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Project Proposals

• Due Friday, February 13 on bCourses
• Will discuss project topics on Monday
• Instructions about proposals will follow
• Meet me to discuss project ideas if you 

haven’t already
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The Boolean Satisfiability Problem 
(SAT)

• Given: 
A Boolean formula F(x1, x2, x3, …, xn)

• Can F evaluate to 1 (true)? 
– Is F satisfiable?
– If yes, return values to xi’s (satisfying 

assignment) that make F true 
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Why is SAT important?

• Theoretical importance:
– First NP-complete problem (Cook, 1971)

• Many practical applications:
– Model Checking
– Automatic Test Pattern Generation
– Combinational Equivalence Checking
– Planning in AI
– Automated Theorem Proving
– Software Verification
– …



Terminology

• Variable, Literal
• Operators: AND, OR, NOT
• Clause, Cube/Monomial
• Conjunctive Normal Form (CNF)
• Disjunctive Normal Form (DNF)
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(discussed in class)
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An Example

• Inputs to SAT solvers are usually 
represented in CNF

(a + b + c) (a’ + b’ + c) (a + b’ + c’) (a’ + b + c’)
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An Example

• Inputs to SAT solvers are usually 
represented in CNF

(a + b + c) (a’ + b’ + c) (a + b’ + c’) (a’ + b + c’)
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Why CNF?
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Why CNF?
• Input-related reason

– Can transform from circuit to CNF in linear time & 
space (HOW?)

• Solver-related: Most SAT solver variants can 
exploit CNF
– Easy to detect a conflict 
– Easy to remember partial assignments that don’t work 

(just add ‘conflict’ clauses)
– Other “ease of representation” points?

• Any reasons why CNF might NOT be a good 
choice?
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Complexity of k-SAT

• A SAT problem with input in CNF with at 
most k literals in each clause

• Complexity for non-trivial values of k:
– 2-SAT:  in P
– 3-SAT:  NP-complete
– > 3-SAT: ?
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Worst-Case 
Complexity



12

Beyond Worst-Case Complexity

• What we really care about is “typical-case” 
complexity

• But how can one measure “typical-case”?
• Two approaches:

– Is your problem a restricted form of 3-SAT? 
That might be polynomial-time solvable

– Experiment with (random/domain-specific) 
SAT instances and analyze solver run-time vs 
formula parameters (#vars, #clauses, … )
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Special Cases of 3-SAT that are 
polynomial-time solvable

• 2-SAT
– T. Larrabee observed that many clauses in 

ATPG tend to be 2-CNF
• Horn-SAT

– A clause is a Horn clause if at most one literal 
is positive

– If all clauses are Horn, then problem is Horn-
SAT

– E.g. Application:- Checking that one finite-
state system refines (implements) another
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2-SAT Algorithm
• Linear-time algorithm (Aspvall, Plass, Tarjan, 1979)

– Think of clauses as implications
– Think of a graph with literals as nodes
– Find strongly connected components
– Variable and its negation should not be in the same 

component

• Example 1:
(a’ + b) (b’ + c) (c’ + a) 

• Example 2:
(a’ + b) (b’ + c) (c’ + a) (a + b) (a’ + b’) 
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Horn-SAT

• Can we solve Horn-SAT in polynomial 
time? How? [homework]
– Hint: again view clauses as implications.

• Variants:
– Negated Horn-SAT: Clauses with at most one 

literal negative
– Renamable Horn-SAT: Doesn’t look like a 

Horn-SAT problem, but turns into one when 
polarities of some variables are flipped 
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Phase Transitions in k-SAT

• Consider a fixed-length clause model
– k-SAT means that each clause contains 

exactly k literals 
• Let SAT problem comprise m clauses and 

n variables
– Randomly generate the problem for fixed k 

and varying m and n
• Question: How does the problem hardness 

vary with m/n ?
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3-SAT Hardness

As n increases 
hardness 
transition 

grows sharper

m / n
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Transition 
at m/n ~ 4.3

m / n
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Threshold Conjecture

• For every k, there exists a c* such that
– For m/n < c*, as n   , problem is satisfiable 

with probability 1
– For m/n > c*, as n   , problem is 

unsatisfiable with probability 1
• Conjecture proved true for k=2 and c*=1
• For k=3, current status is that c* is in the 

range 3.42 – 4.51
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The (2+p)-SAT Model

• We know:
– 2-SAT is in P
– 3-SAT is in NP

• Problems are (typically) a mix of binary 
and ternary clauses
– Let p  {0,1}
– Let problem comprise (1-p) fraction of binary 

clauses and p of ternary
– So-called (2+p)-SAT problem
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Experimentation with random 
(2+p)-SAT

• When p < ~0.41
– Problem behaves like 2-SAT
– Linear scaling

• When p > ~0.42
– Problem behaves like 3-SAT
– Exponential scaling

• Intruiging observations, but don’t help us 
predict behavior of problems in practice
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Backbones and Backdoors
• Backbone [Parkes; Monasson et al.]

– Subset of literals that must be true in every satisfying 
assignment (if one exists)

– Empirically related to hardness of problems
• Backdoor [Williams, Gomes, Selman]

– Subset of variables such that once you’ve given those 
a suitable assignment (if one exists), the rest of the 
problem is poly-time solvable

– Also empirically related to hardness
• But no easy way to find such backbones / 

backdoors! 
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A Classification of SAT Algorithms
• Davis-Putnam (DP)

– Based on resolution
• Davis-Logemann-Loveland (DLL/DPLL)

– Search-based
– Basis for current most successful solvers (CDCL)

• Stalmarck’s algorithm
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.
– Unable to prove unsatisfiability (incomplete)
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Resolution

• Two CNF clauses that contain a variable x 
in opposite phases (polarities) imply a new 
CNF clause that contains all literals except 
x and x’
(a + b) (a’ + c) = (a + b)(a’ + c)(b + c)

• Why is this true? 
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The Davis-Putnam Algorithm

• Iteratively select a variable x to perform 
resolution on

• Retain only the newly added clauses and 
the ones not containing x

• Termination: You either
– Derive the empty clause (conclude UNSAT)
– Or all variables have been selected
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Resolution Example

How many clauses can you end up with?
(at any iteration)



27

A Classification of SAT Algorithms
• Davis-Putnam (DP)

– Based on resolution
• Davis-Logemann-Loveland (DLL/DPLL)

– Search-based
– Basis for current most successful solvers (CDCL)

• Stalmarck’s algorithm
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.
– Unable to prove unsatisfiability (incomplete)
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DLL Algorithm: General Ideas

• Iteratively set variables until 
– you find a satisfying assignment (done!) 
– you reach a conflict (backtrack and try different value)

• Two main rules:
– Unit Literal Rule: If an unsatisfied clause has all but 1 

literal set to 0, the remaining literal must be set to 1
(a + b + c) (d’ + e) (a + c’ + d)

– Conflict Rule: If all literals in a clause have been set 
to 0, the formula is unsatisfiable along the current 
assignment path
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Search Tree

Decision 
level
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DLL Example 1
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DLL Algorithm Pseudo-code

Preprocess

Branch

Propagate 
implications of that 
branch and deal 

with conflicts
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DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation 
(apply unit rule)

Conflict Analysis 
& Backtracking

Main Steps:
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Pre-processing: Pure Literal Rule

• If a variable appears in only one phase 
throughout the problem, then you can set 
the corresponding literal to 1
– E.g. if we only see a’ in the CNF, set a’ to 1  

(a to 0)
• Why?
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DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation 
(apply unit rule)

Conflict Analysis 
& Backtracking

Main Steps:
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Conflicts & Backtracking

• Chronological Backtracking
– Proposed in original DLL paper
– Backtrack to highest (largest) decision level 

that has not been tried with both values
• But does this decision level have to be the reason 

for the conflict? 
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Non-Chronological Backtracking

• Jump back to a decision level “higher” 
than the last one

• Also combined with “conflict-driven 
learning”
– Keep track of the reason for the conflict

• Proposed by Marques-Silva and Sakallah 
in 1996
– Similar work by Bayardo and Schrag in ‘97
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DLL Example 2
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DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation 
(apply unit rule)

Conflict Analysis 
& Backtracking

Main Steps:
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Branching

• Which variable (literal) to branch on (set)?
• This is determined by a “decision heuristic”

• What makes a “decision heuristic” good?
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Decision Heuristic Desiderata

• If the problem is satisfiable
– Find a short partial satisfying assignment
– GREEDY: If setting a literal will satisfy many 

clauses, it might be a good choice
• If the problem is unsatisfiable

– Reach conflicts quickly (rules out bigger 
chunks of the search space)

– Similar to above: need to find a short partial 
falsifying assignment

• Also: Heuristic must be cheap to compute!
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Sample Decision Heuristics

• RAND
– Pick a literal to set at random
– What’s good about this? What’s not?

• Dynamic Largest Individual Sum (DLIS)
– Let cnt(l) = number of occurrences of literal l

in unsatisfied clauses
– Set the l with highest cnt(l)
– What’s good about this heuristic?
– Any shortcomings?
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DLIS: A Typical Old-Style Heuristic
• Advantages

– Simple to state and intuitive
– Targeted towards satisfying many clauses
– Dynamic: Based on current search state

• Disadvantages
– Very expensive!
– Each time a literal is set, need to update counts for all 

other literals that appear in those clauses
– Similar thing during backtracking (unsetting literals)

• Even though it is dynamic, it is “Markovian” –
somewhat static
– Is based on current state, without any knowledge of 

the search path to that state
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VSIDS: The Chaff SAT solver 
heuristic

• Variable State Independent Decaying Sum 
– For each literal l, maintain a VSIDS score
– Initially: set to cnt(l)
– Increment score by 1 each time it appears in an added 

(conflict) clause
– Divide all scores by a constant (2) periodically (every N 

backtracks)
• Advantages:

– Cheap: Why?
– Dynamic: Based on search history
– Steers search towards variables that are common 

reasons for conflicts (and hence need to be set 
differently)
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Key Ideas so Far

• Data structures: Implication graph
• Conflict Analysis: Learn (using cuts in implication 

graph) and use non-chronological backtracking 
• Decision heuristic: must be dynamic, low 

overhead, quick to conflict/solution

• Principle: Keep #(memory accesses)/step low
– A step  a primitive operation for SAT solving, such 

as a branch 



45

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation 
(apply unit rule)

Conflict Analysis 
& Backtracking

Main Steps:
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Unit Propagation
• Also called Boolean constraint propagation 

(BCP)
• Set a literal and propagate its implications

– Find all clauses that become unit clauses
– Detect conflicts

• Backtracking is the reverse of BCP
– Need to unset a literal and ‘rollback’

• In practice: Most of solver time is spent in 
BCP
– Must optimize!



47

BCP

• Suppose literal l is set. How much time will 
it take to propagate just that assignment? 

• How do we check if a clause has become 
a unit clause?

• How do we know if there’s a conflict?
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• Introductory BCP slides
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Detecting when a clause becomes 
unit

• Watch only two literals per clause. Why 
does this work?

• If one of the watched literals is assigned 0, 
what should we do?

• A clause has become unit if 
– Literal assigned 0 must continue to be 

watched, other watched literal unassigned 
• What if other watched literal is 0?
• What if a watched literal is assigned 1?
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• Lintao’s BCP example



51

2-literal Watching

• In a L-literal clause, L  3, which 2 literals 
should we watch? 
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Comparison: 
Naïve 2-counters/clause vs   2-literal watching

• When a literal is set to 1, 
update counters for all 
clauses it appears in

• Same when literal is set 
to 0

• If a literal is set, need to 
update each clause the 
variable appears in

• During backtrack, must 
update counters

• No need for update

• Update watched literal

• If a literal is set to 0, need 
to update only each 
clause it is watched in 

• No updates needed 
during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit
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zChaff Relative Cache Performance
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Key Ideas in Modern DLL SAT 
Solving

• Data structures: Implication graph
• Conflict Analysis: Learn (using cuts in implication 

graph) and use non-chronological backtracking 
• Decision heuristic: must be dynamic, low 

overhead, quick to conflict/solution
• Unit propagation (BCP): 2-literal watching helps 

keep memory accesses down 

• Principle: Keep #(memory accesses)/step low
– A step  a primitive operation for SAT solving, such 

as a branch 
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Other Techniques
• Random Restarts

– Periodically throw away current decision stack and 
start from the beginning

• Why will this change the search on restart?
– Used in most modern SAT solvers

• Clause deletion
– Conflict clauses take up memory

• What’s the worst-case blow-up?
– Delete periodically based on some heuristic (“age”, 

length, etc.)
• Preprocessing/“Inprocessing” and Rewriting 

techniques give a lot of performance 
improvements in recent solvers


