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Computer-Aided Verification
(Informally)

Does the system do
what it Is supposed to do?
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The End User’s Perspective

Does the system do
what it Is supposed to do?
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The Engineer’s Perspective

Does the implemented system
meet Iits specifications?
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The Mathematician’s
Perspective

Prove or disprove (verify) that
the mathematical model of the system
satisfies a mathematical specification
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Formal Methods

Rigorous mathematical / algorithmic
techniques for specification, design,
verification and maintenance of
computational systems.

The essence: It's about PROOF
« Specify proof obligations
* Prove that system meets those obligations
« Synthesize provably-correct system
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What we’ll do today

e |Introductions: to Sanjit and others

* Brief Intro. to the main course topics
— Motivation

— Temporal Logic, Model Checking, SAT, and
Satisfiability Modulo Theories (SMT)

— History, Opportunities, Challenges
e Course Logistics
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My Research

“Formal Methods: Specification, Verification,

Synthesis”
|4 N { ‘—E;?
i

Theory Practice
Computational Logic, CAD for VLSI/Bio,
Algorithms, Computer Security,
Learning Theory, Embedded Systems,
Optimization Education

Example: Learning+Verification for Auto-Grading

Lab-based Courses
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Class Introductions

Please introduce yourselves
-- state name and research interests/areas

(Programming Systems, Computer Security,
CAD, Embedded Systems, Synthetic
Biology, Control Theory, etc.)
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Computer-Aided Verification
o Automatically verifying the correctness of

systems
System >
Environment > Verifier > B
Property s Yes (system correct)

/ no (here’s a bug)

* Questions for today:
— Is it relevant?
— Is it feasible?
— What will we study?

S. A. Seshia
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Ariane disaster, 1996

$500 million software failure

. FDIV error, 1994
$500 million
T T P

Toyota Recalls 1.9 Million Prius Hybrids

Over Software Flaw

By leremy Hsu
Posted 12 Feb 2014 | 21:55 GMT

Bugs cost Time, Money,
Lives,
S. A. Seshia

=meblast .exe> (the primary executable of the exploit)
I just want to say LOVE YOU SAM]|!

billy gates why do you make this possikle 7 Stop
making money and fix your softwarel |
windowsupdate . com

start %=

tftp -i %5 GET %=

£4.%d.%4.8d

%3 %3 . %31 . %1

Estimated worst-case worm cost:

> $50 billion
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An Example from Embedded/Cyber-
Physical Systems

Medical devices run on software too...
software defects can have life-
threatening consequences.

[Journal of Pacing and Clinical / /i
Electrophysiology, 2004] \ e /
. . . A
“the patient collapsed while walking towards [different device]

the cashier after refueling his car [...] A week later the
patient complained to his physician about an increasing
feeling of unwell-being since the fall.”

“In 1 of every 12,000 settings, the software can cause an
error in the programming resulting in the possibility of

S'A%gggucmg paced rates up to 185 beats/min. .



“It's an Area with a Pessimistic View!”
No, not really.

* The theory underlying algorithmic verification
IS beautiful

 It’s about the notion of PROOF

e It’s Interdisciplinary

 The implementations are often non-trivial
— Scaling up needs careful hacking

e |t's fun to work on!

S. A. Seshia
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Is Verification Feasible?

o “Easiest” non-trivial verification problem is
NP-hard (SAT)

* But the outlook for practice is less gloomy
than for theory...

— More hardware resources
— Better algorithms

S. A. Seshia
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Speed-up (log scale)

My Experience with SAT Solving

Speed-up of 2012 solver over other solvers
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Experience with SPIN Model Checker

[G. Holzmann]

some algorithmic improvements in the last two decades

Memory 10000

(Megabytes)
1000

100

10 available

1

a sample verification problem from 1980
tpc — a logic model of a telephone switch
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Topics In this Course

 Computational Engines
— Boolean satisfiablility (SAT)
— Satisfiability modulo theories (SMT)
— Model checking
— Syntax-guided synthesis (SyGuS)
 Advanced Topics (“Research Frontiers”)
— Quantitative/Probabilistic verification
— Deduction + Inductive Learning
— Synthesis from multi-modal specifications
— Human-Computer Interaction & Verification

— New application domains
s A seshie— --- (IMore later in this lecture)
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S. A. Seshia

Topics of this Course
(another view)

Application Domains

Circuits, Software, Networks, Hybrid
Systems, Biological Systems, etc.

Verification Strategies

Automata-theoretic, Symbolic,
Abstraction, Learning, etc.

Computational Engines
SAT, BDDs, SMT
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S. A. Seshia

Boolean Satisfiability (SAT)

Pq

P

Pn

Is there an assignment to the p; variables
S.t. gevaluates to 17
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Two Applications of SAT

* Equivalence checking of circuits

— Given an initial (unoptimized) Boolean circuit and
Its optimized version, are the two circuits
equivalent?

— Standard industry CAD problem
 Malware detection (security)

— Given a known malicious program and a
potentially malicious program, are these
“equivalent”?

e Many other applications:

— Cryptanalysis, test generation, model checking,
logic synthesis, ....

S. A. Seshia
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Satisfiability Modulo Theories
(SMT)

Py X=Yy

W & OXFFFF = X

P, X% 26 =v

Is there an assignment to the x,y,z,w variables

S.t. gevaluates to 17
S. A. Seshia 22



Applications of SMT

* Pretty much everywhere SAT is used

— The original problem usually has richer types
than just Booleans!

o To date: especially effective In
— software model checking
— test generation
— software synthesis
— finding security vulnerabilities

— high-level (RTL and above) hardware
verification

S. A. Seshia
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Model Checking
e Broad Defn:
A collection of algorithmic methods
based on state space exploration

used to verify If a system satisfies a formal
specification.

e Original Defn: (Clarke)

A technique to check if a finite-state system
IS a model of (satisfies) a temporal logic

property.

S. A. Seshia
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Visualizing Model Checking

"T'wo trains, one bridge”-UML model transformed with Hugo

S.A. Seshia [Moritz Hammer, Uni. Muenchen]




Model Checking, (Over)Simplified

 Model checking “is” graph traversal ?

 \What makes it interesting:
— The graph can be HUGE (possibly infinite)
— Nodes can represent many states (possibly
Infinitely many)
— How do we generate this graph from a system
description (like source code)?

— Behaviors/Properties can be complicated (e.qg.
temporal logic)

S. A. Seshia
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A Brief History of Model Checking

 1977: Pnueli introduces use of (linear) temporal
logic for specifying program properties over time
[1996 Turing Award]

e 1981: Model checking introduced by Clarke &
Emerson and Quielle & Sifakis
— Based on explicitly traversing the graph
— capacity limited by “state explosion”

e 1986: Vardi & Wolper introduce “automata-theoretic”

framework for model checking
— Late 80s: Kurshan develops automata-theoretic verifier

e Early - mid 80s: Gerard Holzmann starts work on
the SPIN model checker

S. A. Seshia 27



A Brief History of Model Checking

e 1986:. Bryant publishes paper on BDDs

e 1987: McMillan comes up with idea for “Symbolic
Model Checking” (using BDDs) — SMV system

— First step towards tackling state explosion

e 1987-1999: Flurry of activity on finite-state model
checking with BDDs, lots of progress using:
abstraction, compositional reasoning, ...
— More techniques to tackle state explosion

e 1990-95: Timed Automata introduced by Alur & Dill,

model checking algorithms introduced; generalized
to Hybrid Automata by Alur, Henzinger and others

S. A. Seshia 28



A Brief History of Model Checking

e 1999: Clarke et al. introduce “Bounded Model
Checking” using SAT
— SAT solvers start getting much faster
— BMC found very useful for debugging hardware systems

e 1999: Model checking hardware systems (at
Boolean level) enters industrial use

— IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper
JasperGold
e 1999-2004: Model checking + theorem proving:
software and high-level hardware comes of age
— SLAM project at MSR, SAL at SRI, UCLID at CMU
— Decision procedures (SMT solvers) get much faster
— Software verifiers: Blast, CMC, Bandera, MOPS, ...

— SLAM becomes a Microsoft product “Static Driver Verifier”
S. A. Seshia 29



A Brief History of Model Checking

e 2005-date: Model Checking is part of the standard
iIndustrial flow. Some new techniques and
applications arise:

— Combination with simulation (hardware) and static
analysis/testing (software) [Many univ/industry groups]

— Checking for termination in software [Microsoft]
— Program synthesis [Berkeley, Microsoft, MIT, Penn, ...]

— Lots of progress in verification of concurrent software
[Microsoft CHESS project]

 Clarke, Emerson, Sifakis get ACM Turing Award,;
SAT solving advances are recognized

WHAT'S NEXT?!

S. A. Seshia
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Research Frontiers
In Formal Verification

 Three Themes:
— New Demands on Computational Engines
— New Applications

— The “Human Aspect”
o Steps that require significant human input
o Systems with humans in the loop

-> suggested project topics next week

S. A. Seshia
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Formal Methods for Education

Goal: To enable personalized learning for lab-based courses in science and

engineering = CPSGrader, deployed on edX and on campus
3 CyberSim - o IEN

| | ] Wall
Gl % )
. Front Left Cliff Front Right Cliff @0

environment ‘L Environment - Navigation and Hill Climb 1.xml ' . Left Bump Right Bump .
) : Caster Wheel Drop
statechart % ..\src\LabVIEW\Statechart\Simulation Statechart.vi .-I-\
e ] ®o | et Dist (mm) Net Angle (d b 1@
record [} Simulation Record.xml ‘ n . ‘
: teciet ~ /o o | Right Cliff

feedback mode || debug hill clinfy

Left Wheel (mm/s)  © @ @ . @ ®  Right Wheel (mm/s)

500- @) Left Wheel Drop -ght Wheel Drop @ 500+
- » -

: accelerometer :
200< 200=
I .

o: 03

simulation running . sequence number [o simulation time (s) | 0.000 -200< 0.5+ -200%

5 - :

-5Q0-

-0.5 !
J 0
-1
Start ﬁ Camera 4 Check Grade
Pause Stop 0 Exit
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Formal Methods for Robotics

Goal: To synthesize motion plans automatically for a group of robots with complex
dynamics for Linear Temporal Logic (LTL) specification

Tool: ComPlan

VIDEO——>

S-A-Seshia  https://www.youtube.com/watch?v=pSjGwhH29Zs
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Formal Methods for Networking

Networks Tomorrow
[slide due to G. Varghese]

e Online services = latency, cost sensitive
e Merchant Silicon = Build your own router
* Rise of Data centers = Custom networks

o Software defined Networks (SDNs) = custom
design “routing program”

e P4 (next generation SDN) - redefine hardware
forwarding at runtime

34



Digital Hardware Design as Inspiration?

[slide due to G. Varghese]

:

Policy Language, Test Packet
Semantics

Synthesis (e.g.,
Forwarding Rules)

Performance verification? .

Network Topology

Testbench &

Functional
Description (RTL)

Functional
Verification

Logical
Synthesis

Place & Route

Design Rule
Checking (DRC)

Vectors

Generation

—>

esign
Static checking

: (Reachability & beyond) :
SchematicyRys) A\ Wiring Checkers v

Parasitic
Extraction Interference

estimation?

Electronic Design Automation Network Design Automation
(McKeown SIGCOMM 2012) (NDA)?




Course Logistics

 Check out the webpage:
www.eecs.berkeley.edu/~sseshia/219c

o Tentative class schedule is up

— 2007 Turing Award lecture screening next
Monday

— Next class will be Jan 28
— IMP: Think about project topics in the interim

S. A. Seshia
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Course Outline

e 2 parts

e Part I: Model Checking, Boolean reasoning
(SAT, BDDs), SMT

— Basics, how to use these techniques, and how
to extend them further

e Part Il: Advanced Topics

— The challenging problems that remain to be
addressed

S. A. Seshia
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Reference Books

e See list on the website
o Copies will be on reserve at Engg Liby
e e-Handouts for most material

S. A. Seshia
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Grading

e Scribing lectures (20%)

— 2 lectures per person: Scribe one lecture, edit another
lecture

— Sign-up sheet next week

e Paper discussions / class participation (20%)
— Last month of the course
 Project (60%)
— Do original research, theoretical or applied
— Sample topics will be announced by end of this week
— Project proposal due mid Feb.
— Culminates In final presentation + written paper

— ~50% of past projects led to conference papers!
S. A. Seshia
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Misc.

o Office hours: W 1:30 — 2:30, and by
appointment

* Pre-requisites: check webpage; come talk
to me If unsure about taking the course

— Undergraduates need special permission to
take this class

S. A. Seshia
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Related Classes this Semester

« Embedded Systems [249B — Lee]

e Logic Synthesis for Hardware Systems
[219B — Kuehlmann]

 Numerical Simulation 2 [290A —
Roychowdhury]

* Nonlinear Control [222 — Tomlin]
 Network Security [261N — Paxson]

JOINT PROJECTS ARE ENCOURAGED

S. A. Seshia
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