

Bulk CMOS Scaling to the End of the Roadmap

Prof. Tsu-Jae King Liu

Electrical Engineering and Computer Sciences Department University of California at Berkeley

June 13, 2012

Symposium on VLSI Circuits Short Course

The CMOS Power Crisis

- As transistor density has increased, the supply voltage (V_{DD}) has not decreased proportionately.
 - → Power density now constrains CMOS chip design!

Sources of Variability

- Sub-wavelength lithography:
 - Resolution enhancement techniques are costly and increase process sensitivity

Layout-dependent transistor performance:

courtesy Mike Rieger (Synopsys, Inc.)

- Process-induced stress is dependent on layout
- Random dopant fluctuations (RDF):
 - Atomistic effects become significant in nanoscale FETs

Impact of Misalignment

6-T SRAM Cell

PG

BLB

Actual layout w/ vertical misalignment (channel width variations due to active jogs)

Impact of Variability on SRAM

• V_{TH} mismatch results in reduced static noise margin. \rightarrow lowers cell yield, and limits V_{DD} scaling

Y. Tsukamoto (Renesas) et al., Proc. IEEE/ACM ICCAD, p. 398, 2005

→Immunity to short-channel effects (SCE) and narrow-width effects as well as RDF effects is needed to achieve high SRAM cell yield.

Double Patterning of Gate

6-T SRAM Cell

PG

BLB

Outline

- Review: MOSFET Basics
- The Road Behind: CMOS Technology Advancement
- The Narrow Road Ahead: Thin-Body MOSFETs
- An Alternative Route: Planar Bulk MOSFET Evolution
- Summary

MOSFET Operation: Gate Control

Schematic Cross Section Current flowing between Source and Drain Gate is controlled by the Gate voltage. gate oxide **Desired characteristics:** L_{eff} **High ON current** N+ P-N+ Low OFF current Source Drain log I_D **Electron Energy Band Profile** I_{ON} $n(E) \propto exp(-E/kT)$ ncreasing E \bigcirc Inverse slope is subthreshold swing, S I_{OFF} → Source increasing [mV/dec] GATE VOLTAGE V_{GS} √́тн Drain 0 V_{DD} distance

Improving I_{ON}/I_{OFF}

• The greater the capacitive coupling between Gate and channel, the better control the Gate has over the channel potential.

 \rightarrow higher I_{ON}/I_{OFF} for fixed V_{DD} , or lower V_{DD} to achieve target I_{ON}/I_{OFF}

→reduced short-channel effect and <u>d</u>rain-<u>i</u>nduced <u>b</u>arrier <u>l</u>owering:

MOSFET in ON State ($V_{GS} > V_{TH}$)

Effective Drive Current (I_{EFF})

M. H. Na et al., IEDM Technical Digest, pp. 121-124, 2002

CMOS inverter chain:

Outline

- Review: MOSFET Basics
- The Road Behind: CMOS Technology Advancement
- The Narrow Road Ahead: Thin-Body MOSFETs
- An Alternative Route: Planar Bulk MOSFET Evolution
- Summary

Optimizing Bulk MOSFET Performance

- To maximize I_{ON}, heavy doping near the surface of the channel region should be avoided.
 - \rightarrow Use a steep retrograde channel doping profile to suppress I_{OFF}

R.-H. Yan *et al., IEEE Trans. Electron Devices,* Vol. 39, pp. 1704-1710, 1992.

Fig. 6. The Pulse-Shaped Doped structure. (a) Cross-section view of the structure. (b) Vertical doping profile. The example used in Fig. 7 has $L_{\text{eff}} = 0.1 \ \mu\text{m}$, $t_{\text{ox}} = 40 \ \text{\AA}$, $t_{\text{Si}} = 250 \ \text{\AA}$, $t_j = 500 \ \text{\AA}$, and the doping profile shown in Fig. 6(b).

Structure:	Double-Gate FET	Ground-Plane FET
Scale length:	$\lambda = \sqrt{\frac{\varepsilon_{Si}}{2\varepsilon_{ox}} t_{Si} t_{ox}}$	$\lambda = \sqrt{\frac{\varepsilon_{Si}}{2\varepsilon_{ox}} \frac{t_{Si}t_{ox}}{1 + (\varepsilon_{Si}t_{ox} / \varepsilon_{ox}t_{Si})}}$

Drain

Reduced SCE with Body Biasing

- Forward body biasing reduces depletion depth and thereby improves MOSFET scalability
- Body effect factor is improved with steep retrograde doping:

CMOS Technology Scaling

XTEM images with the same scale

courtesy V. Moroz (Synopsys, Inc.)

T. Ghani *et al., IEDM* 2003

(after S. Tyagi et al., IEDM 2005)

K. Mistry *et al., IEDM* 2007

P. Packan *et al., IEDM* 2009

- Gate length has not scaled proportionately with device pitch (0.7x per generation) in recent generations.
 - Transistor performance has been boosted by other means.

MOSFET Performance Boosters

- Strained channel regions $\rightarrow \mu_{eff}^{\uparrow}$
- High-k gate dielectric and metal gate electrodes $\rightarrow C_{ox}^{\uparrow}$

Cross-sectional TEM views of Intel's 32nm CMOS devices

P. Packan et al., IEDM Technical Digest, pp. 659-662, 2009

Carrier Confinement w/o Doping

R. J. Mears et al. (Mears Technologies), 2012 Silicon Nanoelectronics Workshop (Paper 3-5)

 Inversion charge is confined to be near the surface, by inserting O partial mono-layers within the channel region

 \rightarrow relaxes requirement for thin t_{si}

Separation of carrier sub-bands reduces inter-band scattering
 → carrier mobility is enhanced

Outline

- Review: MOSFET Basics
- The Road Behind: CMOS Technology Advancement
- The Narrow Road Ahead: Thin-Body MOSFETs
- An Alternative Route: Planar Bulk MOSFET Evolution
- Summary

Why New Transistor Structures?

- Off-state leakage (I_{OFF}) must be suppressed as L_g is scaled down
 - allows for reductions in V_{TH} and hence V_{DD}
- Leakage occurs in the region away from the channel surface

Thin-Body MOSFETs

- I_{OFF} is suppressed by using an adequately thin body region.
 - Channel/body doping can be eliminated
 - \rightarrow higher drive current (I_{ON}) due to higher carrier mobility
 - → Reduced impact of random dopant fluctuations (RDF)

Relaxing the Body Thinness Requirement

Adapted from X. Sun et al., IEEE Electron Device Letters, Vol. 29, pp. 491-493, 2008

- Thinner BOX \rightarrow reduced drain-induced barrier lowering
- Reverse back biasing \rightarrow further reduction of SCE

Threshold Voltage Adjustment

• V_{TH} can be adjusted via substrate doping, for reduced σ_{VTH} :

- V_{TH} can be dynamically adjusted via back-biasing.
 - Reverse back biasing (to increase V_{TH}) is beneficial for lowering SCE.
 S. Mukhopadhyay *et al.*, *IEEE-EDL* 27, p. 284, 2006

UTBB SOI FET Technology Challenges

C. Fenouillet-Beranger et al., IEDM 2009

- Higher substrate cost
 - cannot be offset by simpler process, if thin-BOX and RBB are used
- Mobility enhancement
 - Embedded S/D stressors are not as effective as for bulk MOSFETs
 - Integration of advanced channel materials?
- System-on-chip (SoC) requirements
 - Implementation of multiple gate oxide thicknesses → STI recess → practical lower limit for T_{BOX}

Double-Gate "FinFET"

Double-Gate vs. Tri-Gate FET

- The Double-Gate FET does not require a highly selective gate etch, due to the protective dielectric hard mask.
- Additional gate fringing capacitance is less of an issue for the Tri-Gate FET, since the top fin surface contributes to current conduction in the ON state.

Independent Gate Operation

- The gate electrodes of a double-gate FET can be isolated by a masked etch, to allow for separate biasing. Drain
 - One gate is used for switching.
 - The other gate is used for V_{TH} control.

0.0 0.5 1.0

VGI(V)

Back-

Gated

FET

Gate2

VG2=-1.2 to 1.2

Gate1

FinFET Layout

 Layout is similar to that of conventional MOSFET, except that the channel width is quantized: P_{fin}

Gate Gate Source Source Source

Bulk-Si MOSFET

FinFET

The S/D fins can be merged by selective epitaxy:

M. Guillorn et al. (IBM), Symp. VLSI Technology 2008

Intel Corp.

Fin Design Considerations

- Fin Width
 - Determines SCE
- Fin Height
 - Limited by etch technology
 - Tradeoff: layout efficiency vs. design flexibility
- Fin Pitch
 - Determines layout area
 - Limits S/D implant tilt angle
 - Tradeoff: performance vs. layout efficiency

Impact of Fin Layout Orientation

L. Chang et al. (IBM), SISPAD 2004

- If the fin is oriented || or \perp to the wafer flat, the channel surfaces lie along (110) planes.
 - Lower electron mobility
 - Higher hole mobility
- If the fin is oriented 45° to the wafer flat, the channel surfaces lie along (100) planes.

Bulk FinFET

- FinFETs can be made on bulk-Si wafers
 - ✓ lower cost
 - ✓ improved thermal conduction
 - with super-steep retrograde well (SSRW) or "punchthrough stopper" at the base of the fins
- 90 nm L_g FinFETs demonstrated
 - W_{fin} = 80 nm
 H_{fin} = 100 nm
 - DIBL = 25 mV

C.-H. Lee et al. (Samsung), Symposium on VLSI Technology Digest, pp. 130-131, 2004

Bulk vs. SOI FinFET

Item	Comment	Bulk FINFET (compared to SOI FinFET)
Density	Well Contact	-
Parasitic Cap	Impact of PTS	-
Performance/ Variability	Performance tradeoff to overcome variability	
Leakage & HVT capability	Impact of PTS implant in bulk FIN	-
Non FIN structure compatibility (passives, etc)		+
s/d stressor	eSiGe, eSiC	++
Gate stressor, liner stressor		Similar
Channel stressor	SiGe pFET; SSOI Si nFET, III- V nFET	+/-
SRAM Vt Variation		

22nm FinFETs

C.C. Wu et al. (TSMC), IEEE International Electron Devices Meeting, 2010

FinFET vs. UTBB SOI MOSFET

Cross-sectional TEM views of 25 nm UTB SOI devices

K. Cheng et al. (IBM), Symposium on VLSI Technology Digest, pp. 128-129, 2011

	20nm ETSOI	22nm Bulk finFET*
L _G (nm)	22	> 25
<i>Pitch</i> (nm)	80-100	100
<i>I</i> _{OFF} (nA/ μm)	1	1
NFET <i>I</i> on (μΑ/μm)	920	960
PFET <i>I</i> _{on} (μΑ/μm)	880	850
B. Doris (IBM), 2011 IEEE International SOI Conference		*C.C. Wu <i>et al.</i> (TSMC) <i>, IEDM</i> 2010

Remaining FinFET Challenges

- V_{TH} adjustment
 - **Requires gate work-function (WF) or L_{eff} tuning**
 - Dynamic V_{TH} control is not possible for high-aspect-ratio multi-fin devices

- Fringing capacitance between gate and top/bottom of S/D
 - Mitigated by minimizing fin pitch and using via-contacted, merged S/D M. Guillorn, Symp. VLSI Technology 2008
- Parasitic resistance
 - Uniform S/D doping is difficult to achieve with conventional implantation H. Kawasaki, IEDM 2008
- Variability
 - Performance is very sensitive to fin width
 - WF variation dominant for undoped channel T. Matsukawa, Symp. VLSI Technology 2008

Impact of RDF on FinFETs

V. Varadarajan et al., Proc. IEEE Silicon Nanoelectronics Workshop, pp. 137-138, 2006

- Channel/body doping can be eliminated in thin-body FETs such as the double-gate FinFET, to mitigate RDF effects.
- However, due to source/drain doping, a trade-off exists between performance & RDF tolerance for L_g < 10nm:

Outline

- Review: MOSFET Basics
- The Road Behind: CMOS Technology Advancement
- The Narrow Road Ahead: Thin-Body MOSFETs
- An Alternative Route: Planar Bulk MOSFET Evolution
- Summary

Quasi-Planar (QP) Bulk MOSFET

M. Kito et al. (Toshiba Corp.), 2005 Symp. VLSI Technology

- The quasi-planar bulk FET structure is easily achieved by slightly recessing the isolation oxide, or by selective epitaxial growth, prior to gate-stack formation
 - Retrograde doping helps to suppress
 SCE, so that W_{si} can be greater L_g
 - Body bias effect can be retained
- Superior electrostatic integrity is achieved with quasi-planar structure →reduced impact of process-induced
 - reduced impact of process-induc variations
 - \rightarrow facilitates voltage scaling

Measured I-V Characteristics

FinFET / MuGFET

Quasi-Planar 28nm CMOS Technology

C. Shin et al., 2010 ESSDERC

Experiment performed at UMC in early 28nm CMOS technology

- Individual logic transistors and 6T-SRAM arrays fabricated
 - ~2500 cell per device-under-test (DUT)
 - Dual-stress liners for performance enhancement

CMOS front-end-of-line steps

PKT dose split: Standard or Light

Measured QP Bulk CMOS Results

C. Shin et al., 2010 ESSDERC

- Quasi-planar I_{ON} is higher, for comparable I_{OFF} -2x increase for NMOS, 4x increase for PMOS
- Quasi-planar V_{TH} variation is lower 39

Body Bias Effect and Compact Model

C. Shin et al., 2010 ESSDERC

• The standard bulk MOSFET compact model can well predict quasi-planar MOSFET performance -- including body bias effect

NMOS

<u>PMOS</u>

Bulk vs. SOI Multi-Gate FET Designs

X. Sun et al., IEEE Electron Device Letters Vol. 29, pp. 491-493, 2008

Thin/narrow body requirement is relaxed with retrograde doping
 →The bulk MOSFET structure achieves better layout efficiency!

Simulated Impact of H_{STRIPE} Variation

3-D device simulation results, to be published by X. Sun et al.

 $L_{\rm G}$ = 20nm, EOT = 0.9nm, $W_{\rm STRIPE}$ = 20nm

• If t_{si} is fixed, V_T is not sensitive to H_{STRIPE} variation.

Performance Comparison with FinFET

- 3-D device simulations were performed for MOSFETs designed to achieve minimum intrinsic delay at a given *I*_{OFF} specification:
 - For L_G=25nm, I_{OFF}=8nA/μm
 - For L_G=20nm, I_{OFF}=18nA/μm

Xin Sun Ph.D. thesis, UC Berkeley, 2010

V_{TH} Adjustment Approaches

C. Shin et al., IEEE 2008 Silicon Nanoelectronics Workshop

- V_{TH} of a quasi-planar bulk MOSFET can be adjusted by tuning either the dose (N_{peak}) or the depth (t_{si}) of the retrograde doping.
 200 atomistic simulations were run for each nominal design.
- V_{TH} adjustment via t_{si} tuning provides for less variation, and eliminates the trade-off with short-channel control.

Segmented-Channel MOSFET (SegFET)

- The channel is digitized into <u>stripes of equal width</u>, isolated by <u>very shallow trench isolation</u> (VSTI) oxide
 - The VSTI oxide is deeper than the source/drain extensions.
 - Device width is adjusted by adjusting the number of stripes.
 - Each stripe is a (quasi-planar) bulk MOSFET.
- The deep source/drain regions remain contiguous.

T.-J. King Liu and L. Chang, "Transistor Scaling to the Limit," in Into the Nano Era, H. Huff ed. (Springer), 2008.

Segmented-Channel MOSFET Fabrication

First Demonstration of SegFET

B. Ho et al., International Semiconductor Device Research Conference 2012

Impact of Channel Width on Strain Profile

Capping-layer-induced strain along the channel

Contact etch stop liner is assumed to be a 30nmthick silicon nitride with 2GPa tensile stress

- SegFET parameters: $W_{\text{STRIPE}} = 20$ nm $W_{\text{SPACING}} = 20$ nm $H_{\text{STRIPE}} = 10$ nm
- $L_{\rm G} = 20 \rm{nm}$
- EOT = 0.9nm
- $T_{\text{GATE}} = 40$ nm
- $L_{\text{SPACER}} = 20 \text{nm}$
- More stress is induced in SegFET → More mobility enhancement
- Reduced variation with $W_{\rm eff}$ for SegFET \rightarrow Reduced $\mu_{\rm eff}$ variation

Xin Sun Ph.D. thesis, UC Berkeley, 2010

Si_{1-x}Ge_x P-Channel SegFET

B. Ho et al., Symp. VLSI Technology 2012 (Paper 19.4)

Layout Width Dependence

B. Ho et al., Symp. VLSI Technology 2012

• SegFETs show dramatically reduced narrow width effects.

Outline

- Review: MOSFET Basics
- The Road Behind: CMOS Technology Advancement
- The Narrow Road Ahead: Thin-Body MOSFETs
- An Alternative Route: Planar Bulk MOSFET Evolution
- Summary

MOSFET Evolution

Summary

- Power density and variability now limit transistor scaling.
 →Designs which achieve improved gate control are needed!
- Thin-body MOSFET solutions are *revolutionary*, and introduce challenges for design and/or manufacturing.
- Quasi-planar bulk MOSFET (SegFET) technology offers an evolutionary (low-cost) pathway to lower V_{DD} and σ_{VTH} .
 - utilizes conventional (established) IC fabrication techniques
 - is compatible with all technologies developed for bulk CMOS
- Segmented-channel designs will be adopted at ≤22 nm
 for lower power consumption and/or improved performance to enable bulk CMOS technology scaling to the end.

SegFET at a Glance

- SegFET is a proven transistor design based on segmenting only the channel region of a standard planar MOSFET.
- Not a FinFET: nearly planar, *i.e.* no high-aspect-ratio fins
 - Uses same retrograde channel doping as a planar MOSFET to suppress the short-channel effect; allows body biasing to be used.
- Improves CMOS power *vs.* performance at present node; is superior to thin-body MOSFET structures for future nodes.
- Easiest and highest-performance approach to extend Moore's Law to the end of the technology roadmap (sub-10 nm CMOS)
- Inexpensive barrier to adoption
 - Requires one additional mask which can be used for multiple designs
 - Uses existing device footprints and EDA tools
 - Requires no process-tool changes or new materials

Acknowledgments

• Collaborators:

- X. Sun (now with IBM Microelectronics), C. Shin (now with U. Seoul), B. Ho (UCB)
- V. Moroz and Q. Lu (Synopsys)
- M. Tomoyasu, Y. Akasaka, K. Maekawa, T. Sako (TEL)
- C.-P. Chang, S. Kuppurao, Y. Kim, S. Chopra, V. Tran, B. Wood (Applied Materials)
- C. H. Tsai, S. H. Tsai, C. F. Chang, Y. M. Tseng, R. Liao, R. M. Huang,
 P. W. Liu, C. T. Tsai, C. W. Liang (UMC)
- B.-Y. Nguyen, C. Mazure, O. Bonnin (Soitec)
- Funding/Support:
 - Synopsys, Inc., Tokyo Electron Ltd., Applied Materials
 - United Microelectronics Corporation
 - Semiconductor Research Corporation