
EECS 219C: Computer-Aided Verification

Syntax-Guided Synthesis
(selected/adapted slides from
FMCAD’13 tutorial by R. Alur)

Sanjit A. Seshia
EECS, UC Berkeley

Solving SyGuS

 Is SyGuS same as solving SMT formulas with quantifier alternation?

 SyGuS can sometimes be reduced to Quantified-SMT, but not always
Set E is all linear expressions over input vars x, y

SyGuS reduces to Exists a,b,c. Forall X. [f/ ax+by+c]
Set E is all conditional expressions

SyGuS cannot be reduced to deciding a formula in LIA

 Syntactic structure of the set E of candidate implementations can be used
effectively by a solver

 Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

2

SyGuS as Active Learning

3

Learning
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

4

Learning
Algorithm

Verification
Oracle

Examples = { }

Candidate
f(x,y) = x

Example
(x=0, y=1)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

5

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1) } Candidate

f(x,y) = y

Example
(x=1, y=0)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y)) & (f(x,y) = x | f(x,y) = y)

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

6

Learning
Algorithm

Verification
Oracle

Examples =
{(x=0, y=1)
(x=1, y=0)
(x=0, y=0)
(x=1, y=1)}

Candidate
ITE (x ≤ y, y, x)

Success

SyGuS Solutions

 CEGIS approach (Solar-Lezama, Seshia et al)

 Coming up: Learning strategies based on:
Enumerative (search with pruning): Udupa et al (PLDI’13)
Symbolic (solving constraints): Jha et al (ICSE’10,PLDI’11)
Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

7

Enumerative Learning

 Find an expression consistent with a given set of concrete examples

 Enumerate expressions in increasing size, and evaluate each expression on
all concrete inputs to check consistency

 Key optimization for efficient pruning of search space:
Expressions e1 and e2 are equivalent if e1(a,b)=e2(a,b) on all concrete
values (x=a,y=b) in Examples
(x+y) and (y+x) always considered equivalent
If-Then-Else (0 ≤ x, e1, e2) considered equivalent to e1 if in current set of
Examples x has only non-negative values
Only one representative among equivalent subexpressions needs to be
considered for building larger expressions

 Fast and robust for learning expressions with ~ 15 nodes

8

Symbolic Learning

 Use a constraint solver for both the synthesis and verification steps

9

 Each production in the grammar is thought of as a component.
Input and Output ports of every component are typed.

 A well-typed loop-free program comprising these components
corresponds to an expression DAG from the grammar.

ITE

Term

Term

Term

Cond
>=

Term Term

Cond

+

Term Term

Term

x
Term

y
Term

0
Term

1
Term

Symbolic Learning

10

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Synthesis Constraints:
Shape is a DAG, Types are consistent
Spec [f/e] is satisfied on every concrete input values in Examples

 Use an SMT solver (Z3) to find a satisfying solution.

 If synthesis fails, try increasing the number of occurrences of components
in the library in an outer loop

 Start with a library consisting of some number of occurrences of each
component.

Stochastic Learning

 Idea: Find desired expression e by probabilistic walk on graph where nodes
are expressions and edges capture single-edits

 Metropolis-Hastings Algorithm: Given a probability distribution P over
domain X, and an ergodic Markov chain over X, samples from X

 Fix expression size n.
X is the set of expressions En of size n.
P(e) ∝ Score(e) (“Extent to which e meets the spec φ”)

11

 Initial candidate expression e sampled uniformly from En

 If e works on all examples, return e

 Pick node v in parse tree of e uniformly at random. Replace subtree rooted
at e with subtree of same size, sampled uniformly

Stochastic Learning

12

+

z

e

+

yx

+

z

e’

-

1z

 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’

 Outer loop responsible for updating expression size n

Benchmarks and Implementation

 Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS

 Benchmarks:
Bit-manipulation programs from Hacker’s delight
Integer arithmetic: Find max, search in sorted array
Challenge problems such as computing Morton’s number

 Multiple variants of each benchmark by varying grammar

 Results are not conclusive as implementations are unoptimized, but offers
first opportunity to compare solution strategies

13

Evaluation: Hacker’s Delight Benchmarks

14

0.01

0.1

1

10

100

1000

ap
pr

ox
im

at
e

tim
e

in
 s

ec
.

Relative Performance on a Sample of Hacker's Delight Benchmarks

Enumerative Stochastic (median) Symbolic

Evaluation Summary

 Enumerative CEGIS has best performance, and solves many benchmarks
within seconds

Potential problem: Synthesis of complex constants

 Symbolic CEGIS is unable to find answers on most benchmarks
Caveat: Sketch succeeds on many of these

 Choice of grammar has impact on synthesis time
When E is set of all possible expressions, solvers struggle

 None of the solvers succeed on some benchmarks
Morton constants, Search in integer arrays of size > 4

 Bottomline: Improving solvers is a great opportunity for research !

15

