
EECS 219C: Computer-Aided Verification

Boolean Satisfiability Solving

Sanjit A. Seshia
EECS, UC Berkeley

S. A. Seshia 2

Project Proposals

• Due Friday, February 13 on bCourses
• Will discuss project topics on Monday
• Instructions about proposals will follow
• Meet me to discuss project ideas if you

haven’t already

3

The Boolean Satisfiability Problem
(SAT)

• Given:
A Boolean formula F(x1, x2, x3, …, xn)

• Can F evaluate to 1 (true)?
– Is F satisfiable?
– If yes, return values to xi’s (satisfying

assignment) that make F true

4

Why is SAT important?

• Theoretical importance:
– First NP-complete problem (Cook, 1971)

• Many practical applications:
– Model Checking
– Automatic Test Pattern Generation
– Combinational Equivalence Checking
– Planning in AI
– Automated Theorem Proving
– Software Verification
– …

Terminology

• Variable, Literal
• Operators: AND, OR, NOT
• Clause, Cube/Monomial
• Conjunctive Normal Form (CNF)
• Disjunctive Normal Form (DNF)

S. A. Seshia 5

(discussed in class)

6

An Example

• Inputs to SAT solvers are usually
represented in CNF

(a + b + c) (a’ + b’ + c) (a + b’ + c’) (a’ + b + c’)

7

An Example

• Inputs to SAT solvers are usually
represented in CNF

(a + b + c) (a’ + b’ + c) (a + b’ + c’) (a’ + b + c’)

8

Why CNF?

9

Why CNF?
• Input-related reason

– Can transform from circuit to CNF in linear time &
space (HOW?)

• Solver-related: Most SAT solver variants can
exploit CNF
– Easy to detect a conflict
– Easy to remember partial assignments that don’t work

(just add ‘conflict’ clauses)
– Other “ease of representation” points?

• Any reasons why CNF might NOT be a good
choice?

10

Complexity of k-SAT

• A SAT problem with input in CNF with at
most k literals in each clause

• Complexity for non-trivial values of k:
– 2-SAT: in P
– 3-SAT: NP-complete
– > 3-SAT: ?

11

Worst-Case
Complexity

12

Beyond Worst-Case Complexity

• What we really care about is “typical-case”
complexity

• But how can one measure “typical-case”?
• Two approaches:

– Is your problem a restricted form of 3-SAT?
That might be polynomial-time solvable

– Experiment with (random/domain-specific)
SAT instances and analyze solver run-time vs
formula parameters (#vars, #clauses, …)

13

Special Cases of 3-SAT that are
polynomial-time solvable

• 2-SAT
– T. Larrabee observed that many clauses in

ATPG tend to be 2-CNF
• Horn-SAT

– A clause is a Horn clause if at most one literal
is positive

– If all clauses are Horn, then problem is Horn-
SAT

– E.g. Application:- Checking that one finite-
state system refines (implements) another

S. A. Seshia 14

2-SAT Algorithm
• Linear-time algorithm (Aspvall, Plass, Tarjan, 1979)

– Think of clauses as implications
– Think of a graph with literals as nodes
– Find strongly connected components
– Variable and its negation should not be in the same

component

• Example 1:
(a’ + b) (b’ + c) (c’ + a)

• Example 2:
(a’ + b) (b’ + c) (c’ + a) (a + b) (a’ + b’)

S. A. Seshia 15

Horn-SAT

• Can we solve Horn-SAT in polynomial
time? How? [homework]
– Hint: again view clauses as implications.

• Variants:
– Negated Horn-SAT: Clauses with at most one

literal negative
– Renamable Horn-SAT: Doesn’t look like a

Horn-SAT problem, but turns into one when
polarities of some variables are flipped

16

Phase Transitions in k-SAT

• Consider a fixed-length clause model
– k-SAT means that each clause contains

exactly k literals
• Let SAT problem comprise m clauses and

n variables
– Randomly generate the problem for fixed k

and varying m and n
• Question: How does the problem hardness

vary with m/n ?

17

3-SAT Hardness

As n increases
hardness
transition

grows sharper

m / n

18

Transition
at m/n ~ 4.3

m / n

19

Threshold Conjecture

• For every k, there exists a c* such that
– For m/n < c*, as n   , problem is satisfiable

with probability 1
– For m/n > c*, as n   , problem is

unsatisfiable with probability 1
• Conjecture proved true for k=2 and c*=1
• For k=3, current status is that c* is in the

range 3.42 – 4.51

20

The (2+p)-SAT Model

• We know:
– 2-SAT is in P
– 3-SAT is in NP

• Problems are (typically) a mix of binary
and ternary clauses
– Let p  {0,1}
– Let problem comprise (1-p) fraction of binary

clauses and p of ternary
– So-called (2+p)-SAT problem

21

Experimentation with random
(2+p)-SAT

• When p < ~0.41
– Problem behaves like 2-SAT
– Linear scaling

• When p > ~0.42
– Problem behaves like 3-SAT
– Exponential scaling

• Intruiging observations, but don’t help us
predict behavior of problems in practice

22

Backbones and Backdoors
• Backbone [Parkes; Monasson et al.]

– Subset of literals that must be true in every satisfying
assignment (if one exists)

– Empirically related to hardness of problems
• Backdoor [Williams, Gomes, Selman]

– Subset of variables such that once you’ve given those
a suitable assignment (if one exists), the rest of the
problem is poly-time solvable

– Also empirically related to hardness
• But no easy way to find such backbones /

backdoors! 

23

A Classification of SAT Algorithms
• Davis-Putnam (DP)

– Based on resolution
• Davis-Logemann-Loveland (DLL/DPLL)

– Search-based
– Basis for current most successful solvers (CDCL)

• Stalmarck’s algorithm
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.
– Unable to prove unsatisfiability (incomplete)

24

Resolution

• Two CNF clauses that contain a variable x
in opposite phases (polarities) imply a new
CNF clause that contains all literals except
x and x’
(a + b) (a’ + c) = (a + b)(a’ + c)(b + c)

• Why is this true?

25

The Davis-Putnam Algorithm

• Iteratively select a variable x to perform
resolution on

• Retain only the newly added clauses and
the ones not containing x

• Termination: You either
– Derive the empty clause (conclude UNSAT)
– Or all variables have been selected

26

Resolution Example

How many clauses can you end up with?
(at any iteration)

27

A Classification of SAT Algorithms
• Davis-Putnam (DP)

– Based on resolution
• Davis-Logemann-Loveland (DLL/DPLL)

– Search-based
– Basis for current most successful solvers (CDCL)

• Stalmarck’s algorithm
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.
– Unable to prove unsatisfiability (incomplete)

28

DLL Algorithm: General Ideas

• Iteratively set variables until
– you find a satisfying assignment (done!)
– you reach a conflict (backtrack and try different value)

• Two main rules:
– Unit Literal Rule: If an unsatisfied clause has all but 1

literal set to 0, the remaining literal must be set to 1
(a + b + c) (d’ + e) (a + c’ + d)

– Conflict Rule: If all literals in a clause have been set
to 0, the formula is unsatisfiable along the current
assignment path

29

Search Tree

Decision
level

30

DLL Example 1

31

DLL Algorithm Pseudo-code

Preprocess

Branch

Propagate
implications of that
branch and deal

with conflicts

32

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

33

Pre-processing: Pure Literal Rule

• If a variable appears in only one phase
throughout the problem, then you can set
the corresponding literal to 1
– E.g. if we only see a’ in the CNF, set a’ to 1

(a to 0)
• Why?

34

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

35

Conflicts & Backtracking

• Chronological Backtracking
– Proposed in original DLL paper
– Backtrack to highest (largest) decision level

that has not been tried with both values
• But does this decision level have to be the reason

for the conflict?

36

Non-Chronological Backtracking

• Jump back to a decision level “higher”
than the last one

• Also combined with “conflict-driven
learning”
– Keep track of the reason for the conflict

• Proposed by Marques-Silva and Sakallah
in 1996
– Similar work by Bayardo and Schrag in ‘97

37

DLL Example 2

38

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

39

Branching

• Which variable (literal) to branch on (set)?
• This is determined by a “decision heuristic”

• What makes a “decision heuristic” good?

40

Decision Heuristic Desiderata

• If the problem is satisfiable
– Find a short partial satisfying assignment
– GREEDY: If setting a literal will satisfy many

clauses, it might be a good choice
• If the problem is unsatisfiable

– Reach conflicts quickly (rules out bigger
chunks of the search space)

– Similar to above: need to find a short partial
falsifying assignment

• Also: Heuristic must be cheap to compute!

41

Sample Decision Heuristics

• RAND
– Pick a literal to set at random
– What’s good about this? What’s not?

• Dynamic Largest Individual Sum (DLIS)
– Let cnt(l) = number of occurrences of literal l

in unsatisfied clauses
– Set the l with highest cnt(l)
– What’s good about this heuristic?
– Any shortcomings?

42

DLIS: A Typical Old-Style Heuristic
• Advantages

– Simple to state and intuitive
– Targeted towards satisfying many clauses
– Dynamic: Based on current search state

• Disadvantages
– Very expensive!
– Each time a literal is set, need to update counts for all

other literals that appear in those clauses
– Similar thing during backtracking (unsetting literals)

• Even though it is dynamic, it is “Markovian” –
somewhat static
– Is based on current state, without any knowledge of

the search path to that state

43

VSIDS: The Chaff SAT solver
heuristic

• Variable State Independent Decaying Sum
– For each literal l, maintain a VSIDS score
– Initially: set to cnt(l)
– Increment score by 1 each time it appears in an added

(conflict) clause
– Divide all scores by a constant (2) periodically (every N

backtracks)
• Advantages:

– Cheap: Why?
– Dynamic: Based on search history
– Steers search towards variables that are common

reasons for conflicts (and hence need to be set
differently)

44

Key Ideas so Far

• Data structures: Implication graph
• Conflict Analysis: Learn (using cuts in implication

graph) and use non-chronological backtracking
• Decision heuristic: must be dynamic, low

overhead, quick to conflict/solution

• Principle: Keep #(memory accesses)/step low
– A step  a primitive operation for SAT solving, such

as a branch

45

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

46

Unit Propagation
• Also called Boolean constraint propagation

(BCP)
• Set a literal and propagate its implications

– Find all clauses that become unit clauses
– Detect conflicts

• Backtracking is the reverse of BCP
– Need to unset a literal and ‘rollback’

• In practice: Most of solver time is spent in
BCP
– Must optimize!

47

BCP

• Suppose literal l is set. How much time will
it take to propagate just that assignment?

• How do we check if a clause has become
a unit clause?

• How do we know if there’s a conflict?

48

• Introductory BCP slides

49

Detecting when a clause becomes
unit

• Watch only two literals per clause. Why
does this work?

• If one of the watched literals is assigned 0,
what should we do?

• A clause has become unit if
– Literal assigned 0 must continue to be

watched, other watched literal unassigned
• What if other watched literal is 0?
• What if a watched literal is assigned 1?

50

• Lintao’s BCP example

51

2-literal Watching

• In a L-literal clause, L  3, which 2 literals
should we watch?

52

Comparison:
Naïve 2-counters/clause vs 2-literal watching

• When a literal is set to 1,
update counters for all
clauses it appears in

• Same when literal is set
to 0

• If a literal is set, need to
update each clause the
variable appears in

• During backtrack, must
update counters

• No need for update

• Update watched literal

• If a literal is set to 0, need
to update only each
clause it is watched in

• No updates needed
during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit

53

zChaff Relative Cache Performance

54

Key Ideas in Modern DLL SAT
Solving

• Data structures: Implication graph
• Conflict Analysis: Learn (using cuts in implication

graph) and use non-chronological backtracking
• Decision heuristic: must be dynamic, low

overhead, quick to conflict/solution
• Unit propagation (BCP): 2-literal watching helps

keep memory accesses down

• Principle: Keep #(memory accesses)/step low
– A step  a primitive operation for SAT solving, such

as a branch

55

Other Techniques
• Random Restarts

– Periodically throw away current decision stack and
start from the beginning

• Why will this change the search on restart?
– Used in most modern SAT solvers

• Clause deletion
– Conflict clauses take up memory

• What’s the worst-case blow-up?
– Delete periodically based on some heuristic (“age”,

length, etc.)
• Preprocessing/“Inprocessing” and Rewriting

techniques give a lot of performance
improvements in recent solvers

