EECS 219C: Computer-Aided Verification
Boolean Satisfiability Solving

Sanjit A. Seshia
EECS, UC Berkeley

Project Proposals

 Due Friday, February 13 on bCourses
o WIll discuss project topics on Monday
 |nstructions about proposals will follow

 Meet me to discuss project ideas if you
haven't already

S. A. Seshia

The Boolean Satisfiability Problem
(SAT)

* Given:
A Boolean formula F(x, X,, X3, ..., X;)

 Can F evaluate to 1 (true)?
— Is F satisfiable?

— If yes, return values to x;'s (satisfying
assignment) that make F true

Why Is SAT important?

* Theoretical importance:
— First NP-complete problem (Cook, 1971)

e Many practical applications:
— Model Checking
— Automatic Test Pattern Generation
— Combinational Equivalence Checking
— Planning in Al
— Automated Theorem Proving
— Software Verification

Terminology

(discussed in class)
e Variable, Literal
e Operators: AND, OR, NOT
e Clause, Cube/Monomial
e Conjunctive Normal Form (CNF)
* Disjunctive Normal Form (DNF)

S. A. Seshia

An Example

e |Inputs to SAT solvers are usually
represented in CNF

(@+b+c)(@+b+c)(a+b +c’)(@+b+c)

An Example

e |Inputs to SAT solvers are usually
represented in CNF

(a+b+c)(@+b+c)(a+b’ +c’)(@ +b+c)

Why CNF?

Why CNF?

* Input-related reason
— Can transform from circuit to CNF in linear time &
space (HOW?)
o Solver-related: Most SAT solver variants can
exploit CNF
— Easy to detect a conflict

— Easy to remember partial assignments that don’t work
(just add ‘conflict’ clauses)

— Other “ease of representation” points?
* Any reasons why CNF might NOT be a good
choice?

Complexity of k-SAT

o A SAT problem with input in CNF with at
most K literals in each clause

o Complexity for non-trivial values of k:
—2-SAT: InP
— 3-SAT: NP-complete
— > 3-SAT: ?

10

Worst-Case
Complexity

Beyond Worst-Case Complexity

 What we really care about is “typical-case”
complexity

 But how can one measure “typical-case”?

e Two approaches:

— Is your problem a restricted form of 3-SAT?
That might be polynomial-time solvable

— Experiment with (random/domain-specific)
SAT instances and analyze solver run-time vs
formula parameters (#vars, #clauses, ...)

12

Special Cases of 3-SAT that are

polynomial-time solvable
e 2-SAT

— T. Larrabee observed that many clauses In
ATPG tend to be 2-CNF

e Horn-SAT

— A clause Is a Horn clause if at most one literal
IS positive

— If all clauses are Horn, then problem is Horn-
SAT

— E.g. Application:- Checking that one finite-
state system refines (Implements) another

13

2-SAT Algorithm

e Linear-time algorithm (Aspvall, Plass, Tarjan, 1979)
— Think of clauses as implications
— Think of a graph with literals as nodes
— Find strongly connected components

— Variable and its negation should not be in the same
component

e Example 1:
(@ +Db) (b +c)(c’+a)

e Example 2:
(@+b)(b+c)(c’+a)(a+b)(@a+Db)

S. A. Seshia

14

Horn-SAT

e Can we solve Horn-SAT in polynomial
time? How? [homework]

— Hint: again view clauses as implications.

e Variants:
— Negated Horn-SAT: Clauses with at most one

S. A. Seshia

iteral negative

Renamable Horn-SAT: Doesn’t look like a
Horn-SAT problem, but turns into one when

nolarities of some variables are flipped

15

Phase Transitions in kK-SAT

e Consider a fixed-length clause model

— k-SAT means that each clause contains
exactly k literals

o Let SAT problem comprise m clauses and
n variables

— Randomly generate the problem for fixed k
and varying m and n

e Question: How does the problem hardness
vary with m/n ?

16

3-SAT Hardness

7 8

Ratio of Clauses-to-Variables m/n

AS n Increases
hardness
transition

grows sharper

17

Transition
atm/n ~ 4.3

g
Ratio of Clauses-to-Variables

Mitchell, Seiman, and Levesque 1391

m/n

18

Threshold Conjecture

* For every kK, there exists a c* such that

— For m/n <c*, as n 2> «, problem is satisfiable
with probabillity 1

— Form/n > c*, asn - o, problem is
unsatisfiable with probability 1

e Conjecture proved true for k=2 and c*=1

e For k=3, current status iIs that c* Is In the
range 3.42 —4.51

19

The (2+p)-SAT Model

 We know:
—2-SATIsSINP
— 3-SAT IsIn NP
 Problems are (typically) a mix of binary
and ternary clauses
—Letp € {0,1}

— Let problem comprise (1-p) fraction of binary
clauses and p of ternary

— So-called (2+p)-SAT problem

20

Experimentation with random
(2+p)-SAT

e Whenp<~041

— Problem behaves like 2-SAT
— Linear scaling

e Whenp >~0.42

— Problem behaves like 3-SAT
— Exponential scaling

 Intruiging observations, but don’t help us
predict behavior of problems in practice

21

Backbones and Backdoors

 Backbone [parkes; Monasson et al]

— Subset of literals that must be true in every satisfying
assignment (if one exists)

— Empirically related to hardness of problems

 Backdoor [wiliams, Gomes, Selman]

— Subset of variables such that once you’'ve given those
a suitable assignment (if one exists), the rest of the
problem is poly-time solvable

— Also empirically related to hardness

* But no easy way to find such backbones /
backdoors! ®

22

A Classification of SAT Algorithms

Davis-Putnam (DP)

— Based on resolution
Davis-Logemann-Loveland (DLL/DPLL)

— Search-based

— Basis for current most successful solvers (CDCL)

Stalmarck’s algorithm
— More of a “breadth first” search, proprietary algorithm

Stochastic search
— Local search, hill climbing, etc.
— Unable to prove unsatisfiability (incomplete)

23

Resolution

 Two CNF clauses that contain a variable x
INn opposite phases (polarities) imply a new
CNF clause that contains all literals except
X and X’

(a+b)(@+c)=(a+b)(a+c)b+c)
 \WWhy Is this true?

24

The Davis-Putnam Algorithm

o lteratively select a variable x to perform
resolution on

* Retain only the newly added clauses and
the ones not containing X

e Termination: You elther
— Derive the empty clause (conclude UNSAT)
— Or all variables have been selected

25

Resolution Example

(a @+ c@-!- c’ + f’)@-l- e) (a+bB)(a+@) (@’ +c)(a’ +)

N \\\i / /
(a+@+ e)(@+e+f) @+ c) @+)
©€)
a+e+
o W
SAT ()
UNSAT

How many clauses can you end up with?
(at any iteration)

26

A Classification of SAT Algorithms

Davis-Putnam (DP)

— Based on resolution
Davis-Logemann-Loveland (DLL/DPLL)

— Search-based

— Basis for current most successful solvers (CDCL)

Stalmarck’s algorithm
— More of a “breadth first” search, proprietary algorithm

Stochastic search
— Local search, hill climbing, etc.
— Unable to prove unsatisfiability (incomplete)

27

DLL Algorithm: General Ideas

* |teratively set variables until
— you find a satisfying assignment (done!)
— you reach a conflict (backtrack and try different value)

e TwO main rules:

— Unit Literal Rule: If an unsatisfied clause has all but 1
literal set to 0, the remaining literal must be setto 1
(a@a+b+c)(d+e)(a+c +d)

— Conflict Rule: If all literals in a clause have been set
to O, the formula is unsatisfiable along the current
assignment path

28

Search Tree

DLL Example 1

30

DLL Algorithm Pseudo-code

DLL_iterative()

{

Preprocess status = preprocess();
if (status!=UNKNOWN)

return status;
while(1) {
decide_next_branch();
while (true)

Branch

Propagate
implications of that
branch and deal
with conflicts

{

status = deduce();
if (status == CONFLICT)

{
blevel = analyze_conflict();
if (blevel < 0)
return UNSATISFIABLE;
else
backtrack(blevel);
h

else if (status == SATISFIABLE)
return SATISFIABLE;
else break;

31

DLL Algorithm Pseudo-code

DLL_iterative() Main Steps:
{

status = preprocess(); Pre_processing
if (status!=UNKNOWN)

return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
status = deduce(); I I
if (status == CONFLICT) Unlt propa_.gatlon
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0) s\\\\\\ _ _
return UNSATISFIABLE; Conflict Analys|s
else .
backtrack(blevel) / & BathraCkl ng
+

else if (status == SATISFIABLE)
return SATISFIABLE;
else break;

32

Pre-processing. Pure Literal Rule

 If a variable appears in only one phase
throughout the problem, then you can set
the corresponding literal to 1

— E.g. If we only see a’ inthe CNF, seta’'to 1
(ato 0)

e Why?

33

DLL Algorithm Pseudo-code

DLL_iterative() Main Steps:
{

status = preprocess(); Pre-processing
if (status!=UNKNOWN)

return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
status = deduce(); I I
if (status == CONFLICT) Unlt propa_.gatlon
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0) $\\\\\\] _
return UNSATISFIABLE; Conflict Analys|s
else .
backtrack(blevel) / & BathraCklng
+

else if (status == SATISFIABLE)
return SATISFIABLE;
else break;

34

Conflicts & Backtracking

 Chronological Backtracking
— Proposed in original DLL paper

— Backtrack to highest (largest) decision level
that has not been tried with both values

 But does this decision level have to be the reason
for the conflict?

35

Non-Chronological Backtracking

Jump back to a decision level “higher”
than the last one

Also combined with “conflict-driven
learning”

— Keep track of the reason for the conflict

* Proposed by Marques-Silva and Sakallah
In 1996

— Similar work by Bayardo and Schrag in ‘97

36

DLL Example 2

37

DLL Algorithm Pseudo-code

DLL_iterative() Main Steps:
{

status = preprocess(); Pre_processing
if (status!=UNKNOWN)

return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
status = deduce(); I I
if (status == CONFLICT) Unlt propa_.gatlon
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0) s\\\\\\]]
return UNSATISFIABLE; Conflict Analys|s
else .
backtrack(blevel) / & BathraCkl ng
+

else if (status == SATISFIABLE)
return SATISFIABLE;
else break;

38

Branching

* \Which variable (literal) to branch on (set)?
e This Is determined by a “decision heuristic”

 What makes a “decision heuristic” good?

39

Decision Heuristic Desiderata

 If the problem is satisfiable
— Find a short partial satisfying assignment

— GREEDY: If setting a literal will satisfy many
clauses, it might be a good choice

o If the problem iIs unsatisfiable

— Reach conflicts quickly (rules out bigger
chunks of the search space)

— Similar to above: need to find a short partial
falsifying assignment

o Also: Heuristic must be cheap to compute!

40

Sample Decision Heuristics

e RAND

— Pick a literal to set at random
— What’s good about this? What's not?

 Dynamic Largest Individual Sum (DLIS)

— Let cnt(l) = number of occurrences of literal |
In unsatisfied clauses

— Set the | with highest cnt(l)
— What's good about this heuristic?
— Any shortcomings?

41

DLIS: A Typical Old-Style Heuristic

e Advantages
— Simple to state and intuitive
— Targeted towards satisfying many clauses
— Dynamic: Based on current search state

* Disadvantages
— Very expensive!

— Each time a literal is set, need to update counts for all
other literals that appear in those clauses

— Similar thing during backtracking (unsetting literals)
* Even though it is dynamic, it is “Markovian” —
somewhat static

— Is based on current state, without any knowledge of
the search path to that state

42

VSIDS: The Chaft SAT solver

heuristic

 Variable State Independent Decaying Sum
— For each literal I, maintain a VSIDS score
— Initially: set to cnt(l)

— Increment score by 1 each time it appears in an added
(conflict) clause

— Divide all scores by a constant (2) periodically (every N
backtracks)
e Advantages:
— Cheap: Why?
— Dynamic: Based on search history

— Steers search towards variables that are common
reasons for conflicts (and hence need to be set
differently)

43

Key Ideas so Far

Data structures: Implication graph

Conflict Analysis: Learn (using cuts in implication
graph) and use non-chronological backtracking

Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

Principle: Keep #(memory accesses)/step low

— A step = a primitive operation for SAT solving, such
as a branch

44

DLL Algorithm Pseudo-code

DLL_iterative() Main Steps:
{

status = preprocess(); Pre-processing
if (status!=UNKNOWN)

return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
status = deduce(): i I
if (status == CONFLICT) Unlt propagatlon
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0) $\\\\\\]]
return UNSATISFIABLE; Conflict Analys|s
else .
backtrack(blevel) / & BathraCklng
}

else if (status == SATISFIABLE)
return SATISFIABLE;
else break;

45

Unit Propagation
e Also called Boolean constraint propagation
(BCP)

o Set a literal and propagate its implications
— Find all clauses that become unit clauses
— Detect conflicts

e Backtracking is the reverse of BCP
— Need to unset a literal and ‘rollback’

* |In practice: Most of solver time Is spent In
BCP

— Must optimize!

46

BCP

o Suppose literal | Is set. How much time will
It take to propagate just that assignment?

e How do we check If a clause has become
a unit clause?

e How do we know If there’s a conflict?

47

 Introductory BCP slides

48

Detecting when a clause becomes
unit
Watch only two literals per clause. Why

does this work?

If one of the watched literals is assigned O,
what should we do?

A clause has become unit If

— Literal assigned O must continue to be
watched, other watched literal unassigned

What if other watched literal is 07
What if a watched literal is assigned 17

49

e Lintao’s BCP example

50

2-literal Watching

 |n a L-literal clause, L > 3, which 2 literals
should we watch?

51

Comparison:
Nalve 2-counters/clause vs 2-literal watching

« When a literal is set to 1,
update counters for all
clauses it appears in

« Same when literal is set ~ * Update watched literal
to 0

o If aliteral is set, need to If a literal is set to O, need
update each clause the to update only each
variable appears in clause it is watched in

 No need for update

* During backtrack, must No updates needed
update counters during backtrack! (why?)

Overall effect: Fewer clauses accesses In 2-lit -

zChaff Relative Cache Performance

1dix_c_mc_ex _bp f Hanoi4

Num Access | Miss Rate | Num Access | Miss Rate
24 029,356 475% | 364,782,257 5.38%
1,659,877 463% | 30,396,519 11.65%
188,352,975 36.76% | 465,160,957 41.76%
79,422 894 9.74% | 202,495,679 16.77%
415,572,501 32.89% | 876,250,978 32.53%
153,490,555 50.25% | 335713542

The programs are compiled with -O3 using g++ 2.8.1(for GRASP and Chaff) or gcc 2.8.1 (for Sato3.2.1)
on Sun OS 4.1.2 Trace was generated with QPT quuck tracing and profiling tool. Trace was processed
with dineroIV, the memory configuration 1s similar to a Pentium III processor:

L1: 16K Data, 16K Instruction, L2: 256k Unified. Both have 32 byte cache line, 4 way set associativity.

53

Key Ideas in Modern DLL SAT
Solving

Data structures: Implication graph

Conflict Analysis: Learn (using cuts in implication
graph) and use non-chronological backtracking

Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

Unit propagation (BCP): 2-literal watching helps
keep memory accesses down

Principle: Keep #(memory accesses)/step low

— A step = a primitive operation for SAT solving, such
as a branch

54

Other Techniques

e Random Restarts

— Periodically throw away current decision stack and
start from the beginning
 Why will this change the search on restart?

— Used in most modern SAT solvers

» Clause deletion
— Conflict clauses take up memory
 What's the worst-case blow-up?
— Delete periodically based on some heuristic (“age”,
length, etc.)
* Preprocessing/“Inprocessing” and Rewriting
techniques give a lot of performance
Improvements in recent solvers

55

