
EECS 219C:
Computer-Aided Verification

Introduction & Overview

Sanjit A. Seshia
EECS, UC Berkeley

S. A. Seshia 2

Computer-Aided Verification
(informally)

Does the system do
what it is supposed to do?

S. A. Seshia 3

The End User’s Perspective

Does the system do
what it is supposed to do?

S. A. Seshia 4

The Engineer’s Perspective

Does the implemented system
meet its specifications?

S. A. Seshia 5

The Mathematician’s
Perspective

Prove or disprove (verify) that
the mathematical model of the system
satisfies a mathematical specification

x(t) = f(x(t), u(t))
.

S. A. Seshia 6

Formal Methods

Rigorous mathematical / algorithmic
techniques for specification, design,

verification and maintenance of
computational systems.

The essence: It’s about PROOF
• Specify proof obligations
• Prove that system meets those obligations
• Synthesize provably-correct system

S. A. Seshia 7

What we’ll do today

• Introductions: to Sanjit and others
• Brief Intro. to the main course topics

– Motivation
– Temporal Logic, Model Checking, SAT, and

Satisfiability Modulo Theories (SMT)
– History, Opportunities, Challenges

• Course Logistics

S. A. Seshia 8

My Research

Theory Practice

+

Example: Learning+Verification for Auto-Grading
Lab-based Courses

Computational Logic,
Algorithms,
Learning Theory,
Optimization

CAD for VLSI/Bio,
Computer Security,
Embedded Systems,
Education

“Formal Methods: Specification, Verification,
Synthesis”

S. A. Seshia 9

Class Introductions

Please introduce yourselves
-- state name and research interests/areas

(Programming Systems, Computer Security,
CAD, Embedded Systems, Synthetic

Biology, Control Theory, etc.)

S. A. Seshia 10

Computer-Aided Verification
• Automatically verifying the correctness of

systems

• Questions for today:
– Is it relevant?
– Is it feasible?
– What will we study?

Verifier
System

Property

B
Yes (system correct)
/ no (here’s a bug)

Environment

S. A. Seshia 11

Ariane disaster, 1996
$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost:
> $50 billion

Bugs cost Time, Money,
Lives, …

S. A. Seshia 12

An Example from Embedded/Cyber-
Physical Systems

“In 1 of every 12,000 settings, the software can cause an
error in the programming resulting in the possibility of
producing paced rates up to 185 beats/min.”

Medical devices run on software too…
software defects can have life-
threatening consequences.

“the patient collapsed while walking towards
the cashier after refueling his car […] A week later the
patient complained to his physician about an increasing
feeling of unwell-being since the fall.”

[different device]

[Journal of Pacing and Clinical
Electrophysiology, 2004]

S. A. Seshia 13

“It’s an Area with a Pessimistic View!”
No, not really.

• The theory underlying algorithmic verification
is beautiful

• It’s about the notion of PROOF
• It’s interdisciplinary
• The implementations are often non-trivial

– Scaling up needs careful hacking
• It’s fun to work on!

S. A. Seshia 14

Is Verification Feasible?

• “Easiest” non-trivial verification problem is
NP-hard (SAT)

• But the outlook for practice is less gloomy
than for theory…
– More hardware resources
– Better algorithms

S. A. Seshia 15

My Experience with SAT Solving
Speed-up of 2012 solver over other solvers

1

10

100

1,000

Gras
p (2

00
0)

zC
haff

 (2
00

1)
Berk

Min (2
00

2-0
3)

zC
haff

 (2
00

3-0
4)

Sieg
e (

20
04

)

Minisa
t +

 SatE
lite

 (2
00

5)
Minisa

t2
(20

06
)

Rsa
t +

 SatE
lite

 (2
00

7)
Prec

osa
t (2

00
9)

Cryp
tominisa

t (2
01

0)

Gluco
se

 2.
0 (

20
11

)

Gluco
se

 2.
1 (

20
12

)

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

S. A. Seshia 16

Experience with SPIN Model Checker
[G. Holzmann]

S. A. Seshia 17

Topics in this Course
• Computational Engines

– Boolean satisfiability (SAT)
– Satisfiability modulo theories (SMT)
– Model checking
– Syntax-guided synthesis (SyGuS)

• Advanced Topics (“Research Frontiers”)
– Quantitative/Probabilistic verification
– Deduction + Inductive Learning
– Synthesis from multi-modal specifications
– Human-Computer Interaction & Verification
– New application domains
– … (more later in this lecture)

S. A. Seshia 18

Topics of this Course
(another view)

Computational Engines

SAT, BDDs, SMT

Verification Strategies
Automata-theoretic, Symbolic,

Abstraction, Learning, etc.

Application Domains
Circuits, Software, Networks, Hybrid

Systems, Biological Systems, etc.

S. A. Seshia 20

Boolean Satisfiability (SAT)












.

.

.


p2

p1

pn

Is there an assignment to the pi variables
s.t.  evaluates to 1?

S. A. Seshia 21

Two Applications of SAT
• Equivalence checking of circuits

– Given an initial (unoptimized) Boolean circuit and
its optimized version, are the two circuits
equivalent?

– Standard industry CAD problem
• Malware detection (security)

– Given a known malicious program and a
potentially malicious program, are these
“equivalent”?

• Many other applications:
– Cryptanalysis, test generation, model checking,

logic synthesis, ….

S. A. Seshia 22

Satisfiability Modulo Theories
(SMT)












.

.

.


p2

p1

pn

Is there an assignment to the x,y,z,w variables
s.t.  evaluates to 1?

x + 2 z ¸ 1

x % 26 = v

w & 0xFFFF = x

x = y

S. A. Seshia 23

Applications of SMT
• Pretty much everywhere SAT is used

– The original problem usually has richer types
than just Booleans!

• To date: especially effective in
– software model checking
– test generation
– software synthesis
– finding security vulnerabilities
– high-level (RTL and above) hardware

verification

S. A. Seshia 24

Model Checking
• Broad Defn:

A collection of algorithmic methods
based on state space exploration

used to verify if a system satisfies a formal
specification.

• Original Defn: (Clarke)
A technique to check if a finite-state system

is a model of (satisfies) a temporal logic
property.

S. A. Seshia 25

Visualizing Model Checking

[Moritz Hammer, Uni. Muenchen]

S. A. Seshia 26

Model Checking, (Over)Simplified

• Model checking “is” graph traversal ?
• What makes it interesting:

– The graph can be HUGE (possibly infinite)
– Nodes can represent many states (possibly

infinitely many)
– How do we generate this graph from a system

description (like source code)?
– Behaviors/Properties can be complicated (e.g.

temporal logic)
– …

S. A. Seshia 27

A Brief History of Model Checking
• 1977: Pnueli introduces use of (linear) temporal

logic for specifying program properties over time
[1996 Turing Award]

• 1981: Model checking introduced by Clarke &
Emerson and Quielle & Sifakis
– Based on explicitly traversing the graph
– capacity limited by “state explosion”

• 1986: Vardi & Wolper introduce “automata-theoretic”
framework for model checking
– Late 80s: Kurshan develops automata-theoretic verifier

• Early - mid 80s: Gerard Holzmann starts work on
the SPIN model checker

S. A. Seshia 28

A Brief History of Model Checking
• 1986: Bryant publishes paper on BDDs
• 1987: McMillan comes up with idea for “Symbolic

Model Checking” (using BDDs) – SMV system
– First step towards tackling state explosion

• 1987-1999: Flurry of activity on finite-state model
checking with BDDs, lots of progress using:
abstraction, compositional reasoning, …
– More techniques to tackle state explosion

• 1990-95: Timed Automata introduced by Alur & Dill,
model checking algorithms introduced; generalized
to Hybrid Automata by Alur, Henzinger and others

S. A. Seshia 29

A Brief History of Model Checking
• 1999: Clarke et al. introduce “Bounded Model

Checking” using SAT
– SAT solvers start getting much faster
– BMC found very useful for debugging hardware systems

• 1999: Model checking hardware systems (at
Boolean level) enters industrial use
– IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper

JasperGold
• 1999-2004: Model checking + theorem proving:

software and high-level hardware comes of age
– SLAM project at MSR, SAL at SRI, UCLID at CMU
– Decision procedures (SMT solvers) get much faster
– Software verifiers: Blast, CMC, Bandera, MOPS, …
– SLAM becomes a Microsoft product “Static Driver Verifier”

S. A. Seshia 30

A Brief History of Model Checking
• 2005-date: Model Checking is part of the standard

industrial flow. Some new techniques and
applications arise:
– Combination with simulation (hardware) and static

analysis/testing (software) [Many univ/industry groups]
– Checking for termination in software [Microsoft]
– Program synthesis [Berkeley, Microsoft, MIT, Penn, …]
– Lots of progress in verification of concurrent software

[Microsoft CHESS project]
• Clarke, Emerson, Sifakis get ACM Turing Award;

SAT solving advances are recognized

WHAT’S NEXT?!

S. A. Seshia 31

Research Frontiers
in Formal Verification

• Three Themes:
– New Demands on Computational Engines
– New Applications
– The “Human Aspect”

• Steps that require significant human input
• Systems with humans in the loop

 suggested project topics next week

Formal Methods for Education

S. A. Seshia 32

Goal: To enable personalized learning for lab‐based courses in science and
engineering  CPSGrader, deployed on edX and on campus

Formal Methods for Robotics

S. A. Seshia 33

Goal: To synthesize motion plans automatically for a group of robots with complex
dynamics for Linear Temporal Logic (LTL) specification

Tool: ComPlan

https://www.youtube.com/watch?v=pSjGwhH29Zs

VIDEO

Networks	Tomorrow

• Online	services	 latency,	cost	sensitive
• Merchant	Silicon	 Build	your	own	router
• Rise	of	Data	centers	 Custom	networks
• Software	defined	Networks	(SDNs)	 custom	
design	“routing	program”

• P4	(next	generation	SDN)	 redefine	hardware	
forwarding	at	runtime	

34

Opportunity to custom design networks to optimize goal.
Potential simplifications but complex interactions, hard to get right

[slide due to G. Varghese]

Formal Methods for Networking

Specification

Functional
Description (RTL)

Testbench &
Vectors

Functional
Verification
Logical
Synthesis

Static Timing

Place & Route

Design Rule
Checking (DRC)

Layout vs
Schematic (LVS)
Parasitic
Extraction

Manufacture
& Validate

Specification

Policy Language,
Semantics

Test Packet
Generation

Verification

Synthesis (e.g.,
Forwarding Rules)

Performance verification?
Network Topology

Design
Static checking

(Reachability & beyond)

Wiring Checkers

Interference
estimation?

Dynamic checkers/
debuggers

Electronic Design Automation
(McKeown SIGCOMM 2012)

Network Design Automation
(NDA)?

Digital Hardware Design as Inspiration?
[slide due to G. Varghese]

S. A. Seshia 36

Course Logistics

• Check out the webpage:
www.eecs.berkeley.edu/~sseshia/219c

• Tentative class schedule is up
– 2007 Turing Award lecture screening next

Monday
– Next class will be Jan 28
– IMP: Think about project topics in the interim

S. A. Seshia 37

Course Outline
• 2 parts
• Part I: Model Checking, Boolean reasoning

(SAT, BDDs), SMT
– Basics, how to use these techniques, and how

to extend them further
• Part II: Advanced Topics

– The challenging problems that remain to be
addressed

S. A. Seshia 38

Reference Books
• See list on the website
• Copies will be on reserve at Engg Liby
• e-Handouts for most material

S. A. Seshia 39

Grading
• Scribing lectures (20%)

– 2 lectures per person: Scribe one lecture, edit another
lecture

– Sign-up sheet next week
• Paper discussions / class participation (20%)

– Last month of the course
• Project (60%)

– Do original research, theoretical or applied
– Sample topics will be announced by end of this week
– Project proposal due mid Feb.
– Culminates in final presentation + written paper
– ~50% of past projects led to conference papers!

S. A. Seshia 40

Misc.

• Office hours: W 1:30 – 2:30, and by
appointment

• Pre-requisites: check webpage; come talk
to me if unsure about taking the course
– Undergraduates need special permission to

take this class

S. A. Seshia 41

Related Classes this Semester
• Embedded Systems [249B – Lee]
• Logic Synthesis for Hardware Systems

[219B – Kuehlmann]
• Numerical Simulation 2 [290A –

Roychowdhury]
• Nonlinear Control [222 – Tomlin]
• Network Security [261N – Paxson]
• …

JOINT PROJECTS ARE ENCOURAGED

