
(

A Tutorial on Runtime Verification and
Assurance

Ankush Desai
EECS 219C

(

Outline
1. Background on Runtime Verification

2. Challenges in Programming Robotics System
(Drona).

3. Solution 1: Combining Model Checking and Runtime
Verification.

4. Solution 2: Programming Language with Runtime
Assurance.

PROGRAMMING SAFE ROBOTICS SYSTEMS 2

(

Background
Formal Verification (e.g., Model checking):

• Formal, sound, provides guarantees.
• Doesn’t scale well - state explosion problem.
• Checks a model, not an implementation.
• Most people avoid it – too much effort.

Testing (ad-hoc checking):
• Most widely used technique in the industry.
• Scales well, usually inexpensive.
• Test an implementation directly.
• Informal, doesn’t provide guarantees.

PROGRAMMING SAFE ROBOTICS SYSTEMS 3

(

Runtime Verification
Attempt to bridge the gap between formal methods
and ad-hoc testing.

• A program is monitored while it is running and checked
against properties of interest.

• Properties are specified in a formal notation (LTL, RegEx,
etc.).

• Dealing only with finite traces.

Considered as a light-weight formal method
technique.

• Testing with formal “flavour”.
• Still doesn’t provide full guarantees.

PROGRAMMING SAFE ROBOTICS SYSTEMS 4

(5

Runtime Verification, cont’d
How to monitor a program?

• Need to extract events from the program while it is running.
• code instrumentation.

Static phase

Dynamic phase

Program

Specifications Code
Instrumentation

Instrumented
Program

Runtime
Checker

Stream of events

(

Still, What is Runtime Verification?
There are three interpretations of what runtime verification is, in
contrast with formal verification discussed in this course.

1. RV as lightweight verification, non-exhaustive simulation (testing) plus
formal specifications

2. RV as getting closer to implementation, away from abstract models.

3. RV as checking systems after deployment while they are up and running.

PROGRAMMING SAFE ROBOTICS SYSTEMS 6

(

RV as Lightweight Formal Methods
• Verification is glorious and romantic but practically hard

beyond certain complexity.
• Simulation/testing is here to stay with or without

attempts to guarantee some coverage.
• So let us add to this practice some formal properties and

property monitors that check the simulation traces.
• Instead of language inclusion Ls ⊆ Lϕ as in verification,

we check membership w ∈ Lϕ, one trace at a time.
• Monitoring is less sensitive to system complexity. It does

not require a mathematical model of the system, a
program or a black box is sufficient.

• In fact, it does not care who generates the simulation
traces, it could be measurements of a real physical
process.

PROGRAMMING SAFE ROBOTICS SYSTEMS 7

(8

Main Challenge: Efficient monitoring
1. Low instrumentation + communication overhead.

2. An efficient monitor should have the following
properties:

• No backtracking.
• Memory-less: doesn’t store the trace.

• Space efficiency.
• Runtime efficiency.

• A monitor that runs in time exponential in the size of the trace is
unacceptable.

• A monitor that runs in time exponential in the size of the formula is
usable, but should be avoided.

(

PROGRAMMING SAFE ROBOTICS SYSTEMS

PROGRAMMING SAFE ROBOTICS SYSTEMS 9

(

Autonomous Mobile Robotics

DRONA 10

Warehouse

AgricultureDelivery Systems

Surveillance
A major challenge in autonomous mobile robotics is programming
robots with formal guarantees and high assurance of correct
operation.

(

“If you are able to verify a robotics system
then most likely something is wrong”
-Russ Tedrake, MIT

DRONA 11

(

Surveillance Application

DRONA 12

Workspace in Gazebo Simulator Obstacle Map and Drone Trajectory

(

Robotics Software Stack

CAV’15 DRONA 13

(

Robotics Software

DRONA 14

Robotics Software for such an autonomous drone is highly complex, reactive
and concurrent.

Disarmed
(on ground)

Mission

Taking-offArmed

Return
Home

Application

Motion
Planner

Plan
Executor

Monitors

Surveillance Mode

arm

disarm

takeoff
autopilot

criticalBattery

criticalBatterylanded

Modes of Operation of the Surveillance Drone

(

Our Approach
1. Programming Framework

for Reactive Systems:
• P Programming Language.

2. Scalable Analysis of
Robotics Software using
Model Checking.

• Using discrete
abstractions of the robot
behavior.

3. Use Runtime Monitoring to
ensure that the assumption
hold.

DRONA 15

Controllers
State

Estimators

Plan Executor

Motion Planner Machine
Learning
Modules

Surveillance Protocol

Application

Trusted Software Stack

Robot SDK

Online
Monitors
RV Module

(

Motion Planner
• Motion Primitive: goto(location)

DRONA 16

q1

q2

qg

߳

q0

(

Motion Planner

• Verify that the plans generated by the motion
planner are always ߳ distance away from all
obstacles.

• We used constraint solver (and RRTStar) to
implement the motion planner.

DRONA 17

(

Signal Temporal Logic (STL)
Syntax
• Real‐time and real‐valued temporal logic formulas

Semantic
• Qualitative (Boolean): Is the formula True or False?
• Quantitative (Real): How robustly is the formula True or False?

DRONA 18

(

Quantitative Semantics
Example

• STL requirement: Avoid an
obstacle

• f := G[0,5](x < 10)

• Both the paths satisfy the
requirement

• But p1 more robustly than p2

DRONA 19

5

9

10

x

B(f,p1) = T B(f,p2) = T

R(f,p1) = 5 R(f,p2) = 1

p1

p2

Bool:
Real:

(

Assumptions as STL Formulas

DRONA 20

qg

߳

(

Assumptions as STL Formulas

DRONA 21

q1

q2

qg

߳

(

Parameter Learning

Question: What value of ߳, ݐ to use ?

Learn functions: ft, f߳ : R x R -> R

duration ݐ	 ൌ 	 ௧݂ሺݍ௜, ߳ and overshoot	௚ሻݍ ൌ ఢ݂ሺݍ௜, ௚ሻݍ

DRONA 22

(

Validating Low-Level Controllers

DRONA 23

(

Online STL Monitoring
For each of the assumption about the low-level
components:

1. An STL formula is generated corresponding.

2. An online monitor is created dynamically to
monitor the STL specification and take preemptive
action based on the robustness value.

DRONA 24

(

Drona Tool

DRONA 25

(

Results: Reference Trajectory

DRONA 26

(

Results: Obstacle Avoidance

DRONA 27

(

Demo Video

DRONA 28

(

RUNTIME ASSURANCE FOR SAFE ROBOTICS

PROGRAMMING SAFE ROBOTICS SYSTEMS 29

(

Robotics Software Stack
(1) Obstacle Avoidance (߶௢௕௦):

The drone must never
collide with any obstacle.

(2) Battery Safety (߶௕௔௧): The
drone must never crash
because of low battery,
instead, when the battery is
low it must land safely.

CAV’15 DRONA 30

(

Simplex Architecture

PROGRAMMING SAFE ROBOTICS SYSTEMS 31

(

A RTA Module
A RTA Module is a tuple ܳ௔௖, ܳ௦௖, ߶௦௔௙௘, ߶௦௔௙௘௥, Δ

• ܳ௔௖ is the Advanced controller.

• ܳ௦௖ is the Safe controller.

• ߶௦௔௙௘௥ ⊂ ߶௦௔௙௘ is a set of states.

• Δ	is the sampling rate of the DM.

PROGRAMMING SAFE ROBOTICS SYSTEMS 32

(

A RTA machine is well-formed
A RTA Machine ܳ௔௖, ܳ௦௖, ߶௦௔௙௘, ߶௦௔௙௘௥, Δ is well-
formed:

• Outputs of ܳ௔௖ and ܳ௦௖ are the same.

• ܳ௔௖ and ܳ௦௖ have same period (<= Δ).

• The ܳ௦௖ satisfies the following properties:
1. ܴ݄݁ܽܿ ߶௦௔௙௘, ܳ௦௖, ∗ ⊆ ߶௦௔௙௘
2. ݏ∀ ∈ ߶௦௔௙௘, ,ᇱݏ∃ .ݏ	ܶ .ݐ ᇱݏ	 ∈ ܴ݄݁ܽܿ ,ݏ ܳ௦௖, ܶ 	

ܽ݊݀	ܴ݄݁ܽܿ ,ᇱݏ ܳ௦௖, Δ ⊆ ߶௦௔௙௘௥
1. ܴ݄݁ܽܿ ߶௦௔௙௘௥, ∗, 2Δ ⊆ ߶௦௔௙௘. Note that this

condition is stronger.

PROGRAMMING SAFE ROBOTICS SYSTEMS 33

(PROGRAMMING SAFE ROBOTICS SYSTEMS 34

(PROGRAMMING SAFE ROBOTICS SYSTEMS 35

(

Compositional Runtime Assurance

PROGRAMMING SAFE ROBOTICS SYSTEMS 36

(

Untrusted Motion Primitive

PROGRAMMING SAFE ROBOTICS SYSTEMS 37

(

RTA Protected Motion Primitive

PROGRAMMING SAFE ROBOTICS SYSTEMS 38

Only AC = 10 secs

RTA (AC + SC) = 14 secs

Only SC = 23 secs

(

Demo

PROGRAMMING SAFE ROBOTICS SYSTEMS 39

