IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1
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Abstract—We describe and implement an algorithm for com-  given target set (see figure 1). If the target set consists of
puting the set of reachable states of a continuous dynamic game.those states that are known to be unsafe, then the backwards
The algorithm is based on a proof that the reachable set is the o4chaple set contains states which are potentially unsafe and

zero sublevel set of the viscosity solution of a particular time- hould theref b ided. A | id llisi
dependent Hamilton-Jacobi-Isaacs partial differential equation. shou ereiore be avolded. AS an example, consider colfision

While alternative techniques for computing the reachable set have avoidance protocols for two aircraft. The target set would
been proposed, the differential game formulation allows treat- contain those states already “in collision,” such as those states

ment of nonlinear systems with inputs and uncertain parameters. where the aircraft are within the five mile horizonal separation
Because the time-dependent equation’s solution is continuous and yistance mandated by the Federal Aviation Administration.
defined throughout the state space, methods from the level SetThe backwards reachable set contains those states which will
literature can be used to generate more accurate approximations > _
than are possible for formulations with potentially discontinuous l€ad to a collision. In this case, the backwards reachable
solutions. A numerical implementation of our formulation is set will extend many miles in front of the aircraft but not
described and has been released on the web. Its correctnesssignificantly behind it, since the aircraft is always moving
is verified through a two vehicle, three dimensional collision gonvard. If another aircraft enters this reachable set, there
avoidance example for which an analytic solution is available. . ; ) . .

is cause for alarm. We examine this scenario further in
section IlI-B and [1].

We previously explored the idea of using a time-dependent
Hamilton-Jacobi-lsaacs (HJI) partial differential equation
(PDE) for computing reachable sets in [2], [3], although the

I. INTRODUCTION formulation used in those papers was not well suited for

S THE systems we design grow more complex, it béwumerical implementation. The modified formulation in [4],

comes more difficult to determine whether they workd] worked numerically, but it has been shown to be un-
correctly. Consequently, verification and validation have réound for some nonconvex problems. The novel theoretical
ceived major attention in many fields of engineering. Theontribution of this paper is a proof (by a reduction to a
simplest form of computational validation is simulation, buterminal cost differential game) that the viscosity solution
unfortunately it can only check a single trajectory of thef a particular time-dependent HJI PDE provides an implicit
system at a time. For systems with many different state valugigface representation of the continuous backwards reachable
and/or many input signals, it would be prohibitively expensiveet.
to check the safety of every possible system trajectory bySeveral features set this formulation apart from the alterna-
simulation alone. One avenue that researchers have follovivgs described in the literature. Compared to algorithms that
in their quest to catch every potential failure mode is thgwpose a polygonal or ellipsoidal shape upon the reachable
computation of reachable sets, which capture the behaviorsgt, HJI based methods can represent nonconvex reachable sets
entire groups of trajectories at once. and handle nonlinear dynamics with two sets of adversarially

In this paper we describe a method for computing thepposed input parameters—typically one set is considered
backwards reachable sedf a continuous system: the seto be optimally chosen control inputs and the other to be
of states from which trajectories start that can reach sor@eworst case, and therefore robust, treatment of uncertain

time-varying model parameters and disturbances. The time-
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here is available from [7], and includes documentation [8] and Assumption 3:The target setG, C R™ for our reachability
source code for the example in section IlI-B and several othgmoblem is closed and can be represented as the zero sublevel
reach sets. While implemented in a dimensionally independesgt of a bounded and Lipschitz continuous functjonR™ —
manner, the solution is approximated on a Cartesian grid Rf
the state space, and hence memory and computational time Go ={z e R" | g(z) < 0}. (2)
requirements rise exponentially with dimension. In practice, We assume that player | will try to steer the system away
systems of dimensions 1-3 can be examined interactivelgm the target with her input(-), and player Il will try
while dimensions 4-5 are slow but feasible on computers with steer the system towards the target with her infgu.
sufficient memory. For readers who prefer a more intuitive understanding of the
The remainder of this paper describes our time-dependémtuts, consider that in our example the target set will represent
formulation, proves its correctness, and presents an examible capture set in a pursuit-evasion game. Our evader (control
that demonstrates its accuracy and its application to air traffipput) will then be player | and the pursuer (adversarial
control. We note that a completely different proof of the singldisturbance) will be player II.

player version of this formulation was developed in [9]. In a differential game setting, it is important to address what
information the players know about each other’s decisions. To
I[I. How To COMPUTE THE REACHABLE SET specify our information pattern, define firststrategyfor the

second player as a map : 2(t) — B(t) which specifies
apg input signal for player Il as a function of the input signal
ttl1at player | chooses. We will allow player Il to use only
nonanticipative strategieghat is strategies

veT(t) 2 {9 Alt) —B(t) |

In this section we formally define the reachable set f
a system, discuss a few of its properties, and formulate
terminal value HJlI PDE whose solution describes it. Figure
illustrates the set we seek to compute.

A. The Reachable Set a(r) =a(r) for almost everyr € [t, s]
We model our system with the ordinary differential equation = Y[a](r) = Ia)(r)
for almost everyr € [t, s]}.
& i = f@a.b), W N o € 112)
dt Informally, this restriction means that if player Il cannot

where x is our statea(-) is the input for player | and(-) distinguish between input signatg-) and a(-) of player |

is the input for player Il. In the discussion below we willuntil after times, then player Il cannot respond differently to
assumer € R", although the methods outlined can also bthose signals until after time It will turn out that this choice
applied to periodic state spaces; for example, the state spges an advantage to player Il over player I, but we postpone

in section 1lI-B includes a periodic angular dimension. further discussion of whether this information pattern is the
Assumption 1:The input signals are drawn from the fol-correct one for our reachability purposes until section II-D.
lowing sets Note that in our formulation of the problem, a trajectory

A, . starts at some initial time¢ < 0 and we would like to know
a() € A(t) : {0+ [t.0] — A () _'S measurable if it has passed into or through the target set by time zero.
b(-) € B(t) ={s:[t,0] — B | ¢() is measurable We will sometimes want to discuss the length of time that a

where A ¢ R™ and B C R"™ are compact and € [T, 0] trajectory has had to evolve; we adopt the differential game

for someT > 0. We will consider two input signals to pehotationT = —t to denote this positive quantity. We use the

identical if they agree almost everywhere. free variabless andr to denote times in the rande 0].

Assumption 2:The flow field f : R x A x B — R” is To solve the backwards reachability problem, we want to
uniformly continuous, bounded, and Lipschitz continuous fi€termine thebackwards reachable sei(r) for 7 & [0, 7].
o for fixed a andb. Consequently, given a fixed(-) € 2(¢), Remembering that = —7, we define this set as

b(-) € B(t) and initial point, there exists a unique trajectory G(r) £ {z € R" | 3y € I'(t), Ya(-) € A(t),3Is € [t, 0],

solving (1) [10]. . , , (3)
Solutions of (1) are trajectories of our system and will be §s(siata(),71al()) € Go)-
denoted by Informally, G(7) is the set of states from which there exists
strategies for player Il that for all inputs of player | will
§r(si2,t,a(-),0()) « [t,0] — R™ generate trajectories which lead to the target set within time
which satisfies the initial conditions; (t;z,t,a(-),b(-)) = « A proof of the following remark can be found in [11, section
and the differential equation almost everywhere 2.1].

Remark 1:If Gy is closed, therG(7) is closed.

d
& (sitial) b()) _ _ _ .
B. A Time-Dependent Hamilton-Jacobi-lsaacs Equation for
= f(&r(siz,t,a(), b()), als), b(s)). the Reachable Set
Note that we employ a semi-colon to distinguish between the|n this section we state the main theoretical result of this
arguments of £y and the trajectory parameterst, a(-) and paper—that the reachable set can be determined by solving for
b("). the viscosity solution [12] of a time-dependent HJI equation.
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controllably EAs;xo,ta,(7),b4("))
safe states

t,a,("),b,())
sixuta(),b,()) |targetset G,
(unsafe)

s

backwards reachable set G(<)

state space R”

Fig. 1. Target set and backwards reachable set. Several trajectories are shown starting at the saime fime different states: and subject to different
input signalsa(-) andb(-). Input signala(-) is chosen to drive the trajectory away from the target set, while input signails chosen to drive the trajectory
toward the target. The labeling of safe and unsafe states shown is the most common (but not the only possible) interpretation of these sets.

Theorem 2:Let v : R™ x [-T,0] — R be the viscosity reasoning about it is more challenging and its use is restricted

solution of the terminal value HJI PDE to problems in which the Hamiltonian and target set are
Dyw(z,t) + min|0, H(z, Dyv(z, t))] = 0, convex. Consequently, we advocate using the formulation in
o(z,0) = g(z) (4) Theorem 2 to determine reachable sets.
where
H(z,p) = maxminp” f(z,a,b). (5) C. Alternative Algorithms for Computing the Reachable Set

acA beB

The verification of complex systems has received much
Then the zero sublevel set ofdescribes;(r) P y

attention lately; consequently, so has the design of efficient
G(r) = {z € R" | v(x,t) < 0}. (6) methods for computing reachable sets. In this section we
The proof of this theorem is given in the appendix. Thegview a variety of alternative algorithms. Further discussion
goal of the proof is to show that reachability is equivalent tean be found in [11, section 2.3].
a terminal cost differential game. Unfortunately, such a gameThe search for methods of computing the reachable sets
can only determine whether a trajectory is in the target setcft purely discrete systems, such as those modeled by finite
exactly time zero. If such a game were used on the origir@litomata, has met with considerable success and has led to the
system, player | could “avoid” the target by driving a trajectorglevelopment of powerful tools for automatic verification; for
into the target and then out the other side before time zero. &ample, the binary decision diagram [13]. Most engineering
avoid this situation, we introduce an augmented system whigyistems, however, are not purely discrete. Continuous dynam-
allows player Il to freeze the evolution of trajectories shoul@s are the norm in control engineering problems, and in many
player | attempt to drive a trajectory out of the target set. ThBodern systems important behaviors arise from the interaction
augmented system’s trajectories are shown to be equivalenb&ween discrete and continuous components. The primary
those of the original system, and the HJI PDE of the resultirggpallenge of computing reachable sets for thedarid systems
differential game is shown to be equivalent to (4). lies on the continuous side, where sets containing uncountable
Remark 3:Under Assumptions 1-3, it can be shown thatumbers of states must be represented and evolved.
v(z,t) is bounded and Lipschitz continuous in bathand Our approach to this challenge has its roots in the work
t [10, Theorem 3.2]. of Isaacs [14], who used his calculations to derive capture
The significance of this theorem and the subsequent remaggions in pursuit-evasion games. The modern methods most
is that we can harness well developed numerical schemes frolwsely related to ours are based on a minimum time to
the level set literature to compute accurate approximationsrefich function which is the viscosity solution of a stationary
v(z,t), and therefore accurate approximationsdifr), for (time-independent) HJI PDE. Numerical approximations of
even complicated nonlinear dynamics. In previous papers wes function can be computed iteratively for general nonlinear
have presented alternative HJI PDE formulations for condynamics with two competing inputs [15], or for restricted
puting the backwards reachable set. In [3], the Hamiltoniaasses of dynamics by fast iterative [16] and even nonitera-
was restricted to negative values only within the target sdiye [17], [18] schemes. The value of this function at each point
unfortunately, the resulting potential for discontinuities iin the state space is the minimax time required (over inputs
the solution makes accurate numerical implementation dift-) anda(-) respectively) to go from that state to any point
ficult. In [4], minimization was performed as a separatén the target set, and so the sublevel sets of this function can
postprocessing step. While this formulation is more efficiertbe used directly as representations of finite horizon backwards



4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

reachable sets. Furthermore, the gradient of this function calgorithms for ellipsoidal approximation of forward reachable
be used to deduce optimal strategies for both players’ inp@sts which allow for competing inputs but are restricted to
for states inside the backwards reachable set. linear dynamics have also been developed [31]. As a class,

When used in a reachability setting, the stationary Hthese techniques may scale better to high dimension (although
formulation has several disadvantages compared to the time are not aware of any published analysis in dimension higher
dependent formulation described in section 1I-B. Unless tllkean six), but most find nonlinear systems difficult to analyze.
system is small time controllablethe minimum time to reach A final group of reachability algorithms partitions the state
function may not be continuous [20]. In the neighborhood @fpace into subsets in advance, and then builds a discrete
these discontinuities—which often occur on the boundary trnsition system over the elements of this partition. Partitions
the reachable set—it is difficult to construct a numerical apaay be rectangular [32], [33] or may be constructed from a
proximation that achieves even grid level accuracy. Achievimgylindrical algebraic decomposition of polynomials appearing
a given level of accuracy therefore requires computationally the dynamics [34].
expensive grid refinement (halving the grid size multiplies Reachable sets are also closely related to invariant sets,
the execution time by at least eight in three dimensionsyhich are often represented as sublevel sets of Lyapunov
In contrast, the continuous solution afforded by the timdunctions. Finding such functions for systems with nonlinear
dependent formulation makes it possible to achieve subgdgnamics is difficult in general, but algorithms for restricted
level accuracy, as demonstrated in section IlI-B and [21dlasses of dynamics do exist; for example, dynamics which
A more subtle disadvantage is the total lack of informatioare piecewise linear [35], are linear with sector bounded
that the minimum time to reach function provides outside theonlinearities [36] or are piecewise polynomial [37].
reachable set, where its value is a constant. In safety verifi-
cation applications, we are at least as interested in choos
optimal input strategies for states outside the reachable
(states that are currently safe but may become unsafe with
appropriate input intervention) as for states inside it (statesThroughout this paper, we have chosen to let player Il select
that may already be doomed). a nonanticipative strategy that can respond to the input choices

A second equivalent formulation of backwards reachabtd player I. In this section we discuss some possible alterna-
sets are the victory domains or discriminating kernels frotives to this information pattern. We consider four basic types
viability theory [22], [23]. These techniques are more geref controls for the game players—open loop, state feedback,
eral than either time-dependent or stationary HJI approachemanticipative strategies, and anticipative strategies.
because they can directly handle reachability under state conBecause our reachable sets generally represent “unsafe” por-
straints as well as certain classes of discontinuous dynamitigns of the state space, we usually prefer to overapproximate
Numerical schemes guaranteeing under or over approximatibem rather than underapproximate them. Therefore, whenever
of the reachable set have been designed [24], features thataarghoice must be made between giving player | or player
not yet available in numerical approximations of either HJI an advantage, we choose to give it to player Il, who is
formulation. The disadvantages of this approach are simikiaying to make the reachable set larger. If in another context
to those of the stationary HJI: grid level resolution of thelayer | should be given the advantage, it is straightforward
reachable set's boundary and a lack of information outsitie modify the Hamiltonian (5) and apply the same numerical
of it. approximation methods, although there are some technical

The stationary HJI and viability based approaches mighetails regarding the modified definition of the reach set [22].
seem to benefit dimensionally because they do not require 8An open loop strategyequires that both players decide
time variable; however, in practice this observation is misleatheir entire input signals:(s) and b(s) for all s € [t,0]
ing, because the iterations required to solve these formulatiomighout any knowledge of the other players’ decisioBtate
are comparable in time and memory cost to the effort neededéedbackallows players | and Il to choose(s) and b(s)
handle the time dimension in the time-dependent formulatiorespectively based on the current value pfs; x, ¢, a(-), b(-)).

The three approaches discussed thus far are closely relatésl defined nonanticipative strategies in section II-A. Our
in that they calculate backwards reachable sets and worksiystem dynamics are deterministic, so by allowing player II
a fixed frame of reference (Eulerian schemes) rather themmake decisions abouts) with full knowledge ofa(r) for
following individual trajectories of the system. A second broad € [t, s], @ nonanticipative strategy gives player Il all the
class of reachability algorithms finds forward reachable setdormation of state feedback, plus player I's current input
by following system trajectories (Lagrangian schemes). Thesgs). While player | is at a slight disadvantage under this
include the tool<CheckMatd25], d/dt [26], HyTech[27] and information pattern, at a minimum she has access to sufficient
Coho [28], as well as the algorithms in [29], [30]. Thesenformation to use state feedback, because player II must
techniques all generate polyhedral overapproximations of theclare her strategy before player | chooses a specific input
reachable set and cannot treat systems with adversarial inpated thus player | can determine the response of player Il to

any input signal. Aranticipative strategyvould be equivalent

1A system issmall-time controllableif for every state, the system can to aIIowing player Il to ChOOSé(s) based on knowledge of
remain near that state for all times and can reach nearby states in arbitrariky

small amounts of time [19]. Many nonlinear dynamic systems, including tfel”) for all € [t,.()]; in cher \{VOde, player | would have to
example in section 1I-B, are not small time controllable. reveal her entire input signal in advance to player Il

%Discussion of Information Patterns in the Two Player
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The systems in which we are interested use state feedbac v X,

controllers. Clearly the open loop pattern of information is
unsuitable for verifying such systems, and the anticipative
strategy model is inappropriate as well because it allows playe!
Il knowledge of the future. While state feedback might be a
more appropriate model of our systems than nonanticipative
strategies, it is not so easily turned into a HJI PDE. We
have therefore chosen to use nonanticipative strategies, an
give whatever advantage they confer to player Il. It can be
proven that the value of the differential game (4)—(5) under
nonanticipative strategies is always less than the value unde@wader (player 1) pursuer (player Il)
state feedback [38], and consequently our choice cannot l%gd 2. Relative coordinate system for collision example.
to underapproximation of the state feedback reachable set.
The input of player 1l can be used not only for the control
signal of an adversary, but also for bounded disturbance inpygtic local optimization may be difficult in general, but it is
and uncertain model parameters. Allowing these signals to @Rlays easier than dynamic optimization over the full input
in an optimal nonanticipative manner is a robust, if potentiallyiya) histories:(-) andb(-) in the underlying dynamic game.
pessimistic, treatment of their effects on the system. It shoyldsome common cases it is trivial; for examp&;z, a, b) =
be noted, however, that this treatment implicitly allows th?l(x)+f2(a:)a+f3(a:)b, which is the form taken in (7) below.
parameter values to vary discontinuously with time; it may be ao | ax-Friedrichs approximation to the Hamiltonian [42]
excessively pessimistic for time invariant or slowly varyingnsures stability. The spatial derivatiig,v(z, t) is computed
parameters. with a fifth order accurate weighted essentially non-oscillatory
approximation [43]. Time integration is accomplished with
I11. A COLLISION AVOIDANCE EXAMPLE a second or third order total variation diminishing explicit
In this section we briefly describe how to solve (4) complRunge-Kutta scheme [44]. For most target sktsimplicit sur-
tationally, and then apply our algorithm to a classical collisiofce functiong(z) for the terminal conditions are straightfor-
avoidance differential game. While the dynamics of this ganyéard to construct using intersection, union and set complement
are relatively simple, the results have been applied to tR8 basic shapes whose analytic implicit surface functions are
design of a collision alert system for high altitude air traffiknown, such as spheres, cylinders and hyperplanes. We apply

control. Additional examples can be found in [8], [9], [21]linear extrapolation away from zero along non-periodic edges
[39]. of the necessarily finite computational domain.

A. Implementing a Level Set Algorithm B. The Collision Avoidance Differential Game

The HJI PDE (4) is a nonlinear PDE that in many cases In this section we use the algorithms described above to de-
lacks a classical solution. It can be shown [10] under afermine reachability for a three dimensional kinematic model
propriate conditions for zero sum differential games thaff two adversarial vehicles: thaursuerwishes to get within a
there exists a suitable unique weak solution to (4) callertain distance of thevader In the dynamic game literature
the viscosity solution [12]. This solution is continuous anthis problem is calledhe game of two identical cargl5],
bounded but may develop kinks—places where the derivativasd the reachable set corresponds to the set within which the
become discontinuous—even with smooth terminal conditiopsirsuer can capture the evader. Our previous publications [3]—
g(x) and dynamicsf(x,a,b). A family of algorithms called [5] have called this problem théhree dimensional aircraft
level set methodbas been designed specifically to computeollision avoidance exampleMATLAB code to generate this
approximations to the viscosity solution for time-dependen¢achable set is available at [7].

HJI PDEs with continuous initial conditions and Hamiltonians Each vehicle is modeled as a simple kinematic point object
such as (4); for overviews of these methods, see [40], [41]with planar position and heading, fixed linear velocity and

To calculate backwards reachable sets, we have writteontrollable angular velocity.
state-of-the-art MTLAB and C++ implementations of high We say that @ollision has occurred if the two vehicles come
resolution level set methods. Source code for the formervisthin distancer of one another (also sometimes calletbss
available from [7]. We describe only the key features of thosd separatio). Our goal is to determine the set of states from
implementations here, but more details are available in [&hich the pursuer can cause a collision to occur. Translating
[21]. Note that these numerical schemes are not designedrtm reachability termsy is the set of all states where the two
guarantee overapproximation, but rather to compute the mushicles are within- units of one another, the evader is player
accurate approximation possible; the error may be of eithieangular velocity inputa), the pursuer is player Il (angular
sign. velocity input b), and the capture set i§(7). BecausegGy

We assume that the human modeler of the system odepends only on the relative positions of the vehicles, we can
provide a way to compute the optimum over inputsand simplify the system down to three dimensions by working in
b necessary to findd (z,p) for fixed 2 and p in (5). This relative coordinates: € R? x [0,27[. As shown in figure 2,
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Fig. 3. Left: target set (solid cylinder) and backwards reachable set (transparent) for the collision avoidance example in three dimensidhs-dr2the
grid. Right: backwards reachable set (solid) &#d2 analytically determined points on the reachable set's boundary (dots).

we fix the evader at the origin and facing along the positivalidate the correctness of our calculations for the parameters
x1 axis. Then the pursuer’s relative location and heading are =5
- Y

described by the flow field
Vg = Vp = D,

4 |7 —Vg + vy cOS T3 + azo A=B=[-1,41].
t=— 2| = vy sinzz — axy = f(z,a,b). (7) Figure 3 shows the target set, backwards reachable set, and
3 b—a some analytically determined points lying on its surface (an-
) S imations showing the growth of this set are available at [7],
The resulting Hamiltonian is [47]). Using a much larger set of points (approximately 240
000), we evaluated the accuracy of our reachable set algorithm.
H(z,p) = max min [p" f(z,a,b)], Figure 4 shows that we achieve better than first order accuracy
B . @) in average and root mean square norms, and nearly first
- P1Va + P1Up COS T3 + P2 SIN T3 order accuracy in maximum norm. The maximum error is
+ alpizs — paxy — ps| = Blps| ) approximately a grid cell, and the average error is less than
3% of a grid cell. We have achieved similar or better results
where the bounds on inputs atiec A = [—«,+a] andb € for a number of other examples in two and three dimensions;
B = [-0,40]. Since a collision can occur at any relativdor more details, see [21].
heading, the target s&f, depends only onc; and zo and While this system may seem simplistic, the dynamics and
includes any state within distaneeof the planar origin choice of parameters are flexible enough that it can be suc-
cessfully applied to detect potential conflicts in en route air
Go = {r € R3|z? + 23 < r?}, traffic control [1]; we summarize those results here. Given the
(9) monitoring accuracy in the current system, it has been shown
g(x) = Y% o} + a3 -, previously that kinematic equations are sufficiently predictive

of high altitude traffic (see [48] and references therein), which

for our HJI PDE’s terminal conditions (the bounded compumakes equation (7) an accurate enough model of the relative
tational domain ensures that thj$z) is bounded). We wish motion of two aircraft.
to determineG(7) in the limit 7 — oo, so we compute (4)  The main task of Air Traffic Controllers is to prevelosses
backward fromt = 0 until we find H (x, D,v) ~ 0. For the of separationto keep the aircraft separated by more than five
parameters considered below, this occurs beyord—2.6.  nautical miles. Two aircraft with potentially conflicting flight

If the vehicles are identicalvy = v, and A = B) then paths are modeled as two differential games in which each
it is possible using differential game theory to determine tharcraft is a threat to the other; consequently, in each game
optimal inputs for both pursuer and evader and thereby fimthe aircraft fulfills the role of pursuer (inp#) and one the
points lying on the surface of the reachable set. This game wate of evader (input). We useEnhanced Traffic Management
solved with the pursuer at the origin in [45]; we have recreat&ysten(ETMS) data [1] to extract the relevant values gy,
these original results, and then modified them to solve thg and the corresponding rangglsand B, which are aircraft
game with the evader at the origin [46] (it turns out that théependent. ETMS data also contains recorded flight plans for
two cases are not symmetric). We use these analytic resultaliaaircraft in the National Airspace System; in other words, for
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the same level of accuracy on a coarser (and hence computa-
tionally less expensive) grid, and provides information about
optimal control choices both inside and outside the reachable
set. Our implementation is based on level set methods, and its
accuracy and convergence have been demonstrated by a three
dimensional pursuit evasion example.

The primary weakness of this formulation of reachable
sets, and many others, is the exponential growth of memory
and computational cost as the system dimension increases.
One way to mitigate these costs is to project the reachable
first order set of a high dimensional system into a collection of lower
second order \ dimensional subspaces [49]. Any error introduced by the
] projection yields an overapproximation of the reachable set.
We are currently determining for what types of systems such
an overapproximation yields useful results.

We are extending our time-dependent HJl method in several
50 63 79 100 126 159 directions. Many problems of inter_e;t are mpdeled by hybrid

Grid Size N systems, and the general reachability algorithm for such sys-
_ , . _ tems [3] requires the introduction of state constraints to the
Fig. 4. Experimental convergence rates for the collision avoidance example. .. . .
Average (). root mean squarev) and maximum &) errors are shown. For continuous portion of the reachable set. We are also inves-
comparison the grid cell spacinyz (o) is included, as are lines equivalenttigating probabilistic definitions of reachability for stochastic
to first order and second order convergence rates. systems. Finally, we are examining how to use the results of
the time-dependent solution to synthesize provably safe control

. ) ) laws that avoid the reachable set.
each aircraft the successive radar measurements of its location.

We use a collection of precomputed reachable sets (run with
a variety of realistic parametets, v;, A and3) to check for
each pair of aircraft whether one is in the other’s reachableWe would like to thank Professors Ronald Fedkiw and
set. If this happens, we classify the situation as a conflict. Stanley Osher for extensive discussions about the details of
An example of a conflict is shown in Figure 5. In the firshumerical schemes for solving the Hamilton-Jacobi PDE. In
subplot, the aircraft flying from Anchorage to Los Angeles igddition, we would like to thank Professors John Lygeros,
treated as pursuer while the aircraft flying from Philadelphia C. Evans, Shankar Sastry and Alexander Kurzhanski for
to San Francisco is the evader. In the second subplot, the raligcussions about the previous and current time-dependent HJI
are reversed. In each subplot, slices of the reachable set {fymulations. Professors L. C. Evans and Doron Levy aided
the appropriate relative heading) are shown around the evadirwith some technical details in the proof of Theorem 2.
A conflict is detected, and based on the subsequent ETMS
data we can deduce that it was resolved by an altitude change REFERENCES
initiated by the Air Traffic Controller. _ _ _ _
Wi imatelv 1600 such examples with data fI’OI'I[]l] A. Bayen, S. Santhanam, |. Mitchell, and C. Tomlin, “A differential
€ ran apprQX|ma ely - u xamp Wi . - game formulation of alert levels in ETMS data for high altitude traffic,”
the Oakland Air Route Traffic Control Center, which is in  in Proceedings of the AIAA Conference on Guidance, Navigation and
charge of northern California and Nevada. We showed that Control Austin, TX, 2003, AIAA Paper 2003-5341. -
thod cauaht all potential conflicts but generated thre%] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
our me g_ p . _g specifications for hybrid systemsfutomatica vol. 35, no. 3, pp. 349—
false alarms, and is therefore a little conservative. We have thus 370, 1999.
proposed this method as an accurate technique for automatigh C. Tomiin, J. Lygeros, and S. Sastry, “A game theoretic approach to

L. e . . . . . controller design for hybrid systemdroceedings of the IEEEvol. 88,
conflict identification in en route high altitude traffic. no. 7, pp. 949-970, July 2000.

[4] 1. Mitchell and C. Tomlin, “Level set methods for computation in hybrid
systems,” inHybrid Systems: Computation and Contreler. Lecture
IV. CONCLUSIONS ANDFUTURE WORK Notes in Computer Science, B. Krogh and N. Lynch, Eds. Springer
Verlag, 2000, no. 1790, pp. 310-323.
We have presented an algorithm which can numericallys] I. Mitchell, A. Bayen, and C. J. Tomlin, “Validating a Hamilton-Jacobi

compute the backwards reachable set for a two player, nonlin- approximation to hybrid system reachable sets,"Hpbrid Systems:

. . . . . Computation and Contrplser. Lecture Notes in Computer Science,
ear differential game with a general target set. The algorithmis \ p p. Benedetto and A. Sangiovanni-Vincentelli, Eds. Springer

based on a formulation of reachability in terms of the viscosity ~Verlag, 2001, no. 2034, pp. 418-432. ' _
solution of a time-dependent Hamilton-Jacobi-Isaacs PDE, aré] S: Osher and J. A. Sethian, “Fronts propagating with curvature-

. . . L dependent speed: Algorithms based on Hamilton-Jacobi formulations,”
we have proven that the analytic solution of this equation is the  35,ma of Computational Physicsol. 79, pp. 12-49, 1988.

exact reachable set as defined by (3). Unlike related techniquigs [Online]. Available: http://www.cs.ubc.cammitchell/ToolboxLS

based on stationary HJI PDEs or viability theory, the solutior8] ! M. Mitchell, A toolbox of level set methods,” Department of
f the time-dependent HJlI PDE is continuous and defined Computer Science, University of British Columbia, Vancouver, BC,
0 ! p ' iInuou ! Canada, Tech. Rep. TR-2004-09, July 2004. [Online]. Available:

throughout the state space, so this formulation can achieve http:/iwww.cs.ubc.ca/mitchell/ToolboxLS/toolboxLS.pdf
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Fig. 5. Aircraft 1 (dash dotted), arriving at San Francisco Airport (SFO) from Philadelphia Airport; aircraft 2 (solid), en route from Ted Stevens Anchorage
Airport to Los Angeles Airport. Aircraft 1 is using the Modesto 2 arrival to SFO. Interpolation of the positions of both aircraft between the labels 2 and 3
shows that aircraft 2 is in th€(r) for aircraft 1. ATC avoids the conflict by commanding aircraft 1 to descend to 24,000ft (which initiates the descent into

SFO). For more details, see [1]. ETMS data courtesy of NASA Ames.
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A(s) 2 Ex(s;x,t,a(-),b()).
APPENDIX &5( ). &5( (-),6(-))
PROOF OF THETIME-DEPENDENTFORMULATION Then we can write
S ~
At the end of this section we prove Theorem 2. The E:(s) = €5(t) + de; ) d\
. . . f f d\ ’
proof depends on some results from the literature of viscosity Ut
solutions and d_lfferentlal games, and on the_ definition of a _ x+/ FEFN), a(X),b(N)B(A) dA,
new system which has an augmented set of inputs for player ¢
Il. and
§r(a(s))
A. Augmenting the Dynamics o(s) dé 4 (p)
In the proof, we will use a modified set of system dynamics =& () + /t dp dp,
in which we augment player II's inputs with the scalar a(s) . . (13)
. =x+ ,a(o ,b(o dp,
b € B0 2 16+ 1.0] — (011 | () is measurabl [ F(&5(0), alo" (9)), bl () dp
Define the augmented input for player Il as =z +/ F&r(a(N), a(X), b(A)b(A) dA,
t
b=1[b b] €Bx01], where the change of variables= o()\) after the second step

is justified in Lemma 6. From these two equations and the fact

and similarly define3, %(¢t) andI'(t). The differential game Flhatb(k) c0,1]

referred to in the remainder of this section will be played wit

dynamics i i [€r(a(s)) = &5(s)l
A

f(z,a,b) = bf(z,a,b), (10) /ﬂ FEreOa).000)

and its trajectories will be denoted y(s; z,t,a(-), b(-)). —Ji = [(&5(N),a(N),b(N) ) ~ 7
From (10), we see that player Il may choose to play the s (14)

game with normal dynamics by taking = 1, may choose g/ J(8s(o (W), a(A), b)) dA,
slowed dynamics withh €]0,1[, or may choose to freeze t = F(§7(A), a(A),b(N))
the dynamics entirely by taking = 0. Because the latter s

case proves important, we will call this additional scalar <K 1€ (a(A)) _gf()‘)H dA,



10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

where K is the Lipschitz constant for the flow fielfl Letting and no running cost. The goal of player | will be to maximize
this cost, while player Il will try to minimize it. Consequently,

Y(s) = /S 1€4(a(N) = &N dA, the value of our differential game will be
t
we see that)(t) = 0, ¢(s) > 0, andj(s) = ||f(o(s)) — v, t) = ﬁg%i)a(fgg(t) Cla,t,al),3lal())
£7(s)|l. Rewriting (14) in terms ofy we get the differential — infsup g(€5(02,ta(), 7al(4) (16)

inequality FEL(t) a(-)€A(t)

Wls) — Kls) <0, Lemma 7:The value functionv(x,t) of our game is the
whose only solution is)(s) = 0 [50]. Therefore;(c(s)) = viscosity solution of the Hamilton-Jacobi-Isaacs terminal value
7(s). m PDE

While more general than is required for the proof of

Theorem 2, the formal connection established by this lemma a7)

between the two systems makes it useful in its own right. For v(z,0) = g(),

the purposes of the theorem, we need only a straightforwg{@ere

corollary of Lemma 4. A (z,p) = maxwinp* f(z,a,5). (18)
Corollary 5: Using the definitions (12), the augmented sys- acA peh

tem’s trajectoryé (-) visits only a subset of the states visited Proof: This lemma is just a special case of Theorem 4.1
by the original system’s trajectorg,(-); specifically, those in [10]. u
visited in the time intervalt, o (s)].
The following short lemma justifies the change of variables. The Proof of Theorem 2
in (13), and its proof defines'.
Lemma 6:

o(s) .
/t F(&r(p),ala™(p)), b(a ' (p))) dp

= [ F(E o), atn) BB dx

Proof: Fof k = {1,2,3,...}, let b, be a sequence v €G(r) = v(z,1) <0, (19)

of smooth functions such thdi,(s) € [£,1+ 1] for all s v(z,t) <0 = z€G(r). (20)
and b, — b pointwise ask — oo (such a sequence can be
constructed). Define the smooth functions

We need one more intermediate result before proving The-
orem 2.

Lemma 8:Fort € [T, 0], the value functiorv(x,t) given
by (16) describes the reachable §gt) according to (6).

(15) Proof: We show that

Case 1:We will assume that € G(7) andv(z,¢) > 0 and
derive a contradiction. Consider first the implications of (16).

on(s) £ t+/ b (A) dA. v(z,t) = inf sup C(x,t a(-),5a](-)) >0,
¢ YET(t) a(-)eA(t)
Theno, — o uniformly ask — oo. Because of the bounds on — Je>0,v5 e D(t),
s and b, o is bounded and strictly monotonically increas- c ~
: ; t,a(- . 2¢>0 21
ing, and a smoothr, ! exists for eachk. Then by Helly's a(?gg(t) (2,1, a(-),Hal()) > 2¢ >0, (1)

Theorem [51, Theorem 8.2.1] there exists a monotonically

. S ) = Je > 0,Vy € I'(¢), Ja(-) € AL),
increasing right-continuous® and a subsequenaq;l such ‘ 7 (£),3a() ®)

that o7 = limy, 0" With smoothoy,, and o, " and C(x,t,a(-),7lal(-)) > e > 0.
Lipschitz continuousf, the change of variables = o, () Now consider the implications af € G(7). By (3) there is a
is rigorously defensible for each,: v € I'(t) such that for thei(-) from (21) andb(-) = ~[a](-)
Ohp (5) there existss € [¢,0] such that{;(s;z,t,a(-),b(-)) € Go.
/t F(&s(p),aloy (), by () dp By (2|), 9 (s;z,t,a(),b(-))) < 0. Choose freezing input
. signa
= [ #(E5 0, 00).a0) 50N, () d Mﬂ:?vmwemw
! - 0, forrels,0

By the Dominated Convergence Theorem [51, Theorem 1.6.9],
we can take the limit aé,, — oo inside the integral to arrive Combine thisb(-) with the b(-) chosen above to gé{(.>, an

at (15). B input which will generate a trajectory
B. The Differential Game and its Solution Ex(rya,t,al-),b(-) = §(ria,,4(),8()), forr e [t, sl
! E(ssx,tya(),b(+)), forr e [s,0].

We will work with a finite horizon differential game played
over time horizon[—T, 0] whose dynamics are governed byn particular,
the flow field (10). A trajectory in this game has a terminal s .
cost ff(o’ z,t, CL(~), b()) = ff(s; x,t, a’(')’ b())

Cla,t,a(),5()) = g(€5(0: 2, t,a(-), B(-)). — 96505, ,a(-),5()) = Cla,t,a(-),B()) < 0.
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A nonanticipative strategy fob(-) can be designed (with ymrpz

s
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ematics from Stanford University in 2002. After
spending a year as a postdoctoral researcher in the
Department of Electrical Engineering and Computer

additional constraints o) and b(-) = ~[a](-) is already ..
nonanticipative, sob(-) is nonanticipative and we have a ,
contradiction of (21). Therefore we have proved (19).
Case 2:We assume that(x,t) < 0 andz ¢ G(r) and
derive a contradiction. First, consider the implicationscaf
Science at the University of California, Berkeley and

G(7). Negating (3)
R the Department of Computer Science at Stanford,
Vy € I'(t),3a(-) € A(t),Vs € [t,0], 22 Dr. Mitchell joined the faculty in the Department
3 (3 .t a(~) [a]()) §é G (22) of Computer Science at the University of British Columbia as an Assistant
FASERS A v 0- Professor in August, 2003. He is the recipient of a 1999 SIAM/AAAS

; - - ; Mass Media Fellowship and a 1997-98 Stanford School of Engineering
Now consider any strategy € I(t) of player Il in the Graduate Fellowship. His research interests include scientific computing,

augmented system and extract from it the respanse’(t) of  hybrid systems, verification and robotics.
player Il in the original system by omitting the final component

of its output (elements df(¢) andI'(¢) accept the same input

function drawn from2((¢), but the former’s output function

includes the scalar freezing signal). Choadge) from (22)

which corresponds to that By Corollary 5, the set of states

visited by the augmented trajectory is a subset of the states

visited by the original trajectory, so in combination with (22

r(sia,t,a(-),~[al() & Go Vs € [t, 0]
= &(sia,t,a(-),ylal(-) & Go Vs € [t,0].
The composition ofy with r is a continuous function from
the compact intervdk, 0] to R, and so it achieves its extrema

By (2) and (23) we can conclude that there exists 0 such
that
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— Ve > 0,35 € D(t),
sup C(x,t,a(-),ﬁl[a](-)) <k¢
a(-)eA()
— Ve > 0,35 € T'(t), Va(-) € At),
C(SC, t, CL(‘), ;Ha]()) <e
Choosee = /2 to derive a contradiction of (24) and hencg
prove (20). ]
The proof of Theorem 2 is now straightforward.
Proof: From Lemma 7 we know that the value functio
v for the differential game (16) is the viscosity solution to th
HJI PDE (17). From Lemma 8 we know that the reachable <
is characterized by (6).
For the final step of the proof, start with from (18) and
H from (5). Then we see that
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= min[0, H(x, p)].

Consequently, the two HJlI PDEs (4) and (17) are equivalent,
and sov is also the solution of (4). [ |



