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Problem Number 1 ) Perturbational Frequency Shifts
Suppose a small variation δω produces variations δE and δH in fields.
a) Starting from Maxwell’s equations, show:

∫

S

(E × (δH)− (δE) ×H) · dS = jδω

∫

V

(µH2 − ǫE2)dV

This is taken from RWVD problem 11.11c 3’rd Ed . A development of this can be extracted
from ”Waves and Fields in Optoelectronics”, H. A. Haus Prentice Hall page 309
This can be used to determine the frequency shift of a cavity resonance when the surface
losses due to penetration of the fields in the walls is small but important.

Problem Number 2 ) Idealized Nanocavity-radiator Excited by a Current Source
This can be modelled as a transmission line problem in the following manner:

The current source could represent a localized tunneling contribution (junction) ( i(z, t) =
Igδ(z − z′)ej(ωt)). An interesting supposition is that this is optically excited and ω is an
optical frequency. (The width has to be of the order of 1 - 2 nm at this point) At z = 0
there is a high reflectivity termination ( conductor). At z = a the junction is ”open” as
represented by a terminating impedance. This would be due to radiation from the current
excited on the z = a surface for ( x < −d/2 and x > d/2). Having this reactive is of course
an approximation.
The mode we wish to consider is the coupled surface electronic polariton mode for the cavity.
This has an Ex in the x-direction of the form Ex = Ẽcosh(γx)exp(j[ωt− kz]) for |x| < d/2
and Ex = Ẽ ′exp[j(ωt − kz) − γ′(|x| − d/2)] for |x| > d/2. There is also an Ez but no Hz.
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For low frequencies γ −− > ∞ and γ′ −− > skin depth which approaches zero when the
conductivity goes to ∞. The z-field also goes to zero in this limit. Thus this is the idealized
TEM mode in the low frequency limit for high conductivity.
Thus working through the low frequency case (e.m. limit) forms a useful basis for under-
standing the strong polariton limit.

Define V (z, t) = −
∫ +d/2

−d/2
Exdx and current in the z-direction I(z, t) ( z-directed

∫

(polarizationcurrent)dx

crossing 1 nm in the y-direction). Then a transmission line analog can be used.
a) What are L and C for this case?
b) Since I(z,t) is a delta function this is a Green’s function problem. Obtain two solutions
for Ṽ (z) when the termination is lossles ( i.e. ZL = jX)
(ans.I

V = Σ∞

n=1

jωLĨgsin(knz<)sin(knz>)

(λn − ko
2)(a

2
− sin(2kna)

4kn
)

(Hint : use and eigenmode approach)
where λn = k2

n and tankna = −knX/ωL )

(ans II

V = jZcIg
sinkoz<[XYccosko(a− z>) + sinko(a− z>)]

sinkoa+XYccoskoa

)
(Ref: Field Theory of guided waves Collin second ed IEEE press page 163)
b) Why is the second solution of a) the one of primary interest for the higher frequency
polariton mode when kna is small?
c) Can you extend this solution ( the second one ) to include loss ( jX −−− > jX + Rrad

) where it is implied that the resistance come from radiation.
d) The most interesting case come when the full polariton character of the mode is displayed.
What is the Green’s function in this case?
e) Finally, the load impedance arises from the single surface mode in the ±x direction at z=
a. For a half wave-length antenna (planar) antenna can you deduce ZL by applying what we



did in lecture?

Problem three) Bi-conical antenna
a) Find the solutions for the field of a TEM wave with components Eθ Hφ for a symmetrical
biconical antenna line with circular cross-sections. Integrate Hφ around one conductor to
find the radial current on one conductor and integrate Eθ from one conductor to the other

to obtain the potential difference V. Show that V/I = ZC = 1
π

√

µo

ǫo
ln(cot(θ/2)) where θ is

the apex angle.
b) The solution in a) of course has Er = 0. Can you generalize this solution to take the
finite field penetration in the metal conical surfaces into account?

Problem 4) Radiation Theory
a) Show that the scalar and vector potentials up to second order in the magnitude of the k

are given by

φ =
eiωt−ikr

r

{

ik(1− i

kr
)r̂ ·P− k2

2

[

r̂ ·Q · r̂ − i

kr
(3r̂ ·Q · r̂ −Qs

]}

A =
eiωt−ikr

r

{

ikP− ik(1− i

kr
)r̂ ×M− k2

2
(1− i

kr
)(r̂ ·Q

}

where P =
∫

ρrdV , Q =
∫

ρrrdV and M = 1
2

∫

r × I and Qs =
∫

ρr2dV I and ρ being
current and charge density.
b) Show that for atomic (or other ) transitions in which ∆m = 1, where m is the m in the
associated L polynomials that:

RePeiωt = 1/
√
2P (x̂ cos(ωt)∓ ŷ sin(ωt))

(Rather than Jackson a good reference is The Theory of Atomic Spectra by Condon and
Shortley by Cambridge Press)


