
EECS 294-98:
Introduction to Temporal Logic

Sanjit A. Seshia
EECS, UC Berkeley

Plan for Today’s Lecture

• Linear Temporal Logic

• Signal Temporal Logic (by Alex Donze)

S. A. Seshia 2

S. A. Seshia 3

Behavior, Run, Computation Path

• Define in terms of states and transitions

• A sequence of states, starting with an initial state
– s0 s1 s2 … such that R(si, si+1) is true

• Also called “run”, or “(computation) path”

• Trace: sequence of observable parts of states
– Sequence of state labels

S. A. Seshia 4

Safety vs. Liveness
• Safety property

– “something bad must not happen”
– E.g.: system should not crash
– finite-length error trace

• Liveness property
– “something good must happen”
– E.g.: every packet sent must be received at its

destination
– infinite-length error trace

S. A. Seshia 5

Examples: Safety or Liveness?
1. “No more than one processor (in a multi-processor

system) should have a cache line in write mode”

2. “The grant signal must be asserted at some time
after the request signal is asserted”

3. “Every request signal must receive an
acknowledge and the request should stay asserted
until the acknowledge signal is received”

S. A. Seshia 7

Temporal Logic

• A logic for specifying properties over time
– E.g., Behavior of a finite-state system

• Basic: propositional temporal logic
– Other temporal logics are also useful:

• e.g., real-time temporal logic, metric temporal
logic, signal temporal logic, …

S. A. Seshia 8

Atomic State Property (Label)
A Boolean formula over state variables

We will denote each unique Boolean formula by
• a distinct color
• a name such as p, q, …

req req & !ack

S. A. Seshia 9

Globally (Always) p: G p
G p is true for a computation path if p holds at all

states (points of time) along the path

. . .

p =

Suppose G p holds along the path below starting at s0

0 1 2

S. A. Seshia 10

Eventually p: F p
• F p is true for a path if p holds at some

state along that path

. . .

p =

. . .

Does F p holds for the following examples?

0 1 2

S. A. Seshia 11

Next p: X p
• X p is true along a path starting in state si (suffix of

the main path) if p holds in the next state si+1

. . .

p =

Suppose X p holds along the path starting at state s2

0 1 2

S. A. Seshia 12

Nesting of Formulas
• p need not be just a Boolean formula.
• It can be a temporal logic formula itself!

p =

“X p holds for all suffixes of a path”

How do we draw this?

How can we write this in temporal logic?

Write down formal definitions of Gp, Fp, Xp

S. A. Seshia 13

Notation

• Sometimes you’ll see alternative notation
in the literature:
G �
F 
X 

S. A. Seshia 14

Examples: What do they mean?

• G F p

• F G p

• G(p  F q)

• F(p  (X X q))

S. A. Seshia 15

p Until q: p U q

. . .

p =

Suppose p U q holds for the path below

0 1 2

• p U q is true along a path starting at s if
– q is true in some state reachable from s
– p is true in all states from s until q holds

q =

S. A. Seshia 16

Temporal Operators &
Relationships

• G, F, X, U: All express properties along paths

• Can you express G p purely in terms of F, p,
and Boolean operators ?

• How about G and F in terms of U and Boolean
operators?

• What about X in terms of G, F, U, and Boolean
operators?

S. A. Seshia 17

Examples in Temporal Logic
1. “No more than one processor (in a 2-processor

system) should have a cache line in write mode”
• wr1 / wr2 are respectively true if processor 1 / 2 has the

line in write mode

2. “The grant signal must be asserted at some time
after the request signal is asserted”
• Signals: grant, req

3. “Every request signal must receive an acknowledge
and the request should stay asserted until the
acknowledge signal is received”
• Signals: req, ack

S. A. Seshia 19

Linear Temporal Logic

• What we’ve seen so far are properties
expressed over a single computation path
or run
– LTL

S. A. Seshia 20

Temporal Logic Flavors

• Linear Temporal Logic

• Computation Tree Logic
– Properties expressed over a tree of all

possible executions
– Where does this “tree” come from?

S. A. Seshia 21

Labelled State Transition Graph
p q

q r r

“Kripke structure”

p q

p q

q r r

rr

. . .
Infinite Computation Tree

S. A. Seshia 22

Temporal Logic Flavors

• Linear Temporal Logic (LTL)

• Computation Tree Logic (CTL, CTL*)
– Properties expressed over a tree of all

possible executions
– CTL* gives more expressiveness than LTL
– CTL is a subset of CTL* that is easier to verify

than arbitrary CTL*

S. A. Seshia 23

Computation Tree Logic (CTL*)
• Introduce two new operators A and E called “Path

quantifiers”
– Corresponding properties hold in states (not paths)
– A p : Property p holds along all computation paths

starting from the state where A p holds
– E p : Property p holds along at least one path starting

from the state where E p holds
• Example:

“The grant signal must always be asserted some
time after the request signal is asserted”

• Notation: A sometimes written as 8, E as 9

A G (req  A F grant)

S. A. Seshia 24

CTL

• Every F, G, X, U must be immediately
preceded by either an A or a E
– E.g., Can’t write A (FG p)

• LTL is just like having an “A” on the outside

S. A. Seshia 25

Why CTL?

• Verifying LTL properties turns out to be
computationally harder than CTL

• But LTL is more intuitive to write
• Complexity of model checking

– Exponential in the size of the LTL expression
– linear for CTL

• For both, model checking is linear in the
size of the state graph

S. A. Seshia 26

CTL as a way to approximate
LTL

– AG EF p is weaker than G F p

p

Useful for finding bugs...

Useful for verifying
correctness...

p p

– AF AG p is stronger than F G p

Why? And what good is this approximation?

S. A. Seshia 27

More CTL

• “From any state, it is possible to get to the
reset state along some path”

A G (E F reset)

S. A. Seshia 28

CTL vs. LTL Summary

• Have different expressive powers

• Overall: LTL is easier for people to
understand, hence more commonly used
in property specification languages

S. A. Seshia 29

Some Remarks on Temporal Logic

• The vast majority of properties are safety
properties

• Liveness properties are useful
abstractions of more complicated safety
properties (such as real-time response
constraints)

S. A. Seshia 30

(Absence of) Deadlock

• An oft-cited property, especially people
building distributed / concurrent systems

• Can you express it in terms of
– a property of the state graph (graph of all

reachable states)?
– a CTL property?
– a LTL property?

