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Abstract—In this paper, we present a method for learning
the reward function for humanoid locomotion from motion-
captured demonstrations of human running. We show how an
approximate, local inverse optimal control algorithm can be
used to learn the reward function for this high dimensional
domain, and demonstrate how trajectory optimization can then
be used to recreate dynamic, naturalistic running behaviors in
new environments. Results are presented in simulation on a 29-
DoF humanoid model, and include running on flat ground, rough
terrain, and under strong lateral perturbation.

I. INTRODUCTION

Bipedal locomotion is an essential ingredient for enabling
humanoid robots to navigate around their environment [6].
Legged locomotion is also an important problem in computer
graphics, where the goal is to animate lifelike virtual characters
[11]. Previous successful locomotion methods often focus on
hand-crafting a set of control laws that, often with the aid
of optimization, can produce robust, efficient, and naturalistic
locomotion behaviors [11, 6]. However, such methods rely on
meticulous engineering, and are limited in their capacity to
generalize to new situations, because they capture the essence
of the locomotion behavior in terms of its mechanisms (such
as balance feedback) rather than its objectives. If we can
capture the objectives that underlie bipedal locomotion, we
could create robust and dynamic locomotion behaviors in new
situations simply by optimizing the trajectory with respect to
these objectives.

Inverse optimal control (IOC), also called inverse reinforce-
ment learning, is a tool can be used to learn an unknown
reward function from example demonstrations of the desired
behavior. This reward function then serves as a portable
representation of the behavior, allowing it to be generalized
to new domains [7, 1]. However, the extreme computational
complexity of IOC has limited previous applications to lower-
dimensional tasks, such as navigation of road networks [13]
or footstep planning on 2D height maps [2]. In this pa-
per, we show that a recently developed approximate IOC
algorithm can overcome these computational challenges and
learn reward functions directly from demonstrations on high-
dimensional humanoid models. The reward is learned from
motion-captured human demonstrations, and captures not only
salient features of the desired behavior, but also the fine details
that are necessary to produce fluid, dynamic locomotion that
resembles the original human demonstration.

We employ an approximate local IOC algorithm that only
examines the dynamics and reward around the example tra-
jectory [3], making it possible to scale the method to high-
dimensional humanoid tasks. The final behavior is produced

with trajectory optimization, using a differential dynamic
programming (DDP) algorithm that is analogous to the local
IOC method. Besides demonstrating that the learned reward
function allows us to reproduce smooth, realistic, and highly
dynamic running, we also show that it provides a generalizable
representation of the behavior that allows it to respond to
perturbations and changes in the terrain. We also present
preliminary results that suggest that not only does the learned
reward allow us to create a more dynamic and realistic running
behavior, but that it also shapes the objective and allows the
local DDP optimizer to more effectively avoid poor local
optima that might be present in a naı̈ve, hand-engineered
objective. In this way, IOC serves to not only learn a reward
that explains the task, but also to shape the reward, making
subsequent forward optimization easier.

The main contribution of this paper is a method for learn-
ing locomotion behaviors directly from human demonstration
using inverse optimal control. To our knowledge, this is the
first attempt to learn reward functions for humanoid behaviors
with IOC directly from motion capture of real humans. We
show that a local, approximate IOC algorithm can scale to the
high dimensional space of humanoid poses, and present a set
of reward features that are suitable for learning running behav-
iors. We demonstrate that the learned reward can be used to
reproduce running behaviors with trajectory optimization and
present preliminary results for generalization to perturbations
and rough terrain. We also show that the learned reward is
better suited for continuous local trajectory optimization than
a naı̈ve, hand-engineered objective.

II. INVERSE OPTIMAL CONTROL

We model the locomotion behavior as a determinis-
tic, fixed-horizon control task with continuous states x =
(x1, . . . ,xT )

T, continuous actions u = (u1, . . . ,uT )
T, and

discrete time. The state vector contains the position of the
pelvis, the angle at each joint, and all of the corresponding
velocities, while the actions correspond to the torques at each
joint. Such tasks are characterized by a dynamics function
f(xt,ut) = xt+1, as well as a reward function r(xt,ut).
Given the initial state x1, the optimal actions are given by

u = argmax
u

∑
t

r(xt,ut).

IOC aims to find a reward function r under which the
optimal actions match the expert’s demonstrations, given by
D = {(x(1)

0 ,u(1)), . . . , (x
(n)
0 ,u(n))}. The algorithm is pre-

sented with reward features f : (xt,ut)→ R that can be used



to represent the unknown reward as

r(xt,ut) =
∑
j

θjfj(xt,ut).

We employ a probabilistic model for the expert’s behavior that
represents the probability of a sequence of actions as being
proportional to the exponential of their total reward [13]:1

P (u|x1) =
1

Z
exp

(∑
t

r(xt,ut)

)
, (1)

where Z is the partition function. In this model, the expert
follows a stochastic policy that becomes more deterministic
when the stakes are high, and more random when all choices
have similar value. The reward can then be learned by maxi-
mizing the log probability of the examples with respect to the
reward weights θ.

Computing the partition function Z typically requires an
iterative algorithm similar to value iteration, which scales
exponentially with state-space dimensionality [13]. Levine
and Koltun proposed to instead approximate the reward log
likelihood by using the Laplace approximation with locally
linearized dynamics and locally quadratic rewards [3]. In this
approach, the log of the path probability in Equation 1 is
approximated as

L =
1

2
gTH−1g +

1

2
log |−H| − du

2
log 2π, (2)

where g is the gradient of the total reward with respect to the
actions, and H is the Hessian. This objective, as well as its
gradients with respect to θ, can be computed efficiently with
one of several dynamic programming algorithms, including
an algorithm that is virtually identical to the linear quadratic
regulator (LQR) [3]. In the latter case, the objective can be
derived by assuming linear dynamics and quadratic rewards,
and iteratively computing the Q-function from the last time
step to the first. In the case of linear dynamics and quadratic
rewards, it is known that the value function updates in the
maximum entropy model have the same form as in the standard
model [12], leading to the following dynamic programming
equations for the Q-function and value function:

Qxxt=rxxt+f
T
xtVxxt+1fxt Qxt=rxt+f

T
xtVxt+1

Quut=ruut+f
T
utVxxt+1fut Qut=rut+f

T
utVxt+1

Quxt=ruxt+f
T
utVxxt+1fxt Vxt=Qxt−QT

uxtQ
−1
uutQu

Vxxt=Qxxt−QT
uxtQ

−1
uutQux. (3)

The quantities r?? indicate derivatives of the reward function
with respect to x and u, while f?? indicate derivatives of
the dynamics. Under the maximum entropy model [12], the
probability of the demonstrated action at time t is given by

P (ut|xt) = exp (Q(xt,ut)− V (xt)) , (4)

1In the case of multiple example trajectories, their probabilities are simply
multiplied together to obtain P (D).

where the value function is given by

V (xt) = log

∫
exp (Q(xt, ũt)) ũt. (5)

Assuming that the Taylor expansion is done around the exam-
ple state and action xt and ut, Equation 4 can be evaluated by
using the second order approximation for Q from Equation 3.
The integral in Equation 5 can then be evaluated in closed
form, since the exponential of a quadratic is a Gaussian. This
produces the following action probability at each time step:

logP (ut|xt) =
1

2
QutQ

−1
uutQut +

1

2
log |−Quut| .

The approximate objective in Equation 2 can then be evaluated
by adding up these log likelihoods over all time steps, and
gradients can also be computed by using the chain rule and
maintaining the derivative of each Q?? quantity with respect
to each reward weight. Further details on this algorithm are
provided in previous work [3].

III. TRAJECTORY OPTIMIZATION

Once we compute the reward weights θ that maximize the
approximate log likelihood for the demonstrated locomotion
behavior, we can reconstruct the behavior under new condi-
tions (such as rough terrain) by using a variant of differential
dynamic programming called iterative LQR [5]. This algo-
rithm repeatedly reestimates the optimal linear feedback policy
under linear dynamics and quadratic rewards, expanded around
the current trajectory, and then follows this policy to create a
new trajectory. The dynamic programming equations for this
algorithm are identical to the IOC dynamic programming step
in Equation 3, and the linear feedback policy is given by

u′t = ut + kt +Kt(x
′
t − xt),

where xt and ut are the state and action along the previous
trajectory, x′t and u′t are the state and action along the new
trajectory, and k and K are given by

kt = −Q−1uutQut Kt = −Q−1uutQuxt.

In order to ensure that the total reward along the trajectory
improves at each iteration, we follow Tassa et al. [8] and
employ a linesearch on k.

Trajectory optimization in the presence of contacts is known
to be quite difficult, since the contacts introduce discontinuities
in the system dynamics. To alleviate this problem, we also
use a softened contact model described by Tassa et al. [8], as
implemented in the MuJoCo simulation engine [9].

IV. LEARNING LOCOMOTION REWARDS

To apply the IOC algorithm described in Section II to
humanoid locomotion, we must first obtain an example of
the desired locomotion behavior. To this end, we use joint
angles recorded with motion capture from a real human run.
These joint angles are then tracked by using DDP with a
simple reward that minimizes quadratic deviation from the
target angles. It should be noted that while this simple reward
is sufficient to obtain torques that realize the demonstrated run,



it is often not sufficient to generalize to new situations (such
as strong perturbations), as shown in Section V.

In order to learn a reward function that captures a portable
and generalizable representation of the desired locomotion
behavior, we must provide the algorithm with a set of features
that is sufficient for representing the behavior, but not so
specific that they do not generalize to new environments.
For example, the quadratic deviation reward used to track
the motion capture could also be used as a reward feature,
but would be a poor choice, since it would not improve
generalization. In this section, we describe the features we
created for learning humanoid locomotion. While this choice
of features is specific to locomotion, the general principles
described in this section may also be informative when seeking
to construct appropriate features for new behaviors.

A. Torque Minimization

Minimization of joint torques is a common regularizer
in reward functions for dynamic humanoid behaviors. We
therefore employ a learned quadratic penalty on joint torques
at each time step. We found it useful to learn a seperate penalty
weight on the torque at each joint, in order to allow the reward
to express a preference for some joints over others. Recent
work has shown that direct total torque minimization is a
poor explanation for real human locomotion [10]. The per-
joint penalty allows our model to capture more fine-grained
joint preferences that may be caused by the dynamics of the
underlying muscles or idiosyncracies of individual gaits. The
joint torque feature for joint i has the following form:

fi(xt,ut) = −
1

2
u2ti,

where uti is the ith component of ut.

B. Root Position and Velocity

In order to make forward progress and maintain balance, we
use features that captures the quadratic deviation of the root
(pelvis) position and velocity from a setpoint. Specifically,
we use a single feature for the medial component of the
root velocity, a single feature for the height of the root, and
an additional feature for the position of the root along the
transverse axis, in order to control lateral deviations. In all
cases, the feature has the form

fj(xt,ut) =
1

2
(xtj − x?j )2, (6)

where x?j is the desired setpoint. This setpoint is set to the
mean value of xtj in the example sequence. In the future,
it would be straightforward to also learn xtj as part of the
IOC optimization, by employing both a linear and a quadratic
feature.

C. Joint Angle Regularization

In principle, the root position and velocity, together with
torque minimization, sufficiently constrain the task to specify
a forward movement with minimal effort. However, practical
local trajectory optimization techniques typically fail to create

a plausible locomotion behavior from such abstract objectives,
as shown in the following section. To further shape the reward
and capture the unique style of the demonstrated gait, we also
employ a set of joint angle features that control the degree to
which each joint is allowed to deviate from a setpoint. The
form of these features is identical to the root position and
velocity features in Equation 6, except the index j refers to
particular joint angles. The setpoints x?j are set to zero for all
joints except the knees, corresponding to an upright standing
pose. The knees are set to 0.5 radians, to encourage flexion. As
with the root position and velocity, it would be straightforward
to learn the target angles in the future using a set of linear and
quadratic features.

D. Periodic Foot Motion

A crucial component of bipedal locomotion is the periodic,
alternating motion of the feet. We capture this aspect of the
behavior by learning Cartesian attractor positions for the feet
in the sagittal plane. This is accomplished by using a set of
linear and quadratic features for the medial and longitudal
position of each foot. By learning the weights on the linear
and quadratic features, we effectively learn a target position
and weight for a quadratic deviation. To create periodic motion
of the feet, a different set of targets is learned for each quarter
of the gait cycle, using four equal-sized intervals. This results
in a total of 32 features: 4 intervals, 2 feet, 2 axes, and 2
features each (linear and quadratic).

It should be noted that although these features can be
interpreted as specifying a target position for the feet, they do
not act as footstep constraints. Instead, they act as attractors
for the feet, and the learned setpoints are often located several
meters above the ground, and thus are never reached even in
the example motion, as discussed in the following section. In
future work, it would be interesting to see if the phase and
frequency of the gait could also be learned, to avoid the need
for specifying four equal-length intervals.

E. Arm Swing Features

To produce naturalistic arm swinging motion, we use an
additional set of features that expresses the quadratic deviation
of the shoulder and elbow from the reference example at
each time step. Because the arm motion does not need to
change drastically to adapt to new situations, we did not find
that this feature degrades the generalization of our method.
However, it would be worthwhile in the future to explore more
abstract features for capturing periodic arm motion, perhaps
in a similar spirit to the foot target features.

V. RESULTS

Figure 1 shows plots of the original running demonstration,
a running sequence generated with trajectory optimization
from the learned reward function, and the result of running
trajectory optimization with a naı̈ve objective that only seeks
to maintain balance and forward velocity while minimizing
torques. The new trajectory was initialized with a simple stand-
ing policy to produce the initial trajectory for iterative LQR.



Fig. 1. Plots of running trajectories: original human motion capture (top),
optimized result using our learned reward (middle), and the result with naı̈ve
baseline reward (bottom). Colored lines indicate pelvis and foot trajectories.
The learned reward produces a run that is qualitatively similar to the original
motion capture.

Although the reoptimized run is not identical, it exhibits many
of the same overall properties, including a similar forward
velocity and similar stride length. On the other hand, the
naı̈ve objective is insufficiently detailed to produce a plausible
locomotion behavior, resulting in an unstable tumbling gait.
The superior performance of the learned reward over this naı̈ve
baseline suggests that IOC has a shaping effect on the reward,
effectively producing an objective that is more condusive to
local optimization.

Table I shows the learned weights on each reward fea-
ture. From these reward weights, we can visualize the foot
target features at each interval. These targets are visualized
in Figure 2, by using an arrow to indicate the direction of
the attractor, with length corresponding to the product of the
distance to the target and the quadratic feature weight. Since
the targets themselves were often several meters above the
ground, they are not shown. Note that the foot targets do not
act as “footstep constraints,” but rather as attraction fields that
guide the feet over the course of the gait.

To test generalization, we optimized a running sequence in
the presence of a 5000 Newton, 100 ms lateral push, as well
as on rough terrain. The results for the push are shown in
Figure 3, and the rough terrain results are shown in Figure 4.
In both tests, the results are compared to a simple baseline
that minimizes the quadratic deviation from the original unper-
turbed, flat ground motion capture example. In the case of the
lateral perturbation, we observe that the learned reward affords
a more flexible and realistic recovery strategy, taking a large
sideways step to avoid a fall. The baseline relies on razor-edge

Fig. 2. Visualization of learned foot position attractors in each of the four
phases, overlaid on poses from the original example.

Feature Class Feature Weight

joint torque penalty

waist rotation (x, y, z) 23.7,15.6,21.1
left shoulder rotation (x, y, z) 24.9, 24.2, 24.8

left elbow 24.8
right shoulder rotation (x, y, z) 24.9, 24.4, 24.9

right elbow 24.9
left thigh rotation (x, y, z) 25.0, 22.0, 21.5

left knee 21.8
left ankle rotation (y, z) 21.2, 21.2

right thigh rotation (x, y, z) 25.0, 22.1, 21.5
right knee 21.6

right ankle rotation (y, z) 21.2, 21.2

root motion
forward velocity 4.93
lateral deviation 0.0141
height deviation 1.81

joint angle

pelvis rotation (x, y, z) 20.6, 46.0, 702
torso rotation (x, y, z) 178, 251, 1.89
thigh rotation (x, y, z) 24.3, 0.712, 171

left knee 1.25
right knee 0.463

left ankle rotation (y, z) 3.94, 435
right ankle rotation (y, z) 1.83, 676

foot motion

phase 1
left foot (x2, x) 69.4, -87.3
left foot (z2, z) -10.2, 62.7

right foot (x2, x) 41.6, 104
right foot (z2, z) 3.84, 54.9

phase 2
left foot (x2, x) 396, 127
left foot (z2, z) -6.48, 7.35

right foot (x2, x) 77.6, 21.2
right foot (z2, z) 34.3, 16.9

phase 3
left foot (x2, x) 60.5, 135
left foot (z2, z) 29.1, 69.0

right foot (x2, x) 48.1, -104
right foot (z2, z) 13.3, 87.7

phase 4
left foot (x2, x) 123, 51.3
left foot (z2, z) 1.92, -18.0

right foot (x2, x) 562, 127
right foot (z2, z) -8.71, 11.9

arm swing shoulder and elbow deviation 2180

TABLE I
WEIGHTS ASSIGNED TO EACH FEATURE BY THE LEARNING ALGORITHM.

balance and remains too close to the example demonstration,
producing an implausible recovery that uses very large torques
to slide laterally while matching the example poses. The
baseline fares better on the rough terrain, where both reward
functions show reasonable generalization.

These results indicate that the learned reward provides
sufficient detail to reproduce the example behavior, while
providing a sufficient abstract representation to allow for
meaningful generalization. Further experiments are necessary
to establish the amount of generalization that is possible, as
well as the degree to which the learned reward outperforms
simple quadratic tracking of the example motion.

VI. DISCUSSION

We presented a method for learning a generalizable reward
function for humanoid locomotion that can be used to recreate
a demonstrated locomotion behavior under new conditions,
such as strong perturbations and rough terrain. We employed



Fig. 3. Results under lateral perturbation: quadratic tracking of the unper-
turbed example (top) and the learned reward function (bottom), shown from
the front. A 5000 Newton push to the right is applied at the first time step.
When optimizing the learned reward, the trajectory exhibits a more plausible
recovery strategy, which is abscent when rigidly tracking the example motion.

Fig. 4. Results on rough terrain: quadratic tracking of the flat ground example
(top) and the learned reward function (bottom). The learned reward function
allows plausible generalization to new terrains.

an approximate local IOC algorithm to extract the reward
function from a human demonstration, and then used a local
trajectory optimization algorithm to reconstruct the behavior
under new conditions. Our preliminary results suggest that
the IOC algorithm was able to learn a reward function that
generalized successfully, and also suggest that the learned
reward function was better suited for avoiding the local optima
that often plague local trajectory optimization under more
naı̈ve objectives.

While our current trajectory optimization process is offline,
it would be straightforward to use the learned reward function
in a model predictive control (MPC) setting, where the new
trajectory is constructed online in real time. Recent work
has shown remarkable progress in applying MPC to high-
dimensional systems with contacts [8], suggesting that such
a method might be suitable for real-time control of humanoid
locomotion in the future.

Although this paper only demonstrates inverse optimal
control for locomotion, the methods employed are not specific
to locomotion behaviors. An interesting avenue for future work
would be to expand this approach to a range of other humanoid
behaviors, especially highly dynamic behaviors, which are
quite challenging to control using traditional methods. In
order to adapt IOC to humanoid locomotion, we engineered
a set of features that can be used to capture a flexible but
generalizable representation of the reward function. A number
of IOC methods have been proposed that alleviate the burden
of feature engineering by learning nonlinear reward functions
[4, 3], and applying such methods to humanoid behaviors
would also be an exciting avenue for future work.
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