
EECS 219C: Formal Methods

Syntax-Guided Synthesis
(selected/adapted slides from
FMCAD’13 tutorial by R. Alur)

Sanjit A. Seshia
EECS, UC Berkeley

Solving SyGuS

 Is SyGuS same as solving SMT formulas with quantifier alternation?

 SyGuS can sometimes be reduced to Quantified-SMT, but not always
Set E is all linear expressions over input vars x, y

SyGuS reduces to Exists a,b,c. Forall X.  [f/ ax+by+c]
Set E is all conditional expressions

SyGuS cannot be reduced to deciding a formula in LIA

 Syntactic structure of the set E of candidate implementations can be used
effectively by a solver

 Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

2

SyGuS as Oracle-Guided Learning

3

Learning
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

4

Learning
Algorithm

Verification
Oracle

Examples = { }

Candidate
f(x,y) = x

Example
(x=0, y=1)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

5

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1) } Candidate

f(x,y) = y

Example
(x=1, y=0)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

6

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1)
(x=1, y=0)
(x=0, y=0)
(x=1, y=1)}

Candidate
ITE (x ≤ y, y, x)

Success

SyGuS Solutions

 CEGIS approach (Solar-Lezama, Seshia et al)

 Coming up: Learning strategies based on:
Enumerative (search with pruning): Udupa et al (PLDI’13)
Symbolic (solving constraints): Jha et al (ICSE’10,PLDI’11)
Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

7

Enumerative Learning

 Find an expression consistent with a given set of concrete examples

 Enumerate expressions in increasing size, and evaluate each expression on
all concrete inputs to check consistency

 Key optimization for efficient pruning of search space:
Expressions e1 and e2 are equivalent if e1(a,b)=e2(a,b) on all concrete
values (x=a,y=b) in Examples
(x+y) and (y+x) always considered equivalent
If-Then-Else (0 ≤ x, e1, e2) considered equivalent to e1 if in current set of
Examples x has only non-negative values
Only one representative among equivalent subexpressions needs to be
considered for building larger expressions

 Fast and robust for learning expressions with ~ 15 nodes

8

Symbolic Learning

 Use a constraint solver for both the synthesis and verification steps

9

 Each production in the grammar is thought of as a component.
Input and Output ports of every component are typed.

 A well-typed loop-free program comprising these components
corresponds to an expression DAG from the grammar.

ITE

Term

Term

Term

Cond
>=

Term Term

Cond

+

Term Term

Term

x
Term

y
Term

0
Term

1
Term

Symbolic Learning

10

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Synthesis Constraints:
Shape is a DAG, Types are consistent
Spec [f/e] is satisfied on every concrete input values in Examples

 Use an SMT solver (Z3) to find a satisfying solution.

 If synthesis fails, try increasing the number of occurrences of components
in the library in an outer loop

 Start with a library consisting of some number of occurrences of each
component.

Stochastic Learning

 Idea: Find desired expression e by probabilistic walk on graph where nodes
are expressions and edges capture single-edits

 Metropolis-Hastings Algorithm: Given a probability distribution P over
domain X, and an ergodic Markov chain over X, samples from X

 Fix expression size n.
X is the set of expressions En of size n.
P(e) ∝ Score(e) (“Extent to which e meets the spec φ”)

11

 Initial candidate expression e sampled uniformly from En

 If e works on all examples, return e

 Pick node v in parse tree of e uniformly at random. Replace subtree rooted
at e with subtree of same size, sampled uniformly

Stochastic Learning

12

+

z

e

+

yx

+

z

e’

-

1z

 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’

 Outer loop responsible for updating expression size n

Benchmarks and Implementation

 Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS

 Benchmarks:
Bit-manipulation programs from Hacker’s delight
Integer arithmetic: Find max, search in sorted array
Challenge problems such as computing Morton’s number

 Multiple variants of each benchmark by varying grammar

 Results are not conclusive as implementations are unoptimized, but offers
first opportunity to compare solution strategies

13

Evaluation: Hacker’s Delight Benchmarks

14

0.01

0.1

1

10

100

1000

ap
pr

ox
im

at
e

tim
e

in
 s

ec
.

Relative Performance on a Sample of Hacker's Delight Benchmarks

Enumerative Stochastic (median) Symbolic

Evaluation Summary

 Enumerative CEGIS has best performance, and solves many benchmarks
within seconds

Potential problem: Synthesis of complex constants

 Symbolic CEGIS is unable to find answers on most benchmarks
Caveat: Sketch succeeds on many of these

 Choice of grammar has impact on synthesis time
When E is set of all possible expressions, solvers struggle

 None of the solvers succeed on some benchmarks
Morton constants, Search in integer arrays of size > 4

 Bottomline: Improving solvers is a great opportunity for research !

15

