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Formal SynthesisFormal Synthesis

 Given:
– Class of Artifacts C
– Formal (mathematical) Specification 

 Find f  C that satisfies 

 Example 1: 
– C: all affine functions f of x  R
– :  x. f(x)  x + 42

 Example 2: SyGuS
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Induction vs. DeductionInduction vs. Deduction

 Induction: Inferring general rules (functions) 
from specific examples (observations)
– Generalization

 Deduction: Applying general rules to derive 
conclusions about specific instances
– (generally) Specialization

 Learning/Synthesis can be Inductive or 
Deductive or a combination of the two
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Inductive SynthesisInductive Synthesis

 Given
– Class of Artifacts C
– Set of (labeled) Examples E (or source of E)
– A stopping criterion 

 May or may not be formally described

 Find, using only E, an f  C that meets 

 Example:
– C: all affine functions f of x  R
– E = {(0,42), (1, 43), (2, 44)}
–  -- find consistent f 
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Inductive SynthesisInductive Synthesis

 Given
– Class of Artifacts C
– Set of Examples E (or source of E)
– A stopping criterion 

 Find using only E an f  C that meets 

 Example:
– C: all affine functions f of x  R
– E = {(0,42), (1, 43), (2, 45)}
–  -- find consistent f 
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Inductive SynthesisInductive Synthesis

 Example:
– C: all predicates of the form ax + by  c 
– E = {(0,42), (1, 43), (2, 45)}
–  -- find consistent f 

 One such:  -x + y  42
 Another: -x + y  0
 Which one to pick: need to augment ?
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Machine LearningMachine Learning

 "A computer program is said to 
learn from experience E with 
respect to some class of tasks T 
and performance measure P, if 
its performance at tasks in T, as 
measured by P, improves with 
experience E.”
- Tom Mitchell [1998]
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Machine Learning: Typical Setup Machine Learning: Typical Setup 

Given:
 Domain of Examples D
 Concept class C

– Concept is a subset of D
– C is set of all concepts

 Criterion  (“performance measure”)

Find using only examples from D, f  C meeting 
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Inductive Bias in Machine Learning Inductive Bias in Machine Learning 

“Inductive bias is the set of 
assumptions required to 
deductively infer a concept 
from the inputs to the learning 
algorithm.”

Example:
C: all predicates of the form ax + by  c 
E = {(0,42), (1, 43), (2, 45)}
 -- find consistent f 

Which one to pick:  -x + y  42   or  -x + y  0
Inductive Bias resolves this choice
• E.g., pick the “simplest one” (Occam’s razor)
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Formal Inductive Synthesis 
(Initial Defn)
Formal Inductive Synthesis 
(Initial Defn)

 Given:
– Class of Artifacts C
– Formal specification 
– Domain of examples D

 Find f  C that satisfies  using only elements of D 
– i.e. no direct access to , only to elements of D 

representing 

 Example:  
– C: all affine functions f of x  R
– D = R2

– :  x. f(x)   x + 42
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ImportanceImportance

Formal Inductive Synthesis is Everywhere!
– Many problems can be solved effectively                

when viewed as synthesis

Particularly effective in various tasks in            
Formal Methods

For the rest of this lecture series, for brevity we will 
often use “Inductive Synthesis” to mean “Formal 
Inductive Synthesis”
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Inductive Synthesis for Formal 
Methods
Inductive Synthesis for Formal 
Methods

 Modeling / Specification
– Generating environment/component models
– Inferring (likely) specifications/requirements

 Verification
– Synthesizing verification/proof artifacts such as 

inductive invariants, abstractions, interpolants, 
environment assumptions, etc.

 Synthesis (of course)
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Questions of InterestQuestions of Interest

 How can inductive synthesis be used to solve 
other (non-synthesis) problems?

 Is there a theory of formal inductive synthesis 
distinct from (traditional) machine learning? 

 Is there a complexity/computability theory for 
formal inductive synthesis?
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Questions of InterestQuestions of Interest

 How can inductive synthesis be used to solve 
other (non-synthesis) problems?

 Reducing a Problem to Synthesis
 Is there a theory of formal inductive synthesis 

distinct from (traditional) machine learning? 
 Oracle-Guided Inductive Synthesis (OGIS)
 Is there a complexity/computability theory for 

formal inductive synthesis?
 Yes! Can compare different OGIS techniques
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Outline for this LectureOutline for this Lecture

 Examples of Reduction to Synthesis
– Specification
– Verification

 Differences between Inductive Synthesis and 
Machine Learning

 Oracle-Guided Inductive Synthesis
– Examples, CEGIS

 Theoretical Analysis of CEGIS
– Properties of Learner
– Properties of Verifier
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Further ReadingFurther Reading

 S. A. Seshia, “Combining Induction, Deduction, 
and Structure for Verification and Synthesis.”, 
Proc. IEEE 2015, DAC 2012
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-

dac12.html
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-

pieee15.html

 S. Jha and S. A. Seshia, “A Theory of Formal 
Synthesis via Inductive Learning”
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-

arxiv15.html
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Reductions to SynthesisReductions to Synthesis
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Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions, 

function summaries)
 Environment assumptions / Env model / interface 

specifications
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional proofs 
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation
 …
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Example Verification ProblemExample Verification Problem

 Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
 Property:  = G (y  1) 
 Attempted Proof by Induction:

y  1  x’ = x+y  y’ = y+x  y’  1  
 Fails. Need to Strengthen Invariant: Find  s.t.

x = 1  y = 1  
  y  1  x’ = x+y  y’ = y+x  ’  y’  1 
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Example Verification ProblemExample Verification Problem

 Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
 Property:  = G (y  1) 
 Attempted Proof by Induction:

y  1  x’ = x+y  y’ = y+x  y’  1  
 Fails. Need to Strengthen Invariant: Find  s.t.

x  1  y  1  x’ = x+y  y’ = y+x  x’  1  y’  1 
 Safety Verification  Invariant Synthesis 
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One Reduction from Verification to 
Synthesis
One Reduction from Verification to 
Synthesis

SYNTHESIS PROBLEM
Synthesize  s.t.

I    
      ’  ’ 

VERIFICATION PROBLEM
Does M satisfy ?

NOTATION
Transition system M = (I, ) 
Safety property  =  G()
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Two Reductions from Verification to 
Synthesis
Two Reductions from Verification to 
Synthesis

NOTATION
Transition system M = (I, ),  S = set of states 
Safety property  =  G()

SYNTHESIS PROBLEM #1
Synthesize  s.t.

I    
      ’  ’ 

VERIFICATION PROBLEM
Does M satisfy ?

SYNTHESIS PROBLEM #2
Synthesize  : S  Ŝ where

(M) = (I, ) 
s.t.

(M) satisfies 
iff

M satisfies 

ˆ ˆ
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Common Approach for both: 
Inductive Synthesis
Common Approach for both: 
Inductive Synthesis

Synthesis of:-

 Inductive Invariants
– Choose templates for invariants
– Infer likely invariants from tests (examples)
– Check if any are true inductive invariants, possibly 

iterate

 Abstraction Functions
– Choose an abstract domain
– Use Counter-Example Guided Abstraction 

Refinement (CEGAR)
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Counterexample-Guided Abstraction 
Refinement is Inductive Synthesis
Counterexample-Guided Abstraction 
Refinement is Inductive Synthesis

Invoke 
Model 

Checker
Done

Valid

Counter-
example

Check
Counterexample: 

Spurious?
Spurious 

Counterexample

YES

Abstract 
Domain

System 
+Property

Initial 
Abstraction 

Function

Done
NO

Generate 
Abstraction

Abstract Model        
+ Property

Refine 
Abstraction 

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, ‘06]
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CEGAR = Counterexample-Guided 
Inductive Synthesis (of Abstractions)
CEGAR = Counterexample-Guided 
Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE VERIFY

Candidate
Artifact

Counterexample

Verification SucceedsSynthesis Fails

Structure Hypothesis (“Syntax-Guidance”), 
Initial Examples
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Lazy SMT Solving performs 
Inductive Synthesis (of Lemmas)
Lazy SMT Solving performs 
Inductive Synthesis (of Lemmas)

Invoke 
SAT 

Solver
Done

UNSAT

SAT  
(model)

Invoke Theory 
Solver“Spurious 

Model”

UNSAT

SMT 
Formula

Initial 
Boolean 

Abstraction

Done
SAT

Generate 
SAT 

Formula

SAT Formula

Proof 
Analysis

Blocking Clause/Lemma

SYNTHESIS VERIFICATION

(“Counter-
example”)
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Other ExamplesOther Examples

 Invariant Generation via ICE Learning [P. Garg & M. 
Parthasarathy]

 Invariant Generation, Interpolation via Machine 
Learning + SMT Solving [R. Sharma, A. Aiken, et al.]

and many more…
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Reducing Specification to SynthesisReducing Specification to Synthesis

 Formal Specifications difficult for non-experts
 Tricky for even experts to get right!
 Yet we need them!

“A design without specification cannot be right or 
wrong,  it can only be surprising!”

– paraphrased from [Young et al., 1985]

 Specifications are crucial for effective testing, 
verification, synthesis, …
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Reduction of Specification to 
Synthesis
Reduction of Specification to 
Synthesis
 VERIFICATION: Given (closed) system M, and 

specification , does M satisfy ?

 Suppose we don’t have (a good enough) .

 SYNTHESIS PROBLEM: Given (closed) system 
M, find specification  such that M satisfies .
– Is this enough?
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ExampleExample

a b

Let a and b be atomic propositions.

What linear temporal logic formulas does the above system 
satisfy?
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Reduction of Specification to 
Synthesis
Reduction of Specification to 
Synthesis
 VERIFICATION: Given (closed) system M, and 

specification , does M satisfy ?

 SYNTHESIS PROBLEM: Given (closed) system M 
and class of specifications C, find specification 
in C such that M satisfies .
– C can be defined syntactically (e.g. with a 

template)
– E.g.   G( _   X _)
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Reduction of Specification to 
Synthesis
Reduction of Specification to 
Synthesis

 VERIFICATION: Given (closed) system M, and 
specification , does M satisfy ?

 SYNTHESIS PROBLEM: Given (closed) system M and 
class of specifications C, find “tightest” specification 
 in C such that M satisfies .
– Industrial Tech. Transfer Story: Requirement Synthesis for 

Automotive Control Systems [Jin, Donze, Deshmukh, Seshia, 
HSCC 2013, TCAD 2015]
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html

– Implemented in Breach toolbox by A. Donze
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Specification MiningSpecification Mining

 Inductive Synthesis of Specifications

 Term coined by Ammons et al., POPL 2002 (?)

 See recent Ph.D. dissertation by Wenchao Li: 
“Specification Mining: New Formalisms, 
Algorithms and Applications”

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/
EECS-2014-20.html
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Two Applications of Inductive 
Synthesis of Specifications
Two Applications of Inductive 
Synthesis of Specifications

1. Requirements Mining for Closed-Loop Control 
Systems

2. Environment Assumptions for Reactive 
Synthesis [see Wenchao Li thesis]

 Relevance to Robotics/Cyber-Physical Systems 



Challenges for Verification of Automotive 
Control Systems
 Closed‐loop setting very complex
 software + physical artifacts 
 nonlinear dynamics
 large look‐up tables
 large amounts of switching

 Requirements Incomplete/Informal
 Specifications often created concurrently 
with the design!

 Designers often only have informal 
intuition about what is “good behavior”
 “shape recognition” 

35

Experimental Engine 
Control Model



Solution: Requirements Mining

It’s working, but I don’t 
understand why!

Requirements Expressed in Signal Temporal Logic 

(STL) [Maler & Nickovic, ‘04]

Value added by mining:

 Mined Requirements become useful 

documentation

 Use for code maintenance and revision

 Use during tuning and testing

36



 Designer reviews mined requirements 
 “Settling time is 6.25 ms”
 “Overshoot is 100 units”
 Expressed in Signal 
Temporal Logic [Maler & Nickovic, ‘04]

 Tool extracts properties of closed‐loop design

Control Designer’s Viewpoint of the Method

6.25ms

100

37



Signal Temporal Logic (STL)
• Extension of Linear Temporal Logic (LTL) and Variant 
of Metric Temporal Logic (MTL)
– Quantitative semantics: satisfaction of a property over a 
trace given real‐valued interpretation

– Greater value more easily satisfied 
– Non‐negative satisfaction value  Boolean satisfaction

• Example: “For all time points between 60 and 100, 
the absolute value of x is below 0.1”

38
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CounterExample Guided Inductive Synthesis

Find “Tightest” 
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors 
that do NOT satisfy 
these
requirements?

Settling Time is 5 ms
Overshoot is 5 KPa
Upper Bound on x is 3.6

1.

39

Experimental Engine 
Control Model

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]



Settling Time is 5.3 ms
Overshoot is 5.1 KPa
Upper Bound on x is 3.8

Settling Time is … ms
Overshoot is … KPa
Upper Bound on x is …

CounterExample Guided Inductive Synthesis

Find “Tightest” 
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors 
that do NOT satisfy 
these
requirements?

Counterexamples

1.

40

Experimental Engine 
Control Model



CounterExample Guided Inductive Synthesis

Find "Tightest" 
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors 
that do NOT satisfy 
these
requirements?

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

NO

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

Mined 
Requirement

Counterexamples

1.

41

Experimental Engine 
Control Model



Experimental Results on Industrial Airpath
Controller

• Found max overshoot with 7000+ simulations in 13 hours
• Attempt to mine maximum observed settling time: 

– stops after 4 iterations
– gives answer tsettle = simulation time horizon (shown in trace below)

Experimental Engine 
Control Model

42

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]



Mining can expose deep bugs

• Uncovered a tricky bug
– Discussion with control designer revealed it to be a real bug
– Root cause identified as wrong value in a look‐up table, bug 
was fixed

• Duality between spec mining and bug‐finding:
– Synthesizing “tightest” spec  could uncover corner‐case bugs
– Looking for bugs Mine for negation of bug

Experimental Engine 
Control Model

43
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Theoretical Aspects of              
Formal Inductive Synthesis
Theoretical Aspects of              
Formal Inductive Synthesis
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CEGIS = Learning from Examples & 
Counterexamples
CEGIS = Learning from Examples & 
Counterexamples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples
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How is Formal Inductive Synthesis different 
from (traditional) Machine Learning?
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Comparison*Comparison*

Feature Formal Inductive 
Synthesis Machine Learning

Concept/Program 
Classes

Programmable, 
Complex Fixed, Simple

Learning 
Algorithms

General-Purpose 
Solvers Specialized

Learning Criteria Exact, w/ Formal 
Spec

Approximate, w/ 
Cost Function

Oracle-Guidance Common (can select 
Oracle)

Rare (black-box
oracles)

* Between typical inductive synthesizer and machine learning algo

[see also, Jha & Seshia, 2015]
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Formal Inductive Synthesis Formal Inductive Synthesis 

 Given:
– Class of Artifacts C     -- Formal specification 
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f  C that satisfies 

– i.e. no direct access to D or 

 Example:  
– C: all affine functions f of x  R = D
– O = {(pos-witness, x satisfying )}
– :  x. f(x)   x + 42
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Oracle InterfaceOracle Interface

 Generalizes the simple model of sampling 
positive/negative examples from a corpus 
of data

 Specifies WHAT the learner and oracle do
 Does not specify HOW the oracle/learner 

is implemented

LEARNER ORACLE
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Common Oracle Query Types                
(for trace property )
Common Oracle Query Types                
(for trace property )

LEARNER ORACLE

Positive Witness
x  , if one exists, else 

Negative Witness
x  , if one exists, else 

Membership: Is x  ?
Yes / No

Equivalence: Is f = ?
Yes / No + x  f

Subsumption/Subset: Is f ⊆ ?
Yes / No + x  f \ 

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f  X ⊆ f’, if it exists;

o.w. 



– 51 –

Formal Inductive Synthesis Formal Inductive Synthesis 

 Given:
– Class of Artifacts C     -- Formal specification 
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f  C that satisfies 

– i.e. no direct access to D or 

 How do we solve this?

Design/Select:
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Oracle-Guided Inductive Synthesis 
(OGIS)
Oracle-Guided Inductive Synthesis 
(OGIS)
 A dialogue is a sequence of (query, response) 

confirming to an oracle interface O
 An OGIS engine is a pair <L, T> where

– L is a learner, a non-deterministic algorithm 
mapping a dialogue to a concept c and query q

– T is an oracle/teacher, a non-deterministic algorithm 
mapping a dialogue and query to a response r

 An OGIS engine <L,T> solves an FIS problem if          
there exists a dialogue between L and T that 
converges in a concept f  C that satisfies 
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Language Learning in the LimitLanguage Learning in the Limit
[E.M. Gold, 1967]
 Concept = Formal Language
 Class of languages identifiable 

in the limit if there is a learning 
procedure that, for each 
language in that class, given an 
infinite stream of strings, will 
eventually generate a 
representation of the language.

 Results:
– Cannot learn regular languages, 

CFLs, CSLs using just positive 
witness queries

– Can learn using both positive & 
negative witness queries (assuming 
all examples eventually enumerated)
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Query-Based LearningQuery-Based Learning
[Queries and Concept Learning, 1988]
[Queries Revisited, 2004]
 First work on learning based on 

querying an oracle
– Supports witness, equivalence, membership, 

subsumption/subset queries
– Oracle is BLACK BOX
– Oracle determines correctness: No separate 

correctness condition or formal specification
– Focus on proving complexity results for 

specific concept classes

 Sample results
– Can learn DFAs in poly time from 

membership and equivalence queries
– Cannot learn DFAs or DNF formulas in poly 

time with just equivalence queries

Dana Angluin
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Examples of OGISExamples of OGIS

 L* algorithm to learn DFAs: counterexample-guided
– Membership + Equivalence queries

 CEGIS used in SyGuS solvers
– (positive) Witness + Counterexample/Verification 

queries
 CEGIS for Hybrid Systems

– Requirement Mining [HSCC 2013]
– Reactive Model Predictive Control [HSCC 2015]

 Two different examples:
– Learning Programs from Distinguishing Inputs [Jha

et al., ICSE 2010]
– Learning LTL Properties for Synthesis from 

Counterstrategies [Li et al., MEMOCODE 2011]
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Revisiting the ComparisonRevisiting the Comparison

Feature Formal Inductive 
Synthesis

Machine
Learning

Concept/Program 
Classes Complex Simple

Learning 
Algorithms

General-Purpose 
Solvers Specialized

Learning Criteria Exact, w/ Formal 
Spec

Approximate, w/ 
Cost Function

Oracle-Guidance Common (can 
control Oracle)

Rare (black-box
oracles)

What can we prove about 
convergence/complexity of formal
inductive synthesis for:
• General concept classes (e.g., 

recursive languages)
• Different properties of “general-

purpose” learners
• Different properties of (non black-

box) oracles
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Query Types for CEGISQuery Types for CEGIS

LEARNER ORACLE
Positive Witness

x  , if one exists, else 

Equivalence: Is f = ?
Yes / No + x  f

Subset: Is f ⊆ ?
Yes / No + x  f \ 

• Finite memory vs
Infinite memory

• Type of counter-
example given

Concept class: Any set of recursive languages
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QuestionsQuestions

 Convergence: How do properties of the learner 
and oracle impact convergence of CEGIS? 
(learning in the limit for infinite-sized concept 
classes)

 Sample Complexity: For finite-sized concept 
classes, what upper/lower bounds can we derive 
on the number of oracle queries, for various 
CEGIS variants?
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Problem 1: Bounds on                
Sample Complexity

Problem 1: Bounds on                
Sample Complexity
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Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a 
teacher must reveal to uniquely identify any 
concept from a concept class

[Goldman & Kearns, ‘90, ‘95]
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Teaching a 2-dimensional BoxTeaching a 2-dimensional Box

+

+

-

-

-

-

What about N dimensions?
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Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a 
teacher must reveal to uniquely identify any 
concept from a concept class

TD(C) = max c  C min   (c) ||
where

C is a concept class
c is a concept
 is a teaching sequence (uniquely identifies concept c)
 is the set of all teaching sequences



– 63 –

Theorem: TD(C) is lower bound on 
Sample Complexity
Theorem: TD(C) is lower bound on 
Sample Complexity
 OGIS: TD gives a lower bound on number of 

counterexample queries to solve FIS problem
 Finite TD is necessary for termination

– If C is finite, TD(C)   |C|-1
 Finding Optimal Teaching Sequence is NP-hard 

(in size of concept class)
– Hence also finding optimal query sequence for 

OGIS
– But heuristic approach works well (“learning from 

distinguishing inputs”)
 Open Problems: Compute TD for common 

classes of SyGuS problems

[see Jha & Seshia, 2015]
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Problem 2: 
Convergence of Counterexample-

guided loop
with positive witness and 

counterexample/verification queries

Problem 2: 
Convergence of Counterexample-

guided loop
with positive witness and 

counterexample/verification queries
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Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)
Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)

(0,0)

Arbitrary Counterexamples may not work 
for Arbitrary Learners
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Learning -1  x,y  1 from Minimum 
Counterexamples (dist from origin)
Learning -1  x,y  1 from Minimum 
Counterexamples (dist from origin)

(0,0)

-

-

-

-
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Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N
– Maps each example x to a natural number
– Imposes total order amongst examples

 CEGIS:  Arbitrary counterexamples
– Any element of f  

 MinCEGIS: Minimal counterexamples
– A least element of f   according to size
– Motivated by debugging methods that seek to find 

small counterexamples to explain errors & repair
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Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N

 CBCEGIS: Constant-bounded counterexamples 
(bound B)
– An element x of f   s.t. size(x) < B
– Motivation: Bounded Model Checking, Input 

Bounding, Context bounded testing, etc.

 PBCEGIS: Positive-bounded counterexamples
– An element x of f   s.t. size(x) is no larger than 

that of any positive example seen so far
– Motivation: bug-finding methods that mutate a 

correct execution in order to find buggy behaviors
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Summary of ResultsSummary of Results
[Jha & Seshia, SYNT’14; TR‘15]
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Open ProblemsOpen Problems

 For Finite Domains:  What is the impact of type 
of counterexample and buffer size to store 
counterexamples on the speed of termination of 
CEGIS?

 For Specific Infinite Domains (e.g., Boolean 
combinations of linear real arithmetic): Can we 
prove termination of CEGIS loop?
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Summary Summary 

 Formal Synthesis 
 Verification by Reduction to Synthesis
 Formal Inductive Synthesis

– Counterexample-guided inductive synthesis 
(CEGIS)

– General framework for solution methods: Oracle-
Guided Inductive Synthesis (OGIS)

– Theoretical analysis
 Lots of potential for future work!


