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Growing Use of Machine Learning/Al in
Cyber-Physical Systems
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Many Safety-CrltlcaI Systems
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Al / Cognitive Systems / Learning Systems

Computational Systems that attempt to mimic
aspects of human intelligence, including especially
the ability to learn from experience.

Formal Methods / Verification

Computational Proof Techniques: SAT Solving, SMT Solving,
Directed simulation, Model checking, Theorem proving, ...

System S ——> YES [+ proof]
: DoesS || E
Environment E ———> : —
satisfy ¢?
Specification ¢ —> NO

[+ counterexample]
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Challenges for Verified Al | |
S. A. Seshia, D. Sadigh, S. S. Sastry.
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

System S YES [+ proof]
_ DoesS || E
Environment E —— : —
satisfy ¢?
Specification ¢ —> NO

[+ counterexample]

Design Correct-by-
Construction

i stead? Counterexamples, etc.
instead?

from Rich Signal Spaces?
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Challenge 1: Environment Modeling --
Principle: Introspection and Action
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Environment Modeling Challenge — Uncertainty and
Unknowns

Self-Driving Vehicles: Interact with Humans in Complex Environments;
Significant use of machine learning!

Known Unknowns and
Unknown Unknowns!!

Cannot represent all possible
environment scenarios
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#1: Introspective Environment Modeling
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Impossible to model
all possible scenarios

Approach: Introspect on System to Model the Environment

|Identify: (i) Interface between System & Environment,
(ii) (Weakest) Assumptions needed to Guarantee Safety/Correctness

Algorithmic techniques to
generate weakest interface
assumptions and monitor them
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i [Li, Sadigh, Sastry, Seshia; TACAS’14]
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#2: Active Data Gathering and Learning

Monitor and Interact with the Environment,
Offline and Online, to Model It.

[Sadigh et al.,
IROS’16]
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Challenge 2: Formal Specification --
Principle: Go System Level
(i.e. Specify Semantic Behavior of the
Overall System)
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What'’s the Specification for Perception Tasks?

Convolutional Neural Network trained to recognize cars
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Use a System-Level Specification

x “Verify the Deep Neural Network Object Detector”

J “Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

a

Environment

\ 4

Controller

é":gé” e £y /
Learning-Based Perception

Spec: G (dist(ego vehicle, env object) > A)
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Bridging Boolean and Quantitative Specs.

e Boolean specification: Traces =2 {true,false}

e Quantitative specification: Traces 2 R
— (or some numerical domain)
— E.g. a cost/reward function

Quantitative specs. more common in Al/ML
— How to bridge the gap?
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Challenge 3: Learning Systems
Representation/Modeling --
Principle: Abstract and Explain

Challenge 4: Efficient Training, Testing,
and Verification --
Principle: Semantic Adversarial Analysis
and Compositional Methods
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The Problem: Verify Automatic Emergency
Braking System (AEBS)

a

= < Environment

AEBS
Controller Plant

Deep Learning-Based Object Detection

\ 4

\ 4

Spec: G (dist(ego vehicle, env object) > A)

* Goal: Brake when an obstacle is near, to maintain a minimum safety
distance
* Controller, Plant, Env models in Matlab/Simulink
* Object detection/classification system based on deep neural
networks
* Inception-v3, AlexNet, ... trained on ImageNet

_  more recent: squeezeDet, Yolo, ... trained on KITTI
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Our Approach: Combine Temporal Logic CPS
Falsifier with ML Analyzer

Spec ——

Model|—

CPS Errcgr?
Falsifier

Sensor inputs

(images)

Env params that
violate spec

ML
Analyzer

S. A. Seshia

CPS Falsifier uses abstraction of

ML component
e Optimistic analysis: assume ML
classifier is always correct
e Pessimistic analysis: assume
classifier is always wrong
Difference is the region of
interest where output of the ML

component “matters”

Compositional:
CPS Falsifier and ML Analyzer can be designed and run
independently (& communicate)!
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Identifying Region of Uncertainty (ROU) for
Automatic Emergency Braking System

alw (not (has_collided))

alw (not (has_collided)) alw (not (has_collided))

60

50
-50

40

=100 -100

=)
=0
o

-130 -150

20
-200
10

-250 -250

g

] 5 10 15 V_EEQE}] 25 30 35 40 0 15 v_gs?(]) 25 30 35 40

tentially unsafe region
depending on ML
component (yellow)

ML always correct

S. A. Seshia 16



Machine Learning Analyzer

Systematically Explore Region of Interest in the Image (Sensor) Space
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Sample RESUIt / This misclassification may not be of concern
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Sample Result

Misclassifications
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S. A. Seshia

Principle 5: Correct-by-Construction --
Formal Inductive Synthesis
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Correct-by-Construction Design with Formal
Inductive Synthesis
Inductive Synthesis: Learning from Examples (ML)

Formal Inductive Synthesis: Learn from Examples while
satisfying a Formal Specification

Key Idea: Oracle-Guided Learning
Combine Learner with Oracle (e.g., Verifier) that answers Learner’s Queries

query

response
6

LEARNER

[Jha & Seshia, “A Theory of Formal Synthesis via Inductive Learning”, 2015,
Acta Informatica 2017.]
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Verifier-Guided Training of Deep Neural Networks

e |nstance of Oracle-Guided Inductive Synthesis

e Oracle is Verifier (CPSML Falsifier) used to perform
counterexample-guided training of DNNs

e Substantially increase accuracy with only few
additional examples

Learned Classifier
- )
—> 0 oy WGl s I s F
<« .
®: DEEP NEURAL FALSIFIER 1 3§
£ NETWORK (CPS + ML) g

“Counterexample-Guided Data Augmentation”, T. Dreossi, S. Ghosh, X. Yue, K. Keutzer,

A. Sangiovanni-Vincentelli, S. A. Seshia, 1JCAI 2018.
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Towards Verified Learning-based CPS

Challenges Principles

1. Environment (incl. . Data-Driven, Introspective
Human) Modeling Environment Modeling

2. Specification —— System-Level Specification;

Robustness/Quantitative Spec.

3. Learning Systems

Representation " Abstract & Explain
4. Efficient Training, , Semantic Adversarial Analysis
Testing, Verification and Compositional Methods

5. Design for Correctness — Formal Inductive Synthesis

Exciting Times Ahead!!!

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence.
s.A.seshia  July 2016. https://arxiv.org/abs/1606.08514. 23



