and robust
stability of the planar motion of the formation is presented.
Stability of the formation is described in terms of the dis-
tances between vehicles, and is de;ned as local Liapunov
stability with respect to desired distances between vehicles
in the formation. Reliability is understood as stability with
respect to structural perturbations ( $Siljak, 1978, 1991), such
as recon;guration of the formation, and robustness is under-
stood as stability with respect to vehicle perturbations (e.g.,
dynamic model uncertainties and wind gust disturbances)
that are assumed to be sector bounded functions. The moti-
vation to use decentralized overlapping control comes from
the fact that it has already been successfully applied to
control a model of a platoon of vehicles (Iftar & *Ozg*uner,
1998; Stankovi'c, Stanojevi'c, & $Siljak, 2000), and similar
ideas have been used to control formation >ight of UAVs
(Wolfe, Chichka, & Speyer, 1996), where perturbations of
the nominal system were not considered. Also, the informa-
tion structure as chosen in this paper can result in weakly
coupled subsystems, and this is well suited to overlapping
decentralized control. To illustrate this, consider an inter-
connected system with three subsystems S1, S2, and S3, as
shown in Fig. 1. The interconnections between subsystems
are depicted with full and dashed lines such that full lines
represent strong and dashed lines represent weak intercon-
nections. For example, the full arrow line from the subsys-
tem S1 to the subsystem S2 could describe a strong in>uence
such as direct communication of all state variables, and the

S3S1

S2

Fig. 1. Interconnected system.
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S22S1 S2
∼ ∼

Fig. 2. Expanded interconnected system.

dashed arrow line from the subsystem S2 to the subsystem
S1 could describe a weak in>uence such as partial knowl-
edge of state variables through sensing (for more details
on the strong and weak couplings between subsystems, see
( $Siljak, 1991)).
After expanding the interconnected system by mapping

subsystem S2 into subsystems S21 and S22 such that S21
replaces S2 with respect to S1 and S22 replaces S2 with
respect to S3, the obtained expanded system is shown in
Fig. 2 (again for rigorous treatment of expansion as
transformation of dynamic systems (see $Siljak, 1991 and
Section 3 in this paper).
Now, subsystems S1 and S21 can be combined into one

subsystem S̃1 in the expanded space, and similarly subsys-
tems S22 and S3 can be combined into another subsystem
S̃2. From Fig. 2 it follows that these two subsystems in the
expanded space are weakly coupled (that is, there is only
weak in>uence of the subsystem S̃2 on the subsystem S̃1)
and this allows a decentralized control methodology to be
applied in the expanded space. Thus, the information struc-
ture as shown in Fig. 1 (that is, when the >ow of information
is dominant in one direction) is well suited to overlapping
decentralized control. The information structure constraints
imposed on vehicles in a formation are described using uni-
directional information >ow and thus the subsystems in the
expanded space appear as disjoint (that is, the weak con-
nection in Fig. 2 between two subsystems in the expanded
space does not even exist).
The main novelty of the results presented in this paper

when compared to results presented in Iftar and *Ozg*uner
(1998), Stankovi'c et al. (2000), Wolfe et al. (1996), is
the capability of designing robust decentralized control
laws based on the methodology developed in $Siljak and
Stipanovi'c (2000). Thus, using convex optimization algo-
rithms formulated in terms of linear matrix inequalities, one
is capable of not only stabilizing the nominal system but
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of robustly stabilizing a perturbed version of the system,
where the perturbations are assumed to be Euclidean norm
sector bounded functions.
The organization of the paper is as follows. In Section 2,

input-state feedback linearization (see, e.g., Sastry, 1999)
is used to derive a model of the formation that can be
treated as an interconnected system with subsystems that
are coupled. The problem of internal stability of the for-
mation, >ying at a desired speed, is formulated in terms
of stability with respect to the zero equilibrium of the par-
ticular interconnected system. The inclusion principle and
corresponding expansion and contraction procedures are
presented in Section 3. Under the assumption that static
feedback control laws obey the information structure con-
straint, suPcient conditions for the proper contraction of the
stabilizing control laws from the expanded to the original
space are derived. In Section 4, a procedure for designing
robust decentralized control laws for each subsystem in
the expanded space is presented. The problem is formu-
lated as a convex optimization problem in terms of linear
matrix inequalities (LMIs) (Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994; $Siljak & Stipanovi'c, 2000), that can
be ePciently solved using powerful convex programming
tools. Finally, in Section 5, the design procedure is illustrated
by presenting numerical results in the case of a formation of
;ve vehicles.

2. Model description and stability problem formulation

Let us start with the following planar kinematic model for
a single vehicle:

Ẋ = � cos  ;

Ẏ = � sin  ;

 ̇ = !; (1)

where X and Y denote rectangular coordinates, and  is the
heading angle in the (X; Y ) plane. The speed in the longi-
tudinal direction (in body axes) � and angular turn rate !
are assumed to be the control inputs. In Ghosh and Tomlin
(2000), it is shown that the planar kinematic model corre-
sponds well to the motion of an aircraft, under nonlinear
mode-based closed-loop controls. This is because the veloc-
ity in the lateral direction in the body axes (or sideslip) is
typically regulated at zero and for the purpose of formation
>ight, the change in altitude is gradual if not zero. Also,
� and ! enter into the aforementioned control scheme as
reference inputs.
It can easily be shown that the decoupling matrix of the

input-state feedback linearization for the kinematic model
(1) is singular. In order to deal with this problem, dynamic
extension (Sastry, 1999) is used as follows: speed � is con-
sidered as a new state variable, and acceleration a as a
new input variable. Now, the state and input variables are

de;ned as

�=



�1

�2

�3

�4


 =



X

Y

 

�


 ; 	=

[
	1

	2

]
=

[
a

!

]
: (2)

Using (2) the kinematic model (1) can be rewritten as
follows:

�̇= f(�) + g(�)	 with f(�) =



�4 cos(�3)

�4 sin(�3)

0

0


 ;

g(�) =



0 0

0 0

0 1

1 0


 : (3)

At this point a change of state variables is introduced as

z = T (�) such that



z1

z2

z3

z4


 =




�1

�2

�4 cos(�3)

�4 sin(�3)


 (4)

and change of input variables, to de;ne the new input u∈R2

	=M (�)u with

M (�) =

[
cos(�3) sin(�3)

−sin(�3)=�4 cos(�3)=�4

]
: (5)

The transformations introduced in (4) and (5) imply the
following exact linearization of the nonlinear model (3)

ż =
@T
@�

�̇ ⇒

ż =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


 z +



0 0

0 0

1 0

0 1


 u= Ez + Fu; (6)

which can be rewritten in the compact form as

ż =

[
02 I2

02 02

]
z +

[
02

I2

]
u (7)

with z ∈R4 and u∈R2 being the state and input to the sys-
tem, respectively. 02 denotes the 2 × 2 zero matrix and I2
denotes the 2×2 identity matrix. In order to simplify the no-
tation, from this point and throughout the rest of the paper,
these two matrices will be simply denoted as 0 and I .
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Fig. 3. Leader-follower type formation with ;ve vehicles and two platoons.

At this point the aim is to develop a dynamic model for a
leader-follower type of formation of vehicles. Let us intro-
duce the following decomposition for the state variables of
the ith vehicle in the formation of q vehicles,

zi =

[
zIi

zIIi

]
∈R4 with zIi =

[
zi1

zi2

]
∈R2;

zIIi =

[
zi3

zi4

]
∈R2 (8)

and note that

zIi =

[
Xi

Yi

]
; zIIi =

[
�i cos  i

�i sin  i

]
(9)

with i∈ {1; 2; : : : ; q}. In other words, the idea is to split
vector zi into two subvectors, where the ;rst subvector zIi
includes position coordinates and the second subvector zIIi
includes speed coordinates of the ith vehicle. This type of
decomposition is chosen due to diRerent treatment of the
state variables, that is, the goal is to control the vehicles in
a formation by controlling variables that represent distances
between vehicles (i.e., not positions of the vehicles), and
variables that represent speed coordinates for each indepen-
dent vehicle. The control input for the ith vehicle as de;ned
in Eq. (5), will be denoted as ui, where ui ∈R2.

Motivated by successful results presented in Stankovi'c
et al. (2000), where decentralized overlapping control laws
were formulated for a platoon of vehicles, a particular struc-
ture for the formation, as shown in Fig. 3, is proposed. By
imposing the information structure constraint that each ve-
hicle, except the leading one, has state information about
the vehicle in front of it, it is natural to decompose the for-
mation into two platoons that share the leading vehicle. In
Fig. 3, the number of vehicles in the formation is equal
to ;ve and each platoon has three vehicles. Dotted lines
encircling pairs of vehicles represent information structure
constraints.

It is important to note that under the imposed informa-
tion structure constraint, analysis of local stability of the
formation can be independently formulated in terms of the
platoons. The only vehicle that is shared by the platoons is
the leader, which does not receive any information from the
vehicles behind, and therefore its dynamics are governed
independently from the rest of the formation. Thus, control
laws for each platoon can be designed independently, and
then applied to the formation. Of course, this is valid only in
the local sense since large deviations might cause con>icts
between vehicles in diRerent platoons.
For simplicity and without loss of generality, let us con-

sider a platoon of r vehicles and introduce the following
change of variables:

eII1 = zII1 − vd1 for the leading vehicle

{
eIi = zIi−1 − zIi − di−1

eIIi = zIIi − vdi

}
; i∈ {2; : : : ; r}; (10)

where di−1 ∈R2 is a constant desired Euclidean distance
between the (i − 1)st and ith vehicles, i∈ {2; : : : ; r}, and
vdi, vdi ∈R2, represents the desired speed for the ith vehi-
cle, i∈ {1; 2; : : : ; r}. In Fig. 3, for example, platoon 1 would
include vehicles 1, 2, and 3, and platoon 2 would include
vehicles 1, 4, and 5. Notice that for controlling distances
between vehicles, position of the leading vehicle (i.e., zI1) is
not needed. Since the desired Euclidean distances between
vehicles are assumed to be constant, the following assump-
tion is necessary:

vdi = vd; i∈ {1; 2; : : : ; r}: (11)

In other words, in order to achieve constant desired spacing
in the formation, the desired speed for each vehicle must be
the same. Then,

ėII1 = u1 for the leading vehicle

{
ėIi = eIIi−1 − eIIi

ėIIi = ui

}
; i∈ {2; : : : ; r}: (12)

Now, the stability problem can be formulated. Notice that
the goal is for the whole platoon (that is, formation) to >y at
constant desired speed vd with desired spacing between ve-
hicles, uniquely determined by desired Euclidean distances
between successive vehicles equal to di, i∈ {1; 2; : : : ; r−1},
which is accomplished if the system described by Eq. (12)
is stable with respect to its zero equilibrium.
Since (due to symmetry) the procedure does not depend

on the size of the platoon, for clarity and simplicity of pre-
sentation purposes, and without loss of generality, let us as-
sume r = 3 (as in Fig. 1). Then, Eq. (12) can be written in
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the compact form as


ėII1

ėI2

ėII2

ėI3

ėII3




︸ ︷︷ ︸
ė

=




0 0 0 0 0

I 0 −I 0 0

0 0 0 0 0

0 0 I 0 −I

0 0 0 0 0




︸ ︷︷ ︸
A




eII1

eI2

eII2

eI3

eII3




︸ ︷︷ ︸
e

+




I 0 0

0 0 0

0 I 0

0 0 0

0 0 I




︸ ︷︷ ︸
B



u1

u2

u3




︸ ︷︷ ︸
u

: (13)

Finally, the system described by Eq. (12) (or the special
case described by Eq. (13)) can be considered as an in-
terconnected system with subsystems having state variables
that are de;ned as

e1 = eII1 ; ei =

[
eIi

eIIi

]
for all i∈ {2; : : : ; r}: (14)

Thus, the dynamic model described by Eq. (13) can be con-
sidered as an interconnected system with subsystems that
are coupled.

3. Decentralized overlapping control using static state
feedback

Asmentioned in the Introduction, the goal is to expand the
interconnected system represented by Eq. (13) into a space
in which the subsystems will be decoupled. Then, in the ex-
panded space, design of static feedback controllers for each
decoupled subsystem can be carried over independently, that
is, in parallel. For large systems, this procedure will signi;-
cantly reduce computational complexity when compared to
the design of the centralized controller for the whole sys-
tem.More importantly, this decentralized scheme re>ects the
physical constraints of the system (individual vehicles run-
ning their own control schemes). By stabilizing subsystems
independently, the formation will consist of subsystems rep-
resenting pairs of vehicles that are stable themselves, which
provides reliability of the proposed control scheme. Finally,
the designed control laws in the expanded space will be
contracted back to the original space for implementation. In
order to do this, let us recall the de;nition of the inclusion
principle for linear systems (Ikeda et al., 1984). Consider

the systems:

S : ẋ = Ax + Bu; x(t0) = x0;

x∈Rn is the state; u∈Rm is the control input;

S̃ : ˙̃x = Ãx̃ + B̃ũ; x̃(t0) = x̃0;

x̃∈Rñ is the state; ũ∈Rm̃ is the control input (15)

with ñ¿n and m̃¿m. Trajectories of system S are de-
noted as x(t; x0; u) and similarly trajectories of system S̃ are
denoted as x̃(t; x̃0; ũ). Without loss of generality, assume
that t0 = t̃0 = 0, neglect dependence of trajectories on the
initial time, and assume that there exists a pair of expan-
sion/contraction matrices (as explained below) for the state

V ∈Rñ×n; U ∈Rn×ñ; UV = I ∈Rn×n (16)

and, respectively, for the input

R∈Rm̃×m; Q ∈Rm×m̃; QR= I ∈Rm×m: (17)

Now, recall the following (see, e.g., $Siljak, 1991):

De�nition 1 (Inclusion principle). System S̃ includes sys-
tem S if for any initial state x0 and any input u(t), the
following is valid: x(t; x0; u) = Ux̃(t;Vx0; Ru).

Theorem 1. System S̃ includes system S if and only if Ai=
UÃiV and AiB= UÃiB̃R for i∈ {0; 1; 2; : : : ; ñ − 1}.

In other words, the inclusion principle formulates condi-
tions under which the trajectories of the original system S are
included in the set of trajectories of the expanded system S̃.
The following restriction, that is known to be a special case
of the inclusion principle, is de;ned as (Iftar & *Ozg*uner,
1990; Ikeda & $Siljak, 1986):

De�nition 2 (Restriction). S is a restriction of S̃ if one of
the following is true:

(a) Given any initial state x0 and any input u(t), the fol-
lowing is valid: x̃(t;Vx0; Ru) = Vx(t; x0; u) (denoted as
restriction type (a)).

(b) Given any initial state x0 and any input ũ(t), the fol-
lowing is valid: x̃(t;Vx0; ũ) = Vx(t; x0; Qũ) (denoted as
restriction type (b)).

Theorem 2. S is a restriction of S̃ if one of the following
is true:

(a) ÃV = VA and B̃R= VB (restriction type (a)).
(b) ÃV = VA and B̃= VBQ (restriction type (b)).

It is important to note that conditions (a) and (b) in Def-
inition 2 and Theorem 2 correspond to the two diRerent
types of restriction, denoted as restriction type (a) and
restriction type (b), respectively. Also, if static feedback
control laws for both systems are assumed to be in the
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following form:

u= Kx; K ∈Rm×n;

ũ= K̃ x̃; K̃ ∈Rm̃×ñ; (18)

then even if the open-loop systems satisfy the inclusion
principle, it does not necessarily mean that the closed-loop
system in the original space

SS : ẋ = (A+ BK)x (19)

is “included” (understood in the sense of De;nition 1 and
Theorem 1 for the open-loop systems S and S̃ when the
control inputs are equal to zero) in the closed-loop system
in the expanded space

S̃S : ˙̃x = (Ã+ B̃K̃)x̃: (20)

Conditions for inclusion in the case of the restriction are
given as (Iftar & *Ozg*uner, 1990; Ikeda & $Siljak, 1986):

Theorem 3. SS is a restriction of S̃S if one of the following
is true:

(a) ÃV=VA, B̃R=VB, and K̃V=RK (restriction type (a)).
(b) ÃV = VA, B̃ = VBQ, and K = QK̃V (restriction

type (b)).

It is interesting to note that given an interconnected system
with subsystems that overlap, the expansion procedure can
be done by simply repeating overlapping parts such that in
the expanded space subsystems appear disjoint. By doing
so, based on the information structure, subsystem dynamics
in Eq. (13) can be decoupled by introducing the following
expansion:

ẽ1 = e1; ũ 1 = u1;

ẽ i =



ẽai

ẽbi

ẽci


 =



eIIi−1

eIi

eIIi


 ;

ũ i =

[
ũa
i

ũb
i

]
=

[
ui−1

ui

]
; i∈ {2; 3}: (21)

which can be written in the compact form as




˙̃e1

˙̃e2

˙̃e3




︸ ︷︷ ︸
˙̃e

=




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 I 0 −I 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 I 0 −I

0 0 0 0 0 0 0




︸ ︷︷ ︸
ÃD



ẽ1

ẽ2

ẽ3




︸ ︷︷ ︸
ẽ

+




I 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 0

0 0 0 0 I




︸ ︷︷ ︸
B̃D



ũ 1

ũ 2

ũ 3




︸ ︷︷ ︸
ũ

: (22)

The expansion/contraction matrices for the state are given as

V =




I 0 0 0 0

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I



;

U =




1
2 I 1

2 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 1
2 I 1

2 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I




(23)

and similarly for the input

R=




I 0 0

I 0 0

0 I 0

0 I 0

0 0 I



; Q =




1
2 I

1
2 I 0 0 0

0 0 1
2 I

1
2 I 0

0 0 0 0 I


 :

(24)

Using Eqs. (13) and (22)–(24) it is easy to show that ÃDV=
VA and B̃DR = VB. Then, from Theorem 2 it follows that
this expansion/contraction procedure satis;es the conditions
of De;nition 2(a) (restriction type (a)).
Now, let us consider the static feedback control laws de-

;ned in (18). Since the open-loop systems satisfy De;nition
2(a), from Theorem 3 it follows that:

K̃V = RK (25)

must be valid in order for the closed-loop systems to satisfy
the inclusion principle. Recall that the goal is to design a
reliable controller in which each vehicle in the original space
(except the leading one) has information about the states of
the vehicle in front of it. From Eqs. (10) and (21) it follows
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that this information structure constraint can be mathemati-
cally described in the expanded space as

K̃D =




K̃11 0 0 0 0 0 0

0 K̃22 0 0 0 0 0

0 K̃32 K̃33 K̃34 0 0 0

0 0 0 0 K̃45 0 0

0 0 0 0 K̃55 K̃56 K̃57



;

(26)

where K̃ ij ∈R2×2 for i∈ {1; : : : ; 5} and j ∈ {1; : : : ; 7}. Thus,
K̃D ∈R10×14, and to simplify the notation from this point
and throughout the rest of the paper (if not noted otherwise),
all matrix variables will be of dimension 2 × 2 and the
overall matrix dimension can be determined accordingly. In
order to make Eq. (25) solvable for K and following the
ideas presented in Ikeda and $Siljak (1986), the matrix K̃D

is modi;ed as

K̃DM =




K̃11 + K̃22

2
0 0 0 0 0 0

0
K̃11 + K̃22

2
0 0 0 0 0

0 K̃32 K̃33
K̃34 + K̃45

2
· · · 0 0 0

0 K̃32 K̃33 0
K̃34 + K̃45

2
0 0

0 0 0 0 K̃55 K̃56 K̃57




:

(27)

Modi;cation of the matrix K̃D as given in Eq. (27) guar-
antees that the closed-loop systems in Eqs. (19) and (20)
satisfy the inclusion principle of De;nition 1. Solving (25)
for K in terms of K̃DM , one obtains

KM =




K̃11 + K̃22

2
0 0 0 0

K̃32 K̃33
K̃34 + K̃45

2
0 0

0 0 K̃55 K̃56 K̃57


 :

(28)

Thus, the relation K̃DMV = RKM is valid.
Notice that if K̃11=K̃22, and K̃34=K̃45, from Eqs. (26) and

(27), it follows that the stability of the expanded closed-loop
system will be preserved after modi;cation since the struc-
ture of K̃D is block diagonal and the structure of K̃DM is
lower block triangular, such that both matrices have the same
main diagonal blocks. Thus, if a controller in the expanded
space is designed in the following form:

K̃D =




K̃1 0 0 0 0 0 0

0 K̃1 0 0 0 0 0

0 K̃2 K̃3 K̃1 0 0 0

0 0 0 0 K̃1 0 0

0 0 0 0 K̃2 K̃3 K̃1




(29)

and by modifying it according to (27), K̃DM is computed in
the overlapping form as

K̃DM =




K̃1 0 0 0 0 0 0

0 K̃1 0 0 0 0 0

0 K̃2 K̃3 K̃1 0 0 0

0 K̃2 K̃3 0 K̃1 0 0

0 0 0 0 K̃2 K̃3 K̃1



: (30)

Stability of the closed-loop system in the expanded space
will be preserved after modi;cation. Then, from Eq. (28) it
follows that:

KM =



K̃1 0 0 0 0

K̃2 K̃3 K̃1 0 0

0 0 K̃2 K̃3 K̃1


 (31)

will be a stabilizing feedback in the original space.
At this point let us note that restriction type (b) in De;-

nition 2 (introduced in Iftar and *Ozg*uner (1990) as exten-
sion) produces an expanded system that is not stabilizable,
and this is the reason why it was not chosen. In general the
main advantage of restriction type (b) over restriction type
(a) is that if the stabilizing control law is computed in the
expanded space it can be directly contracted to the original
space as K=QK̃V (i.e., there are no modi;cations). This is
not the case with the restriction type (a) where contraction
is not necessarily a straightforward procedure (as shown in
the work above).

4. Design of robust decentralized static feedback
control laws

In this section, a method to compute a feedback gain
matrix de;ned in Eq. (29) that will robustly stabilize the
expanded system, implying that its contraction will stabilize
the original system, is proposed. Thus, let us start with the
perturbed kinematic model

�̇= f(�) + g(�)	+ w; (32)

where w=[w1; w2; w3; w4]T ∈R4 is a perturbation in the sys-
tem which represents, for example, wind gust disturbances
or uncertainties in the model description. It is important to
stress that only sector bounded perturbations will be consid-
ered, that is, perturbations that reside in some conical sec-
tor emanating from the origin in the state space (for more
details see, for example, $Siljak and Stipanovi'c (2000) and
references reported therein).
With z = T (�) and 	 = M (�)u de;ned in Eqs. (4)

and (5), input-state feedback linearization from Section 2 is
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repeated to obtain

ż =
@T
@�

�̇=
@T
@�

f(�) +
@T
@�

M (�)u+
@T
@�

w

= Ez + Fu+ Sw;

Sw =
@T
@�

w: (33)

At this point let us note that w4 ≈ 0, since it is a perturba-
tion in an arti;cial equation added to the kinematic model
in the process of dynamic extension. It is called an arti;cial
equation since it is added to the kinematic model (1) and
therefore it is not connected with the dynamic model of the
aircraft which is susceptible to the sector bounded perturba-
tions. From Eqs. (4) and (33) it follows:

Sw = [w1 w2 − z4w3 z3w3]T (34)

or in the decomposed form (following decomposition of the
state variables introduced in Section 2):

Sw =

[
SwI

SwII

]
∈R4; SwI =

[
w1

w2

]
∈R2;

SwII =

[ −z4

z3

]
w3 = J (xII + vd)w3;

where J =

[
0 −1

1 0

]
: (35)

It is easy to show that after introducing perturbations, the
coupled Eqs. (12) become

ė1 = u1 + SwII
1 for the leading vehicle;{

ėIi = eIIi−1 − eIIi + SwI
i−1 − SwI

i

ėIIi = ui + SwII
i

}
; i∈ {2; : : : ; r}: (36)

Let us introduce

ŵ1 = SwII
1 for the leading vehicle;

ŵi =

[
ŵI

i

ŵII
i

]
=

[
SwI
i−1 − SwI

i

SwII
i

]
for i∈ {2; : : : ; r}; (37)

as perturbations to system (12). From Eqs. (34)–(37) it
follows that:

ŵ1 = SwII
1 for the leading vehicle;

ŵi =

[
ŵI

i

ŵII
i

]
=

[
wI

i−1 − wI
i

SwII
i

]
for i∈ {2; : : : ; r}: (38)

In the case of three vehicles in the platoon, in the expanded
space one obtains

w̃1 = ŵ1;

w̃i =



w̃a

i

w̃b
i

w̃c
i


 =



ŵII

i−1

ŵI
i

ŵII
i


 ; i∈ {2; 3}: (39)

Thus, by introducing perturbation into the kinematic model,
Eq. (22) becomes

˙̃e = ÃDẽ + B̃Dũ+ w̃: (40)

Now, YK̃ is de;ned as

YK̃ = K̃DM − K̃D; (41)

where K̃D and K̃DM are de;ned in Eqs. (29) and (30), re-
spectively. From this point the reader is referred to YK̃ as
a “spillover” and assuming a static feedback ũ = K̃DM ẽ,
Eq. (40) can be rewritten as

˙̃e= (ÃD + B̃DK̃DM )ẽ + w̃

= (ÃD + B̃DK̃D)ẽ + B̃DYK̃ ẽ + w̃: (42)

Thus, from Eq. (42) it follows that the system has two types
of perturbations. The ;rst is due to the modi;cation of the
gain matrix that allows proper contraction, and the second is
due to the perturbations of the original kinematic model. It is
important to note that the “spillover” term couples subsystem
dynamics in the expanded space.
In order to compute stabilizing feedback gains in the

expanded space notice that only the ith subsystem from
Eq. (40) can be considered (this can be done since all the
subsystems are completely decoupled), and is given as

˙̃ei =



0 0 0

I 0 −I

0 0 0




︸ ︷︷ ︸
Ã

ẽ i +




I 0

0 0

0 I




︸ ︷︷ ︸
B̃

ũ i + w̃i; ẽ i =




ẽai

ẽbi

ẽci


 ∈R6;

ũ i =

[
K̃1 0 0

K̃2 K̃3 K̃1

]
︸ ︷︷ ︸

K̃

ẽ i =

[
ũa
i

ũb
i

]
∈R4; w̃i =



w̃a

i

w̃b
i

w̃c
i


∈R6

(43)

with w̃i residing in the sector, that is,

w̃T
i w̃i6 /2ẽTi W

TW ẽi; (44)

where / is a positive number to be maximized andW ∈Rp×6

(p being an arbitrary positive integer) is a constant ma-
trix (usually set to be identity). Practically, the matrix W is
chosen according to a predetermined knowledge about the
perturbations, and if no particular knowledge about the per-
turbations is available it is set to be an identity matrix, mean-
ing that the norm of perturbations is bounded by the scaled
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norm of the state variables. Due to the fact that the subsys-
tems are identical, the subsystems’ parameters Ã, B̃, K̃ , /,
and W are independent of i.
To stabilize each subsystem, a quadratic Liapunov func-

tion V (ẽ i) = ẽTi Pẽ i, where P ∈R6×6 is a positive de;nite
matrix (denoted P � 0), is considered. By computing its
derivative with respect to time and given constraints in (44),
using the well known S-procedure and the LMI formulation,
one obtains (for further details of this standard procedure
see Boyd et al. (1994)):

minimize 3

subject to Y � 0;

ÃY + Y ÃT + B̃L+ LT B̃T B̃ YWT

BT −I 0

WY 0 −3I


 ≺ 0;

(45)

which is an LMI optimization problem (Boyd et al., 1994;
$Siljak & Stipanovi'c, 2000) in the scalar variable 3 = 1=/2,
and the matrix variables L and Y (Y is a scaled inverse
of P) with an imposed structure as follows:

L=

[
L1 0 0

L2 L3 L1

]
; Y =



Y1 0 0

0 Y2 0

0 0 Y1


 : (46)

A structure for matrices L and Y as given in Eq. (46) guar-
antees that K̃ = LY−1 will have the same structure as in
Eq. (43) ( $Siljak & Stipanovi'c, 2000).
It is important to notice that the design procedure for the

feedback gain of the ;rst subsystem is included in the above
analysis and therefore does not have to be treated as a special
case. Contraction of the feedback gains is carried over to
the original space according to the analysis presented in
Section 3 and the results presented in $Siljak and Stipanovi'c
(2001).
In terms of complexity, let us assume a leader follower

formation as in Fig. 3 consisting of two platoons with m
vehicles each (i.e., 2m−1 vehicles in the formation). In the
proposed design one has to solve for only one gain matrix
K̃ in Eq. (43) with 12 unknown variables (since each K̃ i,
i∈ {1; 2; 3}, has four variables), compared to the centralized
gain matrix with (4m−2)(8m−6)=32m2−40m+12 entries
(since the number of inputs is 2(2m − 1) = 4m − 2 and the
number of state variables is 2 + 4(2(m − 1)) = 8m − 6).
Here, it is important to point out that the term due to

“spillover” is a coupling term between fully decoupled sub-
systems as shown in Eq. (22). As discussed in the pre-
vious section, since matrix (ÃD + B̃DK̃D) is block diag-
onal and B̃DYK̃ is a lower triangular matrix, stability of
(ÃD+B̃DK̃DM ) is equivalent to stability of (ÃD+B̃DK̃D) (i.e.,
without perturbation w̃). Unfortunately, this is not the case
when the robust stability problem is considered, but since
the goal is to have a fully decoupled design at the subsystem

level in the expanded space, the “spillover” is neglected
in the ;rst step of the design procedure (i.e., when one
computes the stabilizing controllers while maximizing the
sector bounds for the perturbations). Then, by comparing
Eqs. (40) and (42) an approximation of the robust per-
formance can be computed using the substitution w̃ ↔
w̃ + B̃DYK̃ ẽ and the following estimation:

‖w̃‖26 /2‖W̃ ẽ‖2 − ‖B̃DYK̃ ẽ‖2

⇒ ‖w̃ + B̃DYK̃ ẽ‖26 /2ẽ T W̃ T W̃ ẽ;

or

w̃T w̃6 ẽ T (/2W̃ T W̃ − YK̃T B̃T
DB̃DYK̃)ẽ

⇒ [w̃T ẽT ]

[
I B̃DYK̃

YK̃T B̃T
D YK̃T B̃T

DB̃DYK̃ − /2W̃ T W̃

]

×
[
w̃

ẽ

]
6 0; (47)

where W̃ = diag{W;W;W}. So, the sector’s shape changes
from /2W̃ T W̃ to /2W̃ T W̃ −YK̃T B̃T

DB̃DYK̃ , that is, the sec-
tor volume decreases since YK̃T B̃T

DB̃DYK̃ is a nonnega-
tive de;nite matrix. Nevertheless, how to incorporate the
“spillover” eRect into design of controllers is still an open
problem. The proposed design is novel in the sense that it
guarantees asymptotic stability of the nominal system in the
case of restriction type (a) and also maximizes the sector
bound on all possible perturbations that the nominal system
can withstand without becoming unstable. Restriction type
(b) oRers more commodities in the design of stabilizing con-
trollers but is more restrictive, and is not applicable in the
case considered in this paper. Finally, for a rigorous mathe-
matical analysis of how sector bounds on perturbations are
mapped to the original space, the reader is referred to the
analysis presented in $Siljak and Stipanovi'c (2001). How-
ever, it is important to note that this is a procedure that is
both straightforward (along the lines of the inclusion prin-
ciple) and exact (that is, no approximation involved).

5. Examples

Let us again consider the group of ;ve vehicles >ying
in the formation as shown in Fig. 3. Assume that the nom-
inal speed vd (in Eq. (11)) is [300; 0] [ft/s]; desired dis-
tances between vehicles (in absolute values) are all equal
to |di−1| ≡ d = [400; 400]T [ft] for both platoons and all i
in Eq. (10), and perturbations are assumed to be sinusoidal
functions with magnitudes equal to 10. Also, recall that the
only restriction on the perturbation functions is that they be
sector bounded. The design procedure as described in Sec-
tions 2–4 is applied to compute decentralized overlapping
static feedback controllers. Design parameter / which de-
termines the size of the perturbation sector in Eq. (44) was
maximized at value 0.95 (this means that the allowed pertur-
bations are of the scale of the state variables), and matrix W
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Fig. 4. Snapshots of the formation for one set of initial conditions
(vd = [300; 0] [ft/s]; d = [400; 400]T [ft]).
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Fig. 5. Snapshots of the formation for a second set of initial conditions
(vd = [300; 0] [ft/s]; d = [400; 400]T [ft]).

describing the shape of the sector was set to be the iden-
tity matrix (thus, from Eq. (44) one obtains the perturbation
bound as ‖w̃i‖6 0:95‖ẽ i‖ for each subsystem). Simulation
results are presented in Figs. 4 and 5 for two diRerent sets
of initial conditions using superimposed snapshots of the
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390
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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(a) (b)

Fig. 6. Horizontal distances between: (a) vehicles V1 and V2; (b) vehicles V2 and V3; (vd = [300; 0] [ft/s]; d = [400; 400]T [ft]).
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Fig. 7. Snapshots of the formation for the piecewise de;ned trajec-
tory as shown in the lead vehicle trajectory (‖vd‖ = 300 [ft/s]; d =
[400; 400]T [ft]).

formation at representative time instances, which are 40
nonuniform (depending on the nonuniform step size used in
simulations) time intervals between 0 and 1.3[s]. Position
coordinates are given in feet.
Horizontal distances between vehicles V1 and V2, and

V2 and V3 (corresponding to Fig. 3) for the set of initial
conditions for the simulation presented in Fig. 4, are given in
Figs. 6a and b, respectively. Time is in seconds and distances
are in feet.
In Fig. 7, the picture of 120 snapshots of the for-

mation with a desired trajectory that is piecewise lin-
ear (as shown by the lead vehicle), is presented (sim-
ulation time ∼4[s]). The nominal speed vd takes values
[300 cos(−5=3); 300 sin(−5=3)], [300; 0], and [300 cos(5=3);
300 sin(5=3)] [ft/s], respectively. The same sinusoidal per-
turbations as in the previous examples were used.
Finally, to illustrate a case in which the perturbations are

outside the bounds determined by the scheme, large sinu-
soidal perturbations of magnitudes equal to 100 in appropri-
ate units with a phase shift of 5=2 [rad] were applied to the
nominal system. These do not satisfy the sector conditions
with parameters / = 0:95 and W = I (simulation time is
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Fig. 8. Snapshots of the formation with perturbations outside of the
computed allowed range (vd = [300; 0] [ft/s]; d = [400; 400]T [ft]).

20 s). In fact, a phase shift of 5=2 [rad] implies that the
perturbations are not equal to zero at the origin of the sector,
that is, do not satisfy any sector condition. As expected and
as shown in Fig. 8, the formation is not stable.

6. Conclusions

In this paper, an ePcient method to design decentralized
control laws for a formation of unmanned aerial vehicles
with overlapping information >ow has been proposed. The
formation is modeled as an interconnected system in which
the subsystems are de;ned in such a way that their states
are composed of measurements assumed to be available in
each vehicle. Static state feedback control laws were de-
signed in the expanded space using an application of convex
programming tools, and then contracted back to the original
space for implementation. Since the optimization algorithms
are formulated in the expanded space where subsystems are
disjoint, this method oRers signi;cant reduction in compu-
tational time due to the possibility of parallel processing.
As an example, the procedure was applied to a perturbed
leader–follower type of formation of ;ve vehicles, and the
obtained results are promising.
In the future research, two possible directions are consid-

ered. First is the application of dynamic controllers and the
second is the possibility of considering diRerent overlapping
structure constraints for a formation of UAVs. In our opin-
ion, the biggest problem to overcome would be the problem
of contraction of the controllers from the expanded space
under more complicated overlapping information structure
constraints.
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