
EECS 219C:
Formal Methods

Introduction & Overview

Sanjit A. Seshia
EECS, UC Berkeley

S. A. Seshia 2

Buying a Car: the Consumer
Perspective

Does the car have
the features you want?

S. A. Seshia 3

The Engineer’s Perspective

Does the implemented system
meet its specifications?

Credit: EE World Online

S. A. Seshia 4

The Mathematician’s
Perspective

Prove or disprove (verify) that
the mathematical model of the system
satisfies a mathematical specification

x(t) = f(x(t), u(t))
.

S. A. Seshia 5

Formal Verification (informally)

Does the system do
what it is supposed to do?

S. A. Seshia 6

Formal Methods

Rigorous mathematical, algorithmic
techniques for specification, design,

verification and maintenance of
computational systems.

The essence: It’s about PROOF
• Specify proof obligations
• Prove that system meets those obligations
• Synthesize provably-correct system

The Formal Methods Lens

S. A. Seshia 7

• Formal Methods ≈ Computational Proof methods
– Specification/Modeling ≈ Statement of Conjecture/Theorem
– Verification ≈ Proving/Disproving the Conjecture
– Synthesis ≈ Generating (parts of) Conjecture/Proof
Tools/techniques: SAT / SMT solvers, model checkers,

theorem provers, simulation-based falsification, …

System S
Environment E
Specification ϕ

YES [+ proof]
Does S || E
satisfy ϕ?

NO
[+ counterexample]

Verification:

Three Key Areas of Formal Methods
• Specification

– WHAT must the system (program) do?
– includes Modeling

• Verification
– WHY does the system do it? (or not)

• Synthesis
– HOW does the system do it?

S. A. Seshia 8

S. A. Seshia 9

What we’ll do today

• Introductions: to Sanjit and others
• Brief Intro. to the main course topics

– Motivation
– Basics: Propositional Logic, First-Order Logic,

Temporal Logic, Model Checking, SAT,
Satisfiability Modulo Theories (SMT), …

– History, Opportunities, Challenges
• Course Logistics

S. A. Seshia 10

My Research

Theory Practice

+

Current Foci: Verified Intelligent (AI) Systems /
Secure Systems

Computational Logic,
Algorithms,
Learning Theory,
Optimization

CAD for Circuits/Bio, AI,
Software Engg, Computer
Security, Embedded/Cyber-
Physical Systems, Education

“Formal Methods: Specification, Verification, Synthesis”

S. A. Seshia 11

Class Introductions

Please introduce yourselves
-- state name and research interests/areas

(Programming Systems, Computer Security,
Architecture, CAD, Embedded

Systems/CPS, BioSystems, Control
Theory, AI, ML, Robotics, etc.)

S. A. Seshia 12

Formal Verification
• Automatically verifying the correctness of

systems

• Questions for today:
– Is it relevant?
– Is it feasible?
– What will we study?

Verifier
System

Property

B
Yes (system correct)
/ no (here’s a bug)

Environment

S. A. Seshia 13

Ariane disaster, 1996
$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost:
> $50 billion

Bugs cost Time, Money,
Lives, …

S. A. Seshia 14

Is Verification Feasible?

• “Easiest” non-trivial verification problem is
NP-hard (SAT)

• But the outlook for practice is less gloomy
than for theory…
– More hardware resources
– Better algorithms

S. A. Seshia 15

My Experience with SAT Solving
(over ~a decade)

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Gras
p (2

00
0)

zC
haff

 (2
00

1)

Berk
Min (2

00
2-0

3)

zC
haff

 (2
00

3-0
4)

Sieg
e (

20
04

)

Minisa
t +

 SatE
lite

 (2
00

5)

Minisa
t2

(20
06

)

Rsa
t +

 SatE
lite

 (2
00

7)

Prec
osa

t (2
00

9)

Cryp
tominisa

t (2
01

0)

Gluco
se

 2.
0 (

20
11

)

Gluco
se

 2.
1 (

20
12

)

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

S. A. Seshia 16

Experience with SPIN Model Checker
[G. Holzmann]

S. A. Seshia 17

Topics in this Course
• Computational Engines / Basic Topics

– Boolean satisfiability (SAT)
– Satisfiability modulo theories (SMT)
– Model checking
– Syntax-guided synthesis (SyGuS)

• Advanced Topics (“Research Frontiers”)
– Deduction + Inductive Learning
– Safe/Verified Artificial Intelligence (AI)
– Human-Robot/Computer Interaction & Formal

Methods
– New application domains
– … (more later in this lecture)

S. A. Seshia 18

Topics of this Course
(another view)

Computational Engines

SAT, BDDs, SMT

Verification/Synthesis Strategies
Automata-theoretic, Symbolic,

Abstraction, Learning, etc.

Application Domains
Circuits, Software, Networks, Hybrid

Systems, Biological Systems, etc.

S. A. Seshia 19

Boolean Satisfiability (SAT)

∧

∨
¬

∧

∨

∧

.

.

.

φ
p2

p1

pn

Is there an assignment to the pi variables
 s.t. φ evaluates to 1?

S. A. Seshia 20

Two Applications of SAT
• Equivalence checking of circuits

– Given an initial (unoptimized) Boolean circuit and
its optimized version, are the two circuits
equivalent?

– Standard industry CAD problem
• Malware detection (security)

– Given a known malicious program and a
potentially malicious program, are these
“equivalent”?

• Many other applications:
– Cryptanalysis, test generation, model checking,

logic synthesis, ….

S. A. Seshia 21

Satisfiability Modulo Theories
(SMT)

∧

∨
¬

∧

∨

∧

.

.

.

φ
p2

p1

pn

Is there an assignment to the x,y,z,w variables
 s.t. φ evaluates to 1?

x + 2 z ≥ 1

x % 26 = v

w & 0xFFFF = x

x = y

S. A. Seshia 22

Applications of SMT
• Pretty much everywhere SAT is used

– The original problem usually has richer types
than just Booleans!

• To date: especially effective in
– software model checking
– test generation
– software synthesis
– finding security vulnerabilities
– high-level (RTL and above) hardware

verification

S. A. Seshia 23

Model Checking
• Broad Defn:

A collection of algorithmic methods
based on state space exploration

used to verify if a system satisfies a formal
specification.

• Original Defn: (Clarke)
A technique to check if a finite-state system

is a model of (satisfies) a temporal logic
property.

S. A. Seshia 24

Visualizing Model Checking

[Moritz Hammer, Uni. Muenchen]

S. A. Seshia 25

Model Checking, (Over)Simplified
• Model checking “is” graph traversal ?
• What makes it interesting:

– The graph can be HUGE (possibly infinite)
– Nodes can represent many states (possibly

infinitely many)
– How do we generate this graph from a system

description (like source code)?
– Behaviors/Properties can be complicated (e.g.

temporal logic)
– …

S. A. Seshia 26

A Brief History of Formal Methods

• 1949: Early program proof by Alan Turing
• 50s & 60s: Lot of relevant work on automata theory by

several researchers (e.g. Buchi, Rabin, …)
• 1967: paper on proving program assertions by Floyd
• 1969: Tony Hoare’s paper on logic-based reasoning to

prove programs correct (or not)
• Early 70s: lots of work on proving sequential programs

correct

(PREAMBLE)
Focus on (Highly) Automated Formal Methods

S. A. Seshia 27

A Brief History of Formal Methods
(biased towards Model Checking)

• 1977: Pnueli introduces use of (linear) temporal logic
for specifying program properties over time
[1996 Turing Award]

• 1981: Model checking introduced by Clarke & Emerson
and Quielle & Sifakis
– Based on explicitly traversing the graph
– capacity limited by “state explosion”

• 1986: Vardi & Wolper introduce “automata-theoretic”
framework for model checking
– Late 80s: Kurshan develops automata-theoretic verifier

• Early - mid 80s: Gerard Holzmann starts work on the
SPIN model checker

S. A. Seshia 28

• 1986: Bryant publishes paper on BDDs
• 1987: McMillan comes up with idea for “Symbolic

Model Checking” (using BDDs) – SMV system
– First step towards tackling state explosion

• 1987-1999: Flurry of activity on finite-state model
checking with BDDs, lots of progress using:
abstraction, compositional reasoning, …
– More techniques to tackle state explosion

• 1990-95: Timed Automata introduced by Alur & Dill,
model checking algorithms introduced; generalized
to Hybrid Automata by Alur, Henzinger and others

A Brief History of Formal Methods
(biased towards Model Checking)

S. A. Seshia 29

A Brief History of Formal Methods
• 1999: Clarke et al. introduce “Bounded Model

Checking” using SAT
– SAT solvers start getting much faster
– BMC found very useful for debugging hardware systems

• 1999: Model checking hardware systems (at
Boolean level) enters industrial use
– IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper

JasperGold
• 1999-2004: Model checking + theorem proving:

software and high-level hardware comes of age
– SLAM project at MSR, SAL at SRI, UCLID at CMU
– Decision procedures (SMT solvers) get much faster
– Software verifiers: Blast, CMC, Bandera, MOPS, …
– SLAM becomes a Microsoft product “Static Driver Verifier”

S. A. Seshia 30

A Brief History of Formal Methods
• 2005-date: Model Checking is part of the standard industrial

flow. Some new techniques and applications arise:
– Combination with simulation (hardware) and static analysis/testing

(software) [Many univ/industry groups]
– Checking for termination in software [Microsoft]
– Lots of progress in verification of concurrent software [Microsoft]
– SMT solvers get much faster and better, used widely
– Many applications in cloud computing and beyond [AWS]

• Inductive synthesis [Berkeley, Microsoft, MIT, Penn, …]
– 2006: Counterexample-guided inductive synthesis (CEGIS) and

Sketching-based synthesis developed at Berkeley
– 2010: First example-driven “oracle-guided synthesis” methods

[Berkeley+SRI+Microsoft]
– 2010s: End-user programming grows [Microsoft, UW,…], Inductive

synthesis for specification inference [Berkeley, Toyota], etc.
– 2013-date: Syntax-Guided Synthesis (SyGuS) arrives [NSF ExCAPE

project]

S. A. Seshia 31

Some Recent Recognition for the Field

• Clarke, Emerson, Sifakis get 2007 ACM Turing
Award for Model Checking

• SAT and SMT solving advances are recognized
by CAV Awards (2009 and 2021), other awards…

• 2013 Turing Award for Lamport (in part for
Specification/Verification work)

• Etc.

WHAT’S NEXT?!

S. A. Seshia 32

Research Frontiers
in Formal Verification

• Three Themes:
– New Demands on Computational Engines
– New Applications
– The “Human Aspect”

• Steps that require significant human input
• Systems with humans in the loop

 suggested project topics by mid-Feb

Formal Methods meets Machine Learning

• Machine Learning Formal Methods
– Greater efficiency, ease of use/applicability
– Formal Inductive Synthesis
– Use of LLMs in Formal Methods?

• Formal Methods Machine Learning
– Stronger assurances of safety/correctness for

learning systems
– “Trustworthy AI”, “AI Safety”, etc.

S. A. Seshia 33

Further details:
1. S. A. Seshia, “Combining Induction, Deduction, and Structure for Verification

and Synthesis”, Proceedings of the IEEE, November 2015.
2. S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards Verified Artificial

Intelligence”, July 2016, http://arxiv.org/abs/1606.08514, revised version in
Communications of the ACM, July 2022.

http://arxiv.org/abs/1606.08514

New Directions in Computational Engines

• Quantitative versions of SAT/SMT
– SAT MaxSAT, Model Counting, etc.
– SMT Optimization Modulo Theories, Model

Counting, etc.

• ML for Automated Reasoning
– Neural approaches to SAT, SMT, QBF, Model counting,

etc.

• Synthesis solving
– Synthesis Modulo Oracles [see Polgreen, et al.

VMCAI’22]

S. A. Seshia 34

New Application Domains

S. A. Seshia 35

Growing Use of Machine Learning/AI in
Cyber-Physical Systems

S. A. Seshia 36

Many Safety-Critical Systems

Formal Methods for Education

S. A. Seshia 38

Goal: To enable personalized learning for lab-based courses in science and
engineering CPSGrader, deployed on edX and on campus

Formal Methods for Distributed/Secure Systems

39

• Does my secret data remain secret?
• Does the program execute as it is supposed to?
• Is the right program executed?

S. A. Seshia 40

Course Logistics

• Check out the webpage:
www.eecs.berkeley.edu/~sseshia/219c

• Tentative class schedule is up
– IMP: Think about project topics!

http://www.eecs.berkeley.edu/%7Esseshia/219c

S. A. Seshia 41

Course Outline
• 2 parts
• Part I: Basics: Boolean reasoning (SAT,

BDDs), SMT Solving, Temporal Logic,
Model Checking
– Basics, how to use these techniques, and how

to extend them further
• Part II: Advanced Topics

– The challenging problems that remain to be
addressed

S. A. Seshia 42

Reference Books
• Readings: Course notes from previous

years + draft textbook
• See list of ref books on the website
• Readings for most material posted on

bCourses

S. A. Seshia 43

Grading
• Homework (~30%)

– First part of the course

• Scribing lectures (maybe)
– 2 lectures per person: Scribe one lecture, edit another lecture
– Sign-up sheet next week

• Paper discussions / class participation (10%)
– Last month of the course

• Project (50-60%)
– Do original research, theoretical or applied
– Sample topics will be announced by end of next week
– Project proposal due mid Feb.
– Culminates in final presentation + written paper
– ~50% of past projects led to conference papers!

S. A. Seshia 44

Misc.

• Office hours: MW 2:30-3 pm and by
appointment

• Pre-requisites: check webpage; come talk
to me if unsure about taking the course
– Undergraduates need special permission to

take this class

	EECS 219C: �Formal Methods�Introduction & Overview
	Buying a Car: the Consumer Perspective
	The Engineer’s Perspective
	The Mathematician’s Perspective
	Formal Verification (informally)
	Formal Methods
	The Formal Methods Lens
	Three Key Areas of Formal Methods
	What we’ll do today
	My Research
	Class Introductions
	Formal Verification
	Slide Number 13
	Is Verification Feasible?
	My Experience with SAT Solving (over ~a decade)
	Experience with SPIN Model Checker
	Topics in this Course
	Topics of this Course (another view)
	Boolean Satisfiability (SAT)
	Two Applications of SAT
	Satisfiability Modulo Theories (SMT)
	Applications of SMT
	Model Checking
	Visualizing Model Checking
	Model Checking, (Over)Simplified
	A Brief History of Formal Methods
	A Brief History of Formal Methods (biased towards Model Checking)
	Slide Number 28
	A Brief History of Formal Methods
	A Brief History of Formal Methods
	Some Recent Recognition for the Field
	Research Frontiers in Formal Verification
	Formal Methods meets Machine Learning
	New Directions in Computational Engines
	New Application Domains
	Growing Use of Machine Learning/AI in Cyber-Physical Systems
	Formal Methods for Education
	Formal Methods for Distributed/Secure Systems
	Course Logistics
	Course Outline
	Reference Books
	Grading
	Misc.

