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This paper presents a new methodology for solving multi-player pursuit and evasion
games. The proposed control strategies are derived from direct differentiation of chosen
value (or level set) functions, instead of solving the associated Hamilton Jacobi Isaacs (HJI)
equations. The corresponding strategies offer a simple form of the control laws that can be
implemented on real-time control systems for autonomous vehicles. In order to guarantee
a minimum separation distance between players, a new method to compute a reachable set,
which only requires a set of ordinary differential equations, is developed. We also explore
different value functions which lead to different performance measures for some players. We
illustrate our approach on a three player pursuit and evasion game and present simulation
results.

I. Introduction

Coordination and control of multiple agents have received great attention over the last few years.1–5

Applications abound: formation flying, conflict resolution, optimum task allocation, and air-traffic
control, just to name a few.

Differential game theories have been studied for obtaining optimal solutions of such problems. Also,
advances in numerical methods for partial differential equations (PDEs) have opened an alternative route
to study these problems by numerically solving the associated Hamilton-Jocobi equations. Examples have
included various two-player games6–8 and the associated conflict resolution problem9 and multi-player games
(more than two).10–12 Control strategies presented in the above studies used the knowledge of the exact or
approximate solutions of associated HJ equations or of (assumed) opposing intents of some players, in order
to devise the corresponding control laws for the players.

While these approaches are mathematically elegant and powerful (a way of capturing the behavior of
entire groups of trajectories at once), they suffer from the curse of dimensionality. This not only limits their
applicability to low-dimensional problems, but also results in failure of real-time implementation (because of
computational complexity and storage). Alternatively, to mitigate these shortcomings, over-approximation
schemes have been studied by Mitchell and Tomlin,13 Stipanović, Hwang, Tomlin,14 and others,15–17 and
these approximations may be used for fast computations of control laws. Stipanović, Shankaran, and Tom-
lin18 also presented strategies for multi-player game derived from an approximate Hamilton Jacobi Isaacs
(HJI) equation by minimizing or maximizing the growth of chosen level-set functions.

In this paper, we present a solution methodology for multi-player (multi-pursuer) pursuit and evasion
game. Control strategies for the players are derived from certain value functions, rather than computing
control strategies from the solution of associated HJ equations. The elegance of this method is in that it
provides analytical expressions for the (non-optimal) strategies, accommodates nonlinear dynamics easily,
and can be extended to include more players and/or different value (or objective) functions. The simplified
form of the strategies also offers practical implementation for real-time systems.
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Figure 1. Relative coordinate system: origin is located at the center of the evader, and is oriented so that
evader has 0 degree heading angle with respect to the horizontal axis.

This paper is organized as follows. Section II defines the problem discussed in this paper. Section III
derives control strategies for players using chosen value functions and computes the corresponding reachable
set incorporated into the devised control strategies. Section IV presents simulation results and Section V
presents a control strategy for the pursuers derived from a different value function. Finally, Section VI
concludes this paper.

II. Problem Statement

This section defines some notions for pursuit-evasion game between n identical players. The game is
assumed to be of non-zero sum variety. Consider a planar n player game where aircraft dynamics are given
in the following relative coordinates (see Figure 1):

ẋi =
d

dt




x1i

x2i

x3i


 =



−v + v cosx3i + ux2i

v sin x3i − ux1i

di − u


 = f (xi, u, di) (1)

where (x1i, x2i) and x3i respectively represent a relative position and a relative heading angle of the ith
pursuer with respect the evader, v is the speed of the aircraft, and di and u are the control input of the ith
pursuer and the evader respectively. Magnitudes of the control input belong to the following norm bounded
sets

u ∈ {a ∈ R | ‖a‖ ≤ µ} , di ∈ {b ∈ R | ‖b‖ ≤ ν} (2)

where µ and ν are positive constants.
Instead of formulating the problem as the corresponding minmax optimization (the pursuer wants to

minimize the distance with the evader and the evader wants to maximize it), where the solution is associated
with the corresponding HJI equations, the objective of the game is to 1) find control strategies satisfying
the following constraint:

{
u∗ → J̇e > 0
d∗i → J̇pi < 0

(3)

subject to ‖u‖ ≤ µ, ‖di‖ ≤ ν
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where Je =
∑n

i=1 Jpi and Jpi = x1
2
i + x2

2
i are value functions associated with the evader and individual

pursuers respectively. This implies that the pursuer wants to keep decreasing its distance from the evader
and the evader wants to increase the sum of distances with all pursuers. However, the proposed evader’s
control strategy does not necessarily guarantee that the evader can avoid capture by any pursuer since the
evader’s constraint (J̇e > 0) can be easily satisfied: for example, J̇e =

∑n
i=1 J̇pi > 0 is still valid even with

J̇pi < 0, i = k + 1, . . . , n, if
∑k

i=1 J̇pi >
∑n

i=k+1 J̇pi. To prevent this from happening, we also would like to
2) compute a reachable set F such that if the evader applies the proposed control strategy on the boundary
of this set, ∂F , then none of pursuers can enter a given target set (in Figure 1, this target set is denoted
by the disk around the evader of radius l0).

III. A Game of Identical Vehicles

This section derives control strategies for both evader and pursuers using the value functions defined in
the previous section and computes the corresponding forward reachable set that the evader can use to keep
a minimum separation distance from pursuers.

A. Derivation of Control Strategy

The proposed control strategies are obtained by differentiating the value functions associated with each
player. The time derivative of Jpi associated with the ith pursuer is given by

J̇pi = 2ẋ1ix1i + 2ẋ2ix2i

= 2 (−v + v cosx3i + ux2i)x1i + 2 (v sin x3i − ux1i)x2i

= 2v
[
(cos x3i − 1)x1i + x2i sinx3i

]
(4)

However, the result is not an explicit function of control inputs, but we may keep differentiating the value
function until control inputs appear (as we do in feedback linearization or dynamic extension). As a result,
the second time derivative of Jpi is given by

J̈pi = 2v
{− sin x3iẋ3ix1i + (cos x3i − 1) ẋ1i + cos x3iẋ3ix2i + sin x3iẋ2i

}

= (x2i cosx3i − x1i sinx3i) di − x2iu + 2v (1− cosx3i) (5)

Similarly, the second time derivative of the evader’s value function Je is given by

J̈e =
n∑

i=1

J̈pi

= −u

n∑

i=1

x2i +
n∑

i=1

{
(x2i cos x3i − x1i sinx3i) di + 2v (1− cosx3i)

}
(6)

Using (5) and (6), we can reconstruct control strategies to satisfy the following minmax problem:

d∗i → min
‖di‖≤ν

J̈pi (7)

u∗ → max
‖u‖≤µ

J̈e = max
‖u‖≤µ

(
n∑

i=1

min
‖di‖≤ν

J̈pi

)
(8)

and the corresponding solution is given by

d∗i = −sign
(
x2i cos x3i − x1i sinx3i

)
ν (9)

u∗ = −sign

(
n∑

i=1

x2i

)
µ (10)

The above control strategies do not necessarily imply that the original constraint (3) is satisfied through-
out the game, since d∗i and u∗ are bounded and the sign of J̇pi and J̇e are dependent upon initial values of
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(a) A plot of J̇(0) at x3(0) = 130 degrees. (b) A plot of J̇(0) at x3(0) = 0 degrees. (c) A plot of usable part at a given
x3(0) = 130 degrees.

Figure 2. A plot of J̇(0) over x1 and x2 axes at given relative heading angles, for two player game.

(a) A forward reachable set at x3 = 130 degrees. (b) A complete forward reachable set.

Figure 3. A plot of the forward reachable set for two player game.

J̇pi(0) and J̇e(0). In other words, the game is heavily dependent upon initial configurations since all players
are equally capable. For example, Figure 2 shows a plot of J̇(0)(= J̇e = J̇p) for a two player game, at a
given relative heading angle. Here, the evader is depicted at the origin, and two different cases of initial
configuration are displayed for a pursuer. As seen in Figure 2(a), depending on the relative position of
the pursuer with respect to the evader, either the pursuer (J̇(0) < 0) or the evader (J̇(0) > 0) may take
advantage of a given initial configuration. J̇(t) = 0 is only possible when the relative heading angle is zero,
meaning that neither the pursuer nor the evader can change their relative distance. That is, the game reaches
the steady state.

Therefore, in order to guarantee that the evader can maintain a minimum distance from the pursuers
even at initial configurations of J̇e(0) < 0, we need to find a reachable space which partitions “capture” from
“evade”. This is discussed in the next section.

B. Computing the Reachable Set for Continuous Dynamics

This section, for simplicity, starts with a two player game to explain how to compute a forward reachable set
and presents the idea of “reflection” of the reachable set. The corresponding results can be easily extended
to multi-player games.

Consider a case in which the pursuer can be on any location of the circle defining the boundary of the
target set at a given initial relative heading angle (see Figure 2(c)). The pursuer on the semi-circle defined
by J̇(0) < 0 can move closer to the evader. Therefore this section becomes a usable part for the reachable
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(a) Computation of the forward reach-
able set for each player.

(b) Reflection of the terminal distance. (c) Computation of the forward reach-
able set with a new usable part.

Figure 4. Snap shots of the reflection iteration of the forward reachable set at given initial conditions of
x31 = 110 and x32 = −140 degrees.

set computation. The corresponding forward reachable set F is given by propagating the dynamics forward
in time:

F =

{
(x1, x2)

∣∣∣∣∣
∫ t|J̇(x)=0

t=0

f(x, u∗, d∗)dt, ∀ (x1, x2) ∈ G0

}
(11)

where G0 is the usable part:
G0 =

{
(x, y)

∣∣∣J̇(x, y) < 0
}

(12)

and d∗, u∗ are defined in (9) and (10). The result is shown in Figure 3(a). This reachable set is such that
if the game starts at the given initial condition of (x10 , x20 , 130o) of Figure 2(c), the separation distance

between the players is guaranteed to be l∗ =
√

x2
10

+ x2
20
−

√
x2

1f
+ x2

2f
at the terminal condition (i.e., J̇ = 0)

if both players play (u∗, d∗). The complete reachable set is obtained over all possible relative heading angles,
0 ≤ x3 ≤ 2π, as seen in Figure 3(b).

The great advantage of this forward reachable set comes from the computational simplicity, which only
requires solving a set of ordinary differential equations (ODEs), and from the fact that the set is only needed
to determine initial conditions of the game (i.e., the set is no longer necessary once the evader applies its
control strategy, and thereafter, the corresponding minimum separation distance is guaranteed). However,
the drawback is that the minimum separation distance guaranteed is varied depending on initial conditions
of the game.

Therefore, in order to guarantee a fixed minimum separation distance independent of initial conditions,
we introduces a new concept: “reflection” of the forward reachable set. For simplicity, consider a three player
game (two pursuers and one evader). The reflection of the forward reachable set is computed as follows:

• step 1: Identify the usable part, G0 =
{

(x1, x2)
∣∣∣J̇p1 < 0 ∨ J̇p2 < 0

}
, compute the corresponding

reachable set for individual players (as we discussed earlier), and store ∆l1 and ∆l2 at the terminal
condition, (J̇p1 = 0) ∧ (J̇p2 = 0) (see Figure 4(a)):

∆li = l0 − l∗i (13)

where l0 is the chosen minimum separation distance and l∗i is the evader’s terminal separation distance
from the ith pursuer.

• step 2: Reflect max(∆l1,∆l2) outwards and recompute the usable part, G′0 =
l0 + max(∆l1, ∆l2)

l0
G0

(see Figure 4(b)).
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(a) A slice of the reflection of the forward reachable set at
given initial conditions of relative headings, x31 = 110 and
x32 = −140 degrees.

(b) The complete reflection of the forward reachable set.

Figure 5. Reflection of the Forward reachable set for a three player game.

(a) Scenario 1. (b) Scenario 2.

Figure 6. Trajectories of the players with the symmetry of the pursuer’s starting positions

• step 3: Compute the forward reachable set with the usable part G′0 obtained from step 2, and check
whether terminal distances, (l∗1, l

∗
2), with all pursuers satisfy the following condition, (l∗1 > l0)∧(l∗2 > l0).

If not, repeat the step 2 and 3 until this condition is satisfied (see Figure 4(c)).

The iteration process is guaranteed to converge since all players are assumed to be equally capable (the
more far away from the pursuers is the evader, the higher the chance the evader has to avoid capture). The
resulting reflection of the forward reachable set is shown in Figure 5(a), and the complete set in Figure 5(b).

IV. Simulation Results

To illustrate the strategies from the previous sections, we present four representative scenarios. Fig-
ure 6(a) shows the trajectories in real x-y axes for the situation in which the evader is initially at the origin
of the x-y axes and the pursuers are initially symmetrically placed with respect to the x axis. The pursuers
are also positioned intentionally on the boundary of the forward reachable set so that the evader can apply
its control strategy when the game begins. Due to the symmetry of the pursuer’s starting position as well
as their relative configuration against the evader (i.e., J̇p1(0) > 0 and J̇p1(0) > 0), the evader follows a
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straight-line path along the x axis which results in no capture by either of the pursuers at the end of the
game.

Figure 6(b) shows trajectories for a different (asymmetric) initial condition of the pursuers. The evader
may choose to turn toward either pursuer 1 (pink) or pursuer 2 (red). However, since pursuer 1 is on the
boundary of the corresponding forward reachable set (i.e., pursuer 1 is an immediate threat against the
evader), the evader turns left and follows a straight line to maintain relative distances from the pursuers.
None of the pursuers were able to capture the evader since the evader’s control strategy was applied when
either of the pursuers (pursuer 1 in this case) first touches the corresponding forward reachable set.

Figure 7 depicts the scenario that starts from a two player game and then is switched to a three player
game as the second pursuer is injected. Therefore the evader uses the control strategy and reachable set
derived from the two player game first, and then uses those derived from the three player game once it
detects the second pursuer.

Finally, Figure 8 depicts the scenario that starts from a two player game and then is switched to three
and four player games as the second and third pursuers are injected in sequence. When pursuer 3 (yellow)
comes in, it comes in with an initial condition so that the evader can no longer stay safe (pursuer 2 is already
inside the corresponding reachable set (green) as seen in Figure 8(a)). Therefore, the evader was eventually
captured by pursuer 2 as the game proceeded (see Figure 8(b) and 8(c)).

V. Pursuer’s Control Strategy with Different Value Function

Figure 9. Configuration of the pursuers
based on leading.

In the previous sections, the pursuer’s strategy was derived
from the simple value function of the relative distance with the
evader. Obviously, using a different value function would lead a
different performance measure.

In this section, we explore a different value function based on
leading or predicting the evader’s flight path using the current
measurement of the evader’s state. The idea is similar to a pro-
portional guidance used in target tracking. Based on this, how
much the pursuer can lead the evader is simply determined by
how far the pursuer is from the evader in every instant, as seen in
Figure 9. Therefore, the ith pursuer’s value function is modified
as

Jpi = (x1i − kili)
2 + x2

2
i (14)

where ki is a proportional constant and li is the relative distance
between the ith pursuer and the evader.

The resulting control strategy is similarly obtained as

d∗i = min
‖di‖≤ν

J̈pi

= −sign
(− kili sin x3i + x2i cosx3i − x1i sinx3i

)
ν (15)

The above control strategy is compared with one used in the previous simulations, and the result is
shown in Figure 10. Figure 10(a) shows trajectories of the players using the original control strategies
and Figure 10(b) using (15). The initial condition and the evader’s control strategy are the same for both
simulations. For evaluation of the pursuer’s control strategy, the reachable set was not used (i.e., all players
immediately apply their strategies when the game starts). It is seen that the pursuers with the new strategy
capture the evader eventually. The resulting motions can be described as follows. Pursuer 1 in the upper left
corner initially does not follow the evader since the evader’s projected capture point is on his way; instead
pursuer 1 loiters around this point. Meantime, pursuer 2 in the lower right corner follows the evader. As
the evader is getting closer to pursuer 1, the capture point projected by pursuer 1 aims toward the evader
itself. Therefore, after a certain time, pursuer 1 starts to follow the evader, and this forces the evader to take
another evasive motion which results in turning toward a direction where it might maintain relative distances
with the pursuers. However, by the time this happens, both pursuers take advantage of the situation and
eventually capture the evader.
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(a) Initial configuration of a two player
game.

(b) The evader takes an evasive action
when the pursuer touches the reachable
set.

(c) The second pursuer is injected and
the evader changes the mode to a three
player game to accommodate the second
one.

(d) The evader takes another evasive ac-
tion when the second pursuer touches
the corresponding reachable set.

(e) The evader follows a straight line to
maintain relative distances with the pur-
suers.

(f) Trajectories of the players during the
game.

Figure 7. Snap shots of two and three player games and the corresponding trajectories.

(a) Pursuer 2 (yellow) is injected from
Figure 7(d), and the resulting reachable
set (green) shows that the evader is no
longer is safe.

(b) The evader immediately takes an
evasive action, but pursuer 2 (top) is al-
ready inside the reachable set.

(c) The game continues, but capture is
occurred by pursuer 2.

Figure 8. Snap shots of two, three, and four player games.
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(a) (b)

Figure 10. Comparison of the pursuer’s control strategies derived from different value functions.

VI. Conclusion

This paper presents a new methodology for multi-player pursuit and evasion game. The proposed control
strategies (which are not necessarily optimal) were derived from the direct differentiation of chosen value
functions, ensuring safety yet allowing use for practical implementations on real-time control systems for
autonomous vehicles. In order to guarantee “minimum separation distance”, a fast computation of reachable
sets which partitions “safe” from “unsafe”, or “capture” from “evade” are developed. As opposed to Hamilton
Jacobi Isaacs equations whose solution is obtained by solving a set of partial differential equation, the
proposed algorithm requires a set of ordinary differential equations to obtain the corresponding solution.
Moreover, this solution is only needed to determine initial conditions for the evader to apply the chosen
control strategy: once the control is applied, it is guaranteed to be safe thereafter.

Since the strategies includes no explicit cooperation among pursuers (i.e., individual pursuers are trying
to minimize their value function only), we are currently studying a cooperative strategy where individual
pursuers take into account control strategies of others in order to maximize the collective benefits.
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