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6.8 -
—-  CAVITY PERTURBATIONS

In practical applications cavity resonators are often modified by making small
changes in their shape, or by the introduction of small pieces of dielectric or metal-
lic materials. For example, the resonant frequency of a cavity can be easily tuned with a
small screw (dielectric or metallic) that enters the cavity volume, or by changing the size
of the cavity with a movable wall. Another application involves the determination of
dielectric constant by measuring the shift in resonant frequency when a small dielectric
sample is introduced into the cavity.

In some cases, the effect of such perturbations on the cavity performance can be
calculated exactly, but often approximations must be made. One useful technique for
doing this is the perturbational method, which assumes that the actual fields of a cavity
with a small shape or material perturbation are not greatly different from those of the
unperturbed cavity. Thus, this technique is similar in concept to the perturbational
method introduced in Section 2.7 for treating loss in good conductors, where it was
assumed that there was not a significant difference between the fields of a component
with good conductors and one with perfect conductors.

In this section we will derive expressions for the approximate change in resonant
frequency when a cavity is perturbed by small changes in the material filling the cavity,
or by small changes in its shape.

Material Perturbations

Figure 6.25 shows a cavity perturbed by a change in the permittivity (Ae), or per-
meability (Aw), of all or part of the material filling the cavity. If Ey, Hy are the fields
of the original cavity, and E.H are the fields of the perturbed cavity, then Maxwell’s
curl equations can be written for the two cases as

vV x E() = —.}'wo,uHo. 6.97a
¥V x H() = jwer_'(). 6.97b
V x E=—juwu+ Ap)H. 6.98a
Y x H = ju(e + Ao)E. 6.98b
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FIGURE 6.25 A resonant cavity perturbed by a change in the permittivity or permeability of

the material in the cavity. (a) Original cavity. (b) Perturbed cavity.
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here wy is the resonant frequency of the original cavity and w is the resonant frequency
of the perturbed cavity.

Now multiply the conjugate of (6.97a) by & and multiply (6.98b) by £} to get
H -V xE; = jwopH - H},
E} -V x H = juw(e + Ae)E} - E.
ubtractin_g the_se two e:quations and using the vector identity (B.8) that V - (Ax B) =
"VxA—-A-V x B gives

V(Ef x H) = jwopH - HY - ju(e + AOE; - E 6.99a
}imilarly, we multiply the conjugate of (6.97b) by E and multiply (6.98a) by H; to get
1 E-Vx B = —juyeEs - E,
Hy -V x E=—ju(u+AwH; - H.
}Abtracting these two equations and using vector identity (B.8) gives
\ V(B x Hy) = —jw(u + ApH; - H + jwoeE} - E. 6.99b

ow add (6.99a) and (6.99b), integrate over the volume Vj, and use the divergence
eorem to obtain

V- (Ey x H+ E x H)dv = (B xH+ExH}) -ds=0
Vo So

= j/ {lwoe — w(e + ADIE] - E + [wop — wlp + AwIHS - Hydv,  6.100
Vo

w—wy — [y, (AE-E; + AuH - Hg)dv

= — — . 6.101
w f% (EE-ES +uH’Hg)dv )

|
|
rere the surface integral is zero because 7 x £ = 0 on So. Rewriting gives

This is an exact equation for the change in resonant frequency due to material
rbations, but is not in a very usable form since we generally do not know E and

, the exact fields in the perturbed cavity. But, if we assume that Ae and Ay are small,
n we can approximate the perturbed fields £, A by the original fields £y, Hy, and w in
denominator of (6.101) by wy, to give the fractional change in resonant frequency as

W — wo - - fvo (AGIEO{Z + A/'L‘HO‘Z) dv
wo fVo (€| Ep|? + | Hol?) dv

6.102

This result shows that any increase in € or { at any point in the cavity will decrease
resonant frequency. The reader may also observe that the terms in (6.102) can be
pted to the stored electric and magnetic energies in the original and perturbed cavities,

that the decrease in resonant frequency can be related to the increase in stored energy
e perturbed cavity.




EXAMPLE 6.7 Material Perturbation of a Rectangular Cavity

A rectangular cavity operating in the TEjq; mode is perturbed by the insertion
of a thin dielectric slab into the bottom of the cavity, as shown in Figure 6.26.
Use the perturbational result of (6.102) to derive an expression for the change
in resonant frequency. .

Solution
From (6.42a—), the fields for the unperturbed TE;o cavity mode can be writ-
ten as
Tz
d ?
_iA
H, = Z]TE sin%cos%,

. T .
E, = Asin —sin
a

jTA L . TZ
= —— cos — sin —-.
kna a d

z

In the numerator of (6.102), Ae = (¢, — 1)eg for 0 < y < ¢, and zero elsewhere.
The integral can then be evaluated as

a t d
/ (Ae| Eo? + Ap|Ho[Hdv = (6, — 1)60/ / / |Ey|*dz dy dz
|4 =0 Jy=0J z=0
(€ — 1)egA%atd
—_—

The denominator of (6.102) is proportional to the total energy in the unperturbed
cavity, which was evaluated in (6.43), thus,

/ (€| Eo[* + p| Ho[)dv = @AZ.
\%

Then (6.102) gives the fractional change (decrease) in resonant frequency as

w—wg —(e— i

- 2 O

wo

FIGURE 6.26 A rectangular cavity perturbed by a thin dielectric slab.
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Now add (6.105a) and (6.105b), integrate over the volume V/, and use the divergen
theorem to obtain

/V-(EXH5‘+E5 xH)duzjf(ExFIngEg x H)-ds
v S
:j{E;; < A - d5 = —j(w—wo)/(eE-E}+uH-FI§)dv, 6.10
S \%

since A x E=0on S.
Since the perturbed surface S = Sp — AS, we can write

ngxI?-dszj(E{;xH-dg—f ngﬁ.dsz_jé By x - ds,
S So AS AS

because A X Fy = 0 on Sy. Using this result in (6.106) gives
B —j $ag B x H - d5
fV(eE . E(’)" +uH - ffg)dv’ .
which is an exact expression for the new resonant frequency, but not a very usable ond
since we generally do not initially know E, H, or w. If we assume AS is small, and

approximate E, A by the unperturbed values of Ey, Ho, then the numerator of (6.10
can be reduced as follows: ‘

}( B xﬁ.dg:f B x By ds = —ij/ €lBo — ulHofDdv,  6.108
AS AS AV

w — Wy 6.107

where the last identity follows from conservation of power, as derived from the conjugate
of (1.87) with o, J;, and M, set to zero. Using this result in (6.107) gives an expression
for the fractional change in resonant frequency as

w — Wy -~ fvo(uu_{()lz - 61E0‘2)dv
wo [y (ulHol? + €| Eo[Hdv’

where we have also assumed that the denominator of (6.107), which represents the
total energy stored in the perturbed cavity, is approximately the same as that for the
unperturbed cavity. -

Equation (6.109) can be written in terms of stored energies as follows:

w — Wwo :AWm—AWe, 6.110

wo W +We
where AW,,, and AW, are the changes in the stored magnetic energy and electric energy,
respectively, after the shape perturbation, and W,,, + W, is the total stored energy in the
cavity. These results show that the resonant frequency may either increase or decrease,
depending on where the perturbation is located and whether it increases or decreases the

cavity volume.

6.109

EXAMPLE 6.8 Shape Perturbation of a Rectangular Cavity

A thin screw of radius r extends a distance £ through the center of the top wall
of a rectangular cavity operating in the TE;o; mode, as shown in Figure 6.28.
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GURE 6.28 A rectangular cavity perturbed by a tuning post in the center of the top wall.

If the cavity is air-filled, use (6.109) to derive an expression for the change in
resonant frequency from the unperturbed cavity.

Solution
From (6.42a—), the fields for the unperturbed TE;o: cavity can be written as

. T | 7z
E, = Asin — sin =
a d

—JA | 7z 2
H, = J sin kg cos W—,
TE a d
A T | Wz
H, = Lcos — sin —-.
kna a d

Now if the screw is thin, we can assume that the fields are constant over the
cross-section of the screw and can be represented by the fields at z = g /2,2 =
d/2:

Then the numerator of (6.109) can be evaluated as

/ (| Ho? — EIE'OIZ)dU = —¢ A’dy = —eoAZAV,
AV AV

where AV = 7r€r§ is the volume of the screw. The denominator of (6.109) is,
from (6.43),

I/()E()Az
2 3

2
/ (1| Hol* + €| Eg|P)dv = abdeoA” =
v 2
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where Vo = abd is the volume of the unperturbed cavity. Then (6.109) gives
w—wy —2€7rr§ —2AV

~ abd Vo

which indicates a lowering of the resonant frequency.

Wo
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PROBLEMS

6.1

6.2

6.3

6.4

Consider the loaded parallel resonant RLC circuit shown below. Compute the resonant frequency,
unloaded @), and loaded Q.

400 Q 40nH == 30pF 800 Q

Resonator Load

Derive an expression for the @ of a transmission line resonator consisting of a short-circuited
transmission line 1) long.

A transmission line resonator is fabricated from a A/4 length of open-circuited line. Find the Q
of this resonator if the complex propagation constant of the line is o + j8.

Consider the resonator shown below, consisting of a A/2 length of lossless transmission line shorted
at both ends. At an arbitrary point z on the line, compute the impedances Z; and Zg seen looking
to the left and to the right, and show that Z; = Z%. (This condition holds true for any lossless
resonator and is the basis for the transverse resonance technique discussed in Section 3.9.)
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