Challenges and Principles for Verified Learning-Based Systems

Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods

Growing Use of Machine Learning/Al in

Cyber-Physical Systems

AI / Cognitive Systems / Learning Systems

Computational Systems that attempt to mimic aspects of human intelligence, including especially the ability to learn from experience.

Formal Methods / Verification

Computational Proof Techniques: SAT Solving, SMT Solving, Directed simulation, Model checking, Theorem proving, ...

Challenges for Verified Al

S. A. Seshia, D. Sadigh, S. S. Sastry.

Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

Challenge 1: Environment Modeling -- Principle: Introspection and Action

Environment Modeling Challenge – Uncertainty and Unknowns

Self-Driving Vehicles: Interact with Humans in Complex Environments; Significant use of machine learning!

Known Unknowns and Unknown Unknown!!

Cannot represent all possible environment scenarios

#1: Introspective Environment Modeling

Impossible to model all possible scenarios

Approach: Introspect on System to Model the Environment

Identify: (i) Interface between System & Environment,(ii) (Weakest) Assumptions needed to Guarantee Safety/Correctness

Algorithmic techniques to generate weakest interface assumptions and monitor them at run-time for potential violation/mitigation

[Li, Sadigh, Sastry, Seshia; TACAS'14]

#2: Active Data Gathering and Learning

Monitor and Interact with the Environment, Offline and Online, to Model It.

Challenge 2: Formal Specification -Principle: Go System Level (i.e. Specify Semantic Behavior of the Overall System)

What's the Specification for Perception Tasks?

Convolutional Neural Network trained to recognize cars

How do you formally specify "a car"?

Use a System-Level Specification

"Verify the Deep Neural Network Object Detector"

"Verify the System containing the Deep Neural Network"

Formally Specify the *End-to-End Behavior* of the System

Spec: **G** (*dist*(ego vehicle, env object) $> \Delta$)

Bridging Boolean and Quantitative Specs.

- Boolean specification: Traces → {true,false}
- Quantitative specification: Traces \rightarrow **R**
 - (or some numerical domain)
 - E.g. a cost/reward function

Quantitative specs. more common in AI/ML

– How to bridge the gap?

Challenge 3: Learning Systems Representation/Modeling -Principle: Abstract and Explain

Challenge 4: Efficient Training, Testing, and Verification -Principle: Semantic Adversarial Analysis and Compositional Methods

The Problem: Verify Automatic Emergency Braking System (AEBS)

Deep Learning-Based Object Detection

Spec: **G** (*dist*(ego vehicle, env object) $> \Delta$)

- Goal: Brake when an obstacle is near, to maintain a minimum safety distance
 - Controller, Plant, Env models in Matlab/Simulink
- Object detection/classification system based on deep neural networks
 - Inception-v3, AlexNet, ... trained on ImageNet
 - more recent: squeezeDet, Yolo, ... trained on KITTI

Our Approach: Combine Temporal Logic CPS Falsifier with ML Analyzer

- CPS Falsifier uses abstraction of ML component
 - Optimistic analysis: assume ML classifier is always correct
 - Pessimistic analysis: assume classifier is always wrong
- Difference is the region of interest where output of the ML component "matters"

Compositional:

CPS Falsifier and ML Analyzer can be designed and run independently (& communicate)!

Identifying Region of Uncertainty (*ROU*) for Automatic Emergency Braking System

Machine Learning Analyzer

Systematically Explore Region of Interest in the Image (Sensor) Space

Sample Result

Principle 5: Correct-by-Construction -Formal Inductive Synthesis

Correct-by-Construction Design with Formal Inductive Synthesis

Inductive Synthesis: Learning from Examples (ML)

Formal Inductive Synthesis: Learn from Examples while satisfying a Formal Specification

Key Idea: Oracle-Guided Learning

Combine Learner with Oracle (e.g., Verifier) that answers Learner's Queries

[Jha & Seshia, "A Theory of Formal Synthesis via Inductive Learning", 2015, Acta Informatica 2017.]

Verifier-Guided Training of Deep Neural Networks

- Instance of Oracle-Guided Inductive Synthesis
- Oracle is Verifier (CPSML Falsifier) used to perform counterexample-guided training of DNNs
- Substantially increase accuracy with only few additional examples

"Counterexample-Guided Data Augmentation", T. Dreossi, S. Ghosh, X. Yue, K. Keutzer, A. Sangiovanni-Vincentelli, S. A. Seshia, IJCAI 2018.

22

Towards Verified Learning-based CPS

Challenges

- Environment (incl. Human) Modeling
- 2. Specification

S. A. Seshia

- 3. Learning Systems Representation
- 4. Efficient Training, Testing, Verification
- 5. Design for Correctness

Principles

- Data-Driven, Introspective Environment Modeling
- System-Level Specification;Robustness/Quantitative Spec.
 - Abstract & Explain
- Semantic Adversarial Analysis and Compositional Methods
- Formal Inductive Synthesis

Exciting Times Ahead!!!

S. A. Seshia, D. Sadigh, S. S. Sastry. *Towards Verified Artificial Intelligence*. July 2016. https://arxiv.org/abs/1606.08514.