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Outline
1. Background on Runtime Verification

2. Challenges in Programming Robotics System 
(Drona).

3. Solution 1: Combining Model Checking and Runtime 
Verification.

4. Solution 2: Programming Language with Runtime 
Assurance.
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Background
Formal Verification (e.g., Model checking):

• Formal, sound, provides guarantees.
• Doesn’t scale well - state explosion problem.
• Checks a model, not an implementation.
• Most people avoid it – too much effort.

Testing (ad-hoc checking):
• Most widely used technique in the industry.
• Scales well, usually inexpensive.
• Test an implementation directly.
• Informal, doesn’t provide guarantees.
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Runtime Verification
Attempt to bridge the gap between formal methods 
and ad-hoc testing.

• A program is monitored while it is running and checked 
against properties of interest.

• Properties are specified in a formal notation (LTL, RegEx, 
etc.).

• Dealing only with finite traces.

Considered as a light-weight formal method 
technique.

• Testing with formal “flavour”. 
• Still doesn’t provide full guarantees.
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Runtime Verification, cont’d
How to monitor a program?

• Need to extract events from the program while it is running.
• code instrumentation.
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Still, What is Runtime Verification?
There are three interpretations of what runtime verification is, in 
contrast with formal verification discussed in this course.

1. RV as lightweight verification, non-exhaustive simulation (testing) plus 
formal specifications 

2. RV as getting closer to implementation, away from abstract models.

3. RV as checking systems after deployment while they are up and running.
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RV as Lightweight Formal Methods
• Verification is glorious and romantic but practically hard 

beyond certain complexity.
• Simulation/testing is here to stay with or without 

attempts to guarantee some coverage.
• So let us add to this practice some formal properties and 

property monitors that check the simulation traces.
• Instead of language inclusion Ls ⊆ Lϕ as in verification, 

we check membership w ∈ Lϕ, one trace at a time.
• Monitoring is less sensitive to system complexity. It does 

not require a mathematical model of the system, a 
program or a black box is sufficient.

• In fact, it does not care who generates the simulation 
traces, it could be measurements of a real physical 
process.
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Main Challenge: Efficient monitoring
1. Low instrumentation + communication overhead.

2. An efficient monitor should have the following 
properties:

• No backtracking.
• Memory-less: doesn’t store the trace.

• Space efficiency.
• Runtime efficiency.

• A monitor that runs in time exponential in the size of the trace is 
unacceptable.

• A monitor that runs in time exponential in the size of the formula is 
usable, but should be avoided.
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Autonomous Mobile Robotics

DRONA 10

Warehouse

AgricultureDelivery Systems

Surveillance
A major challenge in autonomous mobile robotics is programming 
robots with formal guarantees and high assurance of correct 
operation.
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“If you are able to verify a robotics system 
then most likely something is wrong”
-Russ Tedrake, MIT 
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Surveillance Application
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Workspace in Gazebo Simulator Obstacle Map and Drone Trajectory
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Robotics Software Stack
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Robotics Software
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Robotics Software for such an autonomous drone is highly complex, reactive
and concurrent.
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Our Approach
1. Programming Framework 

for Reactive Systems:
• P Programming Language.

2. Scalable Analysis of 
Robotics Software using 
Model Checking.

• Using discrete 
abstractions of the robot 
behavior.

3. Use Runtime Monitoring to 
ensure that the assumption 
hold.
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Motion Planner
• Motion Primitive: goto(location)
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Motion Planner

• Verify that the plans generated by the motion 
planner are always ߳ distance away from all 
obstacles.

• We used constraint solver (and RRTStar) to 
implement the motion planner. 
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Signal Temporal Logic (STL)
Syntax
• Real‐time and real‐valued temporal logic formulas

Semantic
• Qualitative (Boolean): Is the formula True or False?
• Quantitative (Real): How robustly is the formula True or False?
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Quantitative Semantics
Example

• STL requirement: Avoid an 
obstacle

• f := G[0,5]( x < 10 )

• Both the paths satisfy the 
requirement  

• But p1 more robustly than p2
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Assumptions as STL Formulas

DRONA 20

qg

߳



(

Assumptions as STL Formulas
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Parameter Learning

Question: What value of ߳, ݐ to use ?

Learn functions: ft, f߳ : R x R -> R

duration ݐ	 ൌ 	 ௧݂ሺݍ௜, ߳  and overshoot	௚ሻݍ ൌ ఢ݂ሺݍ௜, ௚ሻݍ
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Validating Low-Level Controllers
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Online STL Monitoring
For each of the assumption about the low-level 
components:

1. An STL formula is generated corresponding.

2. An online monitor is created dynamically to 
monitor the STL specification and take preemptive 
action based on the robustness value.
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Drona Tool
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Results: Reference Trajectory
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Results: Obstacle Avoidance
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Demo Video
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RUNTIME ASSURANCE FOR SAFE ROBOTICS
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Robotics Software Stack
(1) Obstacle Avoidance (߶௢௕௦ ): 

The drone must never 
collide with any obstacle. 

(2) Battery Safety (߶௕௔௧ ): The 
drone must never crash 
because of low battery, 
instead, when the battery is 
low it must land safely.
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Simplex Architecture
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A RTA Module
A RTA Module is a tuple ܳ௔௖, ܳ௦௖, ߶௦௔௙௘, ߶௦௔௙௘௥, Δ

• ܳ௔௖ is the Advanced controller.

• ܳ௦௖ is the Safe controller.

• ߶௦௔௙௘௥ ⊂ ߶௦௔௙௘ is a set of states.

• Δ	is the sampling rate of the DM.
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A RTA machine is well-formed
A RTA Machine ܳ௔௖, ܳ௦௖, ߶௦௔௙௘, ߶௦௔௙௘௥, Δ is well-
formed:

• Outputs of ܳ௔௖ and ܳ௦௖ are the same.

• ܳ௔௖ and ܳ௦௖ have same period (<= Δ).

• The ܳ௦௖ satisfies the following properties:
1. ܴ݄݁ܽܿ ߶௦௔௙௘, ܳ௦௖, ∗ ⊆ ߶௦௔௙௘
2. ݏ∀ ∈ ߶௦௔௙௘, ,ᇱݏ∃ .ݏ	ܶ .ݐ ᇱݏ	 ∈ ܴ݄݁ܽܿ ,ݏ ܳ௦௖, ܶ 	

ܽ݊݀	ܴ݄݁ܽܿ ,ᇱݏ ܳ௦௖, Δ ⊆ ߶௦௔௙௘௥
1. ܴ݄݁ܽܿ ߶௦௔௙௘௥, ∗, 2Δ ⊆ ߶௦௔௙௘. Note that this 

condition is stronger.
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Compositional Runtime Assurance
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Untrusted Motion Primitive
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RTA Protected Motion Primitive
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Only AC = 10 secs

RTA (AC + SC) = 14 secs

Only SC = 23 secs 
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Demo
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