A Tutorial on Runtime Verification and
Assurance

Ankush Desai
EECS 219C

Outline

1. Background on Runtime Verification

2. Challenges in Programming Robotics System
(Drona).

3. Solution 1: Combining Model Checking and Runtime
Verification.

4. Solution 2: Programming Language with Runtime
Assurance.

PROGRAMMING SAFE ROBOTICS SYSTEMS 2

Background

Formal Verification (e.g., Model checking):
« Formal, sound, provides guarantees.
» Doesn’t scale well - state explosion problem.
» Checks a model, not an implementation.
* Most people avoid it - too much effort.

Testing (ad-hoc checking):
* Most widely used technique in the industry.
« Scales well, usually inexpensive.
« Test an implementation directly.
» Informal, doesn’t provide guarantees.

PROGRAMMING SAFE ROBOTICS SYSTEMS

Runtime Verification

Attempt to bridge the gap between formal methods
and ad-hoc testing.

« A program is monitored while it is running and checked
against properties of interest.

» Properties are specified in a formal notation (LTL, RegEX,
etc.).

» Dealing only with finite traces.

Considered as a light-weight formal method
technique.

« Testing with formal “flavour”.
 Still doesn’t provide full guarantees.

PROGRAMMING SAFE ROBOTICS SYSTEMS

Runtime Verifica

on, cont’d

How to monitor a program?
* Need to extract events from the program while it is running.
« code instrumentation.

Program
y
Specifications > Code
Static phase / / Instrumentation
Dynamic phase v v
Runtime | Stream of events Instrumented
Checker | Program

Still, What 1s Runtime Verification?

There are three interpretations of what runtime verification is, in
contrast with formal verification discussed in this course.

RV as lightweight verification, non-exhaustive simulation (testing) plus
formal specifications

RV as getting closer to implementation, away from abstract models.

RV as checking systems after deployment while they are up and running.

PROGRAMMING SAFE ROBOTICS SYSTEMS 6

RV as Lightweight Formal Methods

Verification is glorious and romantic but practically hard
beyond certain complexity.

Simulation/testing is here to stay with or without
attempts to guarantee some coverage.

So let us add to this practice some formal properties and
property monitors that check the simulation traces.

Instead of language inclusion Ls € L¢ as in verification,
we check membership w € L¢, one trace at a time.

Monitoring is less sensitive to system complexity. It does
not require a mathematical model of the system, a
program or a black box is sufficient.

In fact, it does not care who generates the simulation
traces, it could be measurements of a real physical
process.

PROGRAMMING SAFE ROBOTICS SYSTEMS 7

Main Challenge: Efficient monitoring

1. Low Instrumentation + communication overhead.

2. An efficient monitor should have the following
properties:
* No backtracking.
« Memory-less: doesn’t store the trace.
« Space efficiency.
* Runtime efficiency.

« A monitor that runs in time exponential in the size of the trace is
unacceptable.

« A monitor that runs in time exponential in the size of the formula is
usable, but should be avoided.

PROGRAMMING SAFE ROBOTICS SYSTEMS

PROGRAMMING SAFE ROBOTICS SYSTEMS

Autonomous Mobile Robotics

A major challenge in autonomous mobile robotics is programming

robots with formal guarantees and high assurance of correct
operation.

Delivery Systems ‘Ariculture

DRONA 10

“If you are able to verify a robotics system
then most likely something is wrong”

-Russ Tedrake, MIT

DRONA

11

Surveillance Application

Workspace in Gazebo Simulator

Obstacle Map and Drone Trajectory

DDDDD 12

Robo

cs Software Stack

Trusted Generic Components Application

™,

Surveillance Protocol

]._

) m
e.g., reached e.g., nexF
target location target location

= A 4

Motion Planner
OMPL Solvers

||
t e.g., next waypoint
. 4

Motion Primitives

Untrusted Controllers

-\

N/

State Estimators

(Multi-Sensor Data Fusion)

AN

——my A ——

Lh
0

13

Robotics Software

Robotics Software for such an autonomous drone is highly complex, reactive
and concurrent.

tokeof ~ N = pmmm———— = = = =
autopilot Application

Motion
Planner

criticalBattery

Disarmed
(on ground)

disarm Mission

Plan
Executor

Return
Home

criticalBattery

Monitors

]] Surveillance Mode
Modes of Operation of the Surveillance Drone

DRONA 14

Our Approach

Programming Framework
for Reactive Systems:

P Programming Language. [~ /- —oooooaaag s)
: [Surveillance Protocol] :
L _T Application)

Scalable Analysisof L____I _____
Robotics Software using {’[] woctine 1
- Motion Planner |
Model Checking. f [S]\._+ Learning ||
USing discrete : Monitolg :4—|' [Plan Executor] HoAUIEs I
abstractions of the robot S e Ry '

behavior.

Use Runtime Monitoring to (State
g : : Estimators
l

ensure that the assumption
hO | d] Robot SDK

DRONA 15

Motion Planner

« Motion Primitive: goto(location)

DRONA 16

Motion Planner

« Verify that the plans generated by the motion

planner are always e distance away from all
obstacles.

« We used constraint solver (and RRTStar) to
Implement the motion planner.

DRONA

17

Signal Temporal Logic (STL)

Syntax
e Real-time and real-valued temporal logic formulas

Semantic
* Qualitative (Boolean): Is the formula True or False?
e Quantitative (Real): How robustly is the formula True or False?

g“(x. t) = f(alt],...,x[t])

pe(x,t) = —p¥(x,t)

PP (x, 1) = min(p?(x, t), p*2(w, t))

pP b2 (x t) = sup (min(pP2(x,7), inf p¥(x,s))

TEt+[a,b] s€[t,7]

DRONA

18

Quantitative Semantics

Example y
e STL requirement: Avoid an
0 | O
* f:=Gpg(x<10) 9 —-
* Both the paths satisfy the 5 _|

requirement
e But pl more robustly than

o p1
Bool: B(fp1)=T B(f,p2)=T
Real: R(fp1)=5 R(f,p2) =

p2©
a

DRONA 19

Assumptions as ST Formulas

WE

goto(qy, t, €) := tube((qi,qq), €) Uy 4 close(qy,€)

DRONA 20

ons as STL. Formulas

tube(qe,.q9q,.€1) U lose(qq., . € fa=2
traje,t,€) = {00 Qo o @) By eloselloz @) - dEn =2
tube(dg, , dgs, €1) Upo,e,] (close(qg,,€1) Atraj(&',t',€')) otherwise
(4)
where € = (G- s D)y T =oye - - big—i), 80l €' = (&,..... €5)

DRONA 21

Parameter Learning

Question: What value of ¢, t to use ?

Learn functions: f,, f :RxXR->R

tr “e

duration t = f.(q;,q,4) and overshoot e = f.(q;,q,4)

DRONA

22

Validating L.ow-Level Controllers

DRONA

23

Online STL. Monitoring

For each of the assumption about the low-level
components:

1. An STL formula is generated corresponding.

2. An online monitor is created dynamically to
monitor the STL specification and take preemptive
action based on the robustness value.

DRONA 24

Drona Tool

Implementation in P | Autogenerated C|
Code

Application

]
[]
]
]
]
[]
[]
]
]
[]
[]
]
]
[]
[]
]
v
[]
[]
]
]
[]
[]
]
[]
[]
[]
]
[]
[]
[]
]
]
4

-eooeeesd

Robot Firmware
(Iow level controllers and estimators)

Robot Hardware Or Simulator

» . e Autogenerated
" 7 N []
' | Generic Robotics SO ‘ Online
' ' Compiler / ¢ C Code))
' | Software Modules | 0 {| Monitors
: (Trusted) : ' | DRONA Runtime for RV
‘ M - J
E

~
_____J

DRONA
Systematic
Testing Tool

Reproducible
Error Trace

DRONA

walsAs paAojdag

jectory

Reference Tra

Results

25 —

== ®
— \
- 4
fQ 7
1 X .rJfrIJf\IJ
.f \ _
| 8 ; ,
v |
|
¢ i |
1 \ ﬁ
\ \ |
| \ _
! \
| 1 ,_
|
. L} - _
| .,_ __
w . . j I
= R = = o 1= L
— N I = ntwn
I I
i Il ,_
_,. i |
I l _
| ! |
1 \
4 1 i
1 | ,
\] |
\ |
, 0 . *
| i
1 e :
~ A\" ‘
3 / \ !
S 4 A !
Z o l
s —_—
‘IJ..\ s PO .
] Il 1 1 1 L] 1 L
o n o i =) n o n o
bl 0 = = B i

20

15

10

-10

-15

-20

-25

26

DRONA

Results: Obstacle Avoidance

— S -
- [] ?.
A bt
/ \
) A
e *
N '
i
[
]
= e . -H“’
P ————— L -
- A
L Y =
(Y
1A
oA
]
[T]
[
T]
V!
[
(K
(]
¥
[
. S o 10
¥

Pobs = /\ _'F[0,120](d(q5 Oij) B 05)
=1

DRONA

27

Demo Video

RUNTIME ASSURANCE FOR SAFE ROBOTICS

PROGRAMMING SAFE ROBOTICS SYSTEMS 29

Robotics Software Stack

S\ Surveillance Protocol J— (1) Obstacle Avoidance (¢ops):
T = = The drone must never
8 eg,reached 2% 2 collide with any obstacle.
< target location target location
= A 4

£ Motion Planner
£ OMPL Solvers) (2) Battery Safety (¢ppqc): The
8 - drone must never crash
§ I e.g., next waypoint because of low battery,
e A 4 . instead, when the battery is
@ Motion Primitives low it must land safely.
& Untrusted Controllers)

\. S
- (N\
g State Estimators
i
=

(Multi-Sensor Data Fusion) J

DRONA 30

Simplex Architecture

o ™ T T o
! Decision Module \‘
(DM) }
(sampling period A) 1o
Advanced i %* %
Controller ! 3., >
(AC) Plant or]_:_ D i‘_
Robot J | 35
Safe R o
Controller E’ ‘Switch control if ‘: I 2_,
(SC) E ¢ can be violated i =
S nAtime. g
~. RTAmoduleto ensure propertytp l‘

PROGRAMMING SAFE ROBOTICS SYSTEMS

A RTA Module

A RTA Module is a tuple (Quc, Qsc, Psaser Psarer L)
Q,. 1S the Advanced controller.

Q.. Is the Safe controller.

* Gsarer C Psare IS a set of states.

A is the sampling rate of the DM.

g ™
if (mode=SC A st € ¢sqfer) mode = AC /*switch control

to ACx/
elseif (mode=AC A Reach(st,*,2%A) € ¢psqfe) mode = SC
/*switch control to SCx/

else mode = mode /+x No mode switch =*/
\. y,

PROGRAMMING SAFE ROBOTICS SYSTEMS 32

A RTA machine is well-formed

A RTA Machine (Qac, Qsc, Psarer Psarer D) is well-
formed:

« Qutputs of Q,. and Q.. are the same.
Q.. and Q.. have same period (<= A).

 The Q.. satisfies the following properties:

1. Reach((,bsafe, Qsc» *) & ¢Safe
2. VS € ¢sgre,3s', T s.t. s' € Reach(s, Qs T)
and Reach(s’, Qsc, A) € $sarer

1. Reach(psafer, * 20) S ¢sqre. Note that this
condition Is stronger.

PROGRAMMING SAFE ROBOTICS SYSTEMS

33

DEFINITION 4.1 (REGIONS). Let R(p,t) = {s | s € ¢ A
Reachpy(s,*,t) © ¢}. For example, R(¢s,re.) represents the re-
gion or set of states in s, from which all reachable states in time
A are still in ¢ qfe-

R1 (Unsafe Region): | ' Switch to SC
1 qhsafe : -

Switching Control Region

PROGRAMMING SAFE ROBOTICS SYSTEMS 34

THEOREM 4.1 (RUNTIME ASSURANCE). For a well-formed RTA
module M, let ¢1ny(mode,s) denote the predicate (mode=SC A s €
$safe) V (mode=AC A Reachp(s,*,A) C ¢s,4rc)- If the initial state
satisfies the invariant ¢y, then every state s; reachable from s will
also satisfy the invariant ¢1ny.

PROGRAMMING SAFE ROBOTICS SYSTEMS 35

Compositional Runtime Assurance

[Surveillance Protocol]
RTA Module 2 &= ¢,14n I
Motion Planner System guarantees:
OMPL AC : prlm?. A ‘pmpr A ‘?)Pmt
Safe Motion Planner o¢ J
e Composing RTA modules %
=
® | RTA Module 3 &
RTA Module 1 & ¢y £ Prmpr
< | Motion Primitives
Forward t'he sequence fﬂ e
of waypoints to < Controllers | AC
Motion Primitives AC| 8 -
E Safe Motion
Safe Landing Controller g~ :-; Primitive sC
State Estimators (Multi-Sensor Data Fusion)

THEOREM 4.2 (ComposITIONAL RTA SyYSTEM). Let S
{Mo,...Mp} be an RTA system. If for all i, M; is a well-formed
RTA module satisfying the safety invariant ¢, (Theorem 4.1) then,

the RTA system S satisfies the invariant \; ¢ .

PROGRAMMING SAFE ROBOTICS SYSTEMS

Untrusted Motion Primi

— = =3

e e 80

-

oHL
A

PROGRAMMING SAFE ROBOTICS SYSTEMS

37

RTA Protected Motion Primitive

Only AC = 10 secs
RTA (AC + SC) = 14 secs

Only SC = 23 secs

PROGRAMMING SAFE ROBOTICS SYSTEMS

38

PROGRAMMING SAFE ROBOTICS SYSTEMS 39

