EECS 219C.:
Computer-Aided Verification

Introduction & Overview

Sanjit A. Seshia
EECS, UC Berkeley

Computer-Aided Verification
(Informally)

Does the system do
what it Is supposed to do?

S. A. Seshia

The End User’s Perspective

Does the system do
what it Is supposed to do?

S. A. Seshia

The Engineer’s Perspective

Does the implemented system
meet Iits specifications?

S. A. Seshia

The Mathematician’s
Perspective

Prove or disprove (verify) that
the mathematical model of the system
satisfies a mathematical specification

-G 02 o=fw.u0

S. A. Seshia

Formal Methods

Rigorous mathematical / algorithmic
techniques for specification, design,
verification and maintenance of
computational systems.

The essence: It's about PROOF
« Specify proof obligations
* Prove that system meets those obligations
« Synthesize provably-correct system

S. A. Seshia

What we’ll do today

e |Introductions: to Sanjit and others

* Brief Intro. to the main course topics
— Motivation

— Temporal Logic, Model Checking, SAT, and
Satisfiability Modulo Theories (SMT)

— History, Opportunities, Challenges
e Course Logistics

S. A. Seshia

My Research

“Formal Methods: Specification, Verification,

Synthesis”
|4 N { ‘—E;?
i

Theory Practice
Computational Logic, CAD for VLSI/Bio,
Algorithms, Computer Security,
Learning Theory, Embedded Systems,
Optimization Education

Example: Learning+Verification for Auto-Grading

Lab-based Courses
S. A. Seshia

Class Introductions

Please introduce yourselves
-- state name and research interests/areas

(Programming Systems, Computer Security,
CAD, Embedded Systems, Synthetic
Biology, Control Theory, etc.)

S. A. Seshia

Computer-Aided Verification
o Automatically verifying the correctness of

systems
System >
Environment > Verifier > B
Property s Yes (system correct)

/ no (here’s a bug)

* Questions for today:
— Is it relevant?
— Is it feasible?
— What will we study?

S. A. Seshia

10

Ariane disaster, 1996

$500 million software failure

. FDIV error, 1994
$500 million
T T P

Toyota Recalls 1.9 Million Prius Hybrids

Over Software Flaw

By leremy Hsu
Posted 12 Feb 2014 | 21:55 GMT

Bugs cost Time, Money,
Lives,
S. A. Seshia

=meblast .exe> (the primary executable of the exploit)
I just want to say LOVE YOU SAM]|!

billy gates why do you make this possikle 7 Stop
making money and fix your softwarel |
windowsupdate . com

start %=

tftp -i %5 GET %=

£4.%d.%4.8d

%3 %3 . %31 . %1

Estimated worst-case worm cost:

> $50 billion

11

An Example from Embedded/Cyber-
Physical Systems

Medical devices run on software too...
software defects can have life-
threatening consequences.

[Journal of Pacing and Clinical / /i
Electrophysiology, 2004] \ e /
. . . A
“the patient collapsed while walking towards [different device]

the cashier after refueling his car [...] A week later the
patient complained to his physician about an increasing
feeling of unwell-being since the fall.”

“In 1 of every 12,000 settings, the software can cause an
error in the programming resulting in the possibility of

S'A%gggucmg paced rates up to 185 beats/min. .

“It's an Area with a Pessimistic View!”
No, not really.

* The theory underlying algorithmic verification
IS beautiful

 It’s about the notion of PROOF

e It’s Interdisciplinary

 The implementations are often non-trivial
— Scaling up needs careful hacking

e |t's fun to work on!

S. A. Seshia

13

Is Verification Feasible?

o “Easiest” non-trivial verification problem is
NP-hard (SAT)

* But the outlook for practice is less gloomy
than for theory...

— More hardware resources
— Better algorithms

S. A. Seshia

14

Speed-up (log scale)

My Experience with SAT Solving

Speed-up of 2012 solver over other solvers

1,000

100 ||

10 ||

1 .
S 2 %9& H & & & O P P
< & ¥ O N N N N N N & N
N N v 4 @ NZ 4 > > N G
2 @ \ \ S N 2> N S & Vv Vv
B & ? N\ < N3 N 9 0
Q} v X X 3 N N N
2 & > @sQ Q)
' .\6 Q‘6 o
&

15

Experience with SPIN Model Checker

[G. Holzmann]

some algorithmic improvements in the last two decades

Memory 10000

(Megabytes)
1000

100

10 available

1

a sample verification problem from 1980
tpc — a logic model of a telephone switch

S. A. Seshia 16

Topics In this Course

 Computational Engines
— Boolean satisfiablility (SAT)
— Satisfiability modulo theories (SMT)
— Model checking
— Syntax-guided synthesis (SyGuS)
 Advanced Topics (“Research Frontiers”)
— Quantitative/Probabilistic verification
— Deduction + Inductive Learning
— Synthesis from multi-modal specifications
— Human-Computer Interaction & Verification

— New application domains
s A seshie— --- (IMore later in this lecture)

17

S. A. Seshia

Topics of this Course
(another view)

Application Domains

Circuits, Software, Networks, Hybrid
Systems, Biological Systems, etc.

Verification Strategies

Automata-theoretic, Symbolic,
Abstraction, Learning, etc.

Computational Engines
SAT, BDDs, SMT

18

S. A. Seshia

Boolean Satisfiability (SAT)

Pq

P

Pn

Is there an assignment to the p; variables
S.t. gevaluates to 17

20

Two Applications of SAT

* Equivalence checking of circuits

— Given an initial (unoptimized) Boolean circuit and
Its optimized version, are the two circuits
equivalent?

— Standard industry CAD problem
 Malware detection (security)

— Given a known malicious program and a
potentially malicious program, are these
“equivalent”?

e Many other applications:

— Cryptanalysis, test generation, model checking,
logic synthesis,

S. A. Seshia

21

Satisfiability Modulo Theories
(SMT)

Py X=Yy

W & OXFFFF = X

P, X% 26 =v

Is there an assignment to the x,y,z,w variables

S.t. gevaluates to 17
S. A. Seshia 22

Applications of SMT

* Pretty much everywhere SAT is used

— The original problem usually has richer types
than just Booleans!

o To date: especially effective In
— software model checking
— test generation
— software synthesis
— finding security vulnerabilities

— high-level (RTL and above) hardware
verification

S. A. Seshia

23

Model Checking
e Broad Defn:
A collection of algorithmic methods
based on state space exploration

used to verify If a system satisfies a formal
specification.

e Original Defn: (Clarke)

A technique to check if a finite-state system
IS a model of (satisfies) a temporal logic

property.

S. A. Seshia

24

Visualizing Model Checking

"T'wo trains, one bridge”-UML model transformed with Hugo

S.A. Seshia [Moritz Hammer, Uni. Muenchen]

Model Checking, (Over)Simplified

 Model checking “is” graph traversal ?

 \What makes it interesting:
— The graph can be HUGE (possibly infinite)
— Nodes can represent many states (possibly
Infinitely many)
— How do we generate this graph from a system
description (like source code)?

— Behaviors/Properties can be complicated (e.qg.
temporal logic)

S. A. Seshia

26

A Brief History of Model Checking

 1977: Pnueli introduces use of (linear) temporal
logic for specifying program properties over time
[1996 Turing Award]

e 1981: Model checking introduced by Clarke &
Emerson and Quielle & Sifakis
— Based on explicitly traversing the graph
— capacity limited by “state explosion”

e 1986: Vardi & Wolper introduce “automata-theoretic”

framework for model checking
— Late 80s: Kurshan develops automata-theoretic verifier

e Early - mid 80s: Gerard Holzmann starts work on
the SPIN model checker

S. A. Seshia 27

A Brief History of Model Checking

e 1986:. Bryant publishes paper on BDDs

e 1987: McMillan comes up with idea for “Symbolic
Model Checking” (using BDDs) — SMV system

— First step towards tackling state explosion

e 1987-1999: Flurry of activity on finite-state model
checking with BDDs, lots of progress using:
abstraction, compositional reasoning, ...
— More techniques to tackle state explosion

e 1990-95: Timed Automata introduced by Alur & Dill,

model checking algorithms introduced; generalized
to Hybrid Automata by Alur, Henzinger and others

S. A. Seshia 28

A Brief History of Model Checking

e 1999: Clarke et al. introduce “Bounded Model
Checking” using SAT
— SAT solvers start getting much faster
— BMC found very useful for debugging hardware systems

e 1999: Model checking hardware systems (at
Boolean level) enters industrial use

— IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper
JasperGold
e 1999-2004: Model checking + theorem proving:
software and high-level hardware comes of age
— SLAM project at MSR, SAL at SRI, UCLID at CMU
— Decision procedures (SMT solvers) get much faster
— Software verifiers: Blast, CMC, Bandera, MOPS, ...

— SLAM becomes a Microsoft product “Static Driver Verifier”
S. A. Seshia 29

A Brief History of Model Checking

e 2005-date: Model Checking is part of the standard
iIndustrial flow. Some new techniques and
applications arise:

— Combination with simulation (hardware) and static
analysis/testing (software) [Many univ/industry groups]

— Checking for termination in software [Microsoft]
— Program synthesis [Berkeley, Microsoft, MIT, Penn, ...]

— Lots of progress in verification of concurrent software
[Microsoft CHESS project]

 Clarke, Emerson, Sifakis get ACM Turing Award,;
SAT solving advances are recognized

WHAT'S NEXT?!

S. A. Seshia

30

Research Frontiers
In Formal Verification

 Three Themes:
— New Demands on Computational Engines
— New Applications

— The “Human Aspect”
o Steps that require significant human input
o Systems with humans in the loop

-> suggested project topics next week

S. A. Seshia

31

Formal Methods for Education

Goal: To enable personalized learning for lab-based courses in science and

engineering = CPSGrader, deployed on edX and on campus
3 CyberSim - o IEN

| |] Wall
Gl %)
. Front Left Cliff Front Right Cliff @0

environment ‘L Environment - Navigation and Hill Climb 1.xml ' . Left Bump Right Bump .
) : Caster Wheel Drop
statechart % ..\src\LabVIEW\Statechart\Simulation Statechart.vi .-I-\
e] ®o | et Dist (mm) Net Angle (d b 1@
record [} Simulation Record.xml ‘ n . ‘
: teciet ~ /o o | Right Cliff

feedback mode || debug hill clinfy

Left Wheel (mm/s) © @ @ . @ ® Right Wheel (mm/s)

500- @) Left Wheel Drop -ght Wheel Drop @ 500+
- » -

: accelerometer :
200< 200=
I .

o: 03

simulation running . sequence number [o simulation time (s) | 0.000 -200< 0.5+ -200%

5 - :

-5Q0-

-0.5 !
J 0
-1
Start ﬁ Camera 4 Check Grade
Pause Stop 0 Exit

S. A. Seshia 32

Formal Methods for Robotics

Goal: To synthesize motion plans automatically for a group of robots with complex
dynamics for Linear Temporal Logic (LTL) specification

Tool: ComPlan

VIDEO——>

S-A-Seshia https://www.youtube.com/watch?v=pSjGwhH29Zs

33

Formal Methods for Networking

Networks Tomorrow
[slide due to G. Varghese]

e Online services = latency, cost sensitive
e Merchant Silicon = Build your own router
* Rise of Data centers = Custom networks

o Software defined Networks (SDNs) = custom
design “routing program”

e P4 (next generation SDN) - redefine hardware
forwarding at runtime

34

Digital Hardware Design as Inspiration?

[slide due to G. Varghese]

:

Policy Language, Test Packet
Semantics

Synthesis (e.g.,
Forwarding Rules)

Performance verification? .

Network Topology

Testbench &

Functional
Description (RTL)

Functional
Verification

Logical
Synthesis

Place & Route

Design Rule
Checking (DRC)

Vectors

Generation

—>

esign
Static checking

: (Reachability & beyond) :
SchematicyRys) A\ Wiring Checkers v

Parasitic
Extraction Interference

estimation?

Electronic Design Automation Network Design Automation
(McKeown SIGCOMM 2012) (NDA)?

Course Logistics

 Check out the webpage:
www.eecs.berkeley.edu/~sseshia/219c

o Tentative class schedule is up

— 2007 Turing Award lecture screening next
Monday

— Next class will be Jan 28
— IMP: Think about project topics in the interim

S. A. Seshia

36

Course Outline

e 2 parts

e Part I: Model Checking, Boolean reasoning
(SAT, BDDs), SMT

— Basics, how to use these techniques, and how
to extend them further

e Part Il: Advanced Topics

— The challenging problems that remain to be
addressed

S. A. Seshia

37

Reference Books

e See list on the website
o Copies will be on reserve at Engg Liby
e e-Handouts for most material

S. A. Seshia

38

Grading

e Scribing lectures (20%)

— 2 lectures per person: Scribe one lecture, edit another
lecture

— Sign-up sheet next week

e Paper discussions / class participation (20%)
— Last month of the course
 Project (60%)
— Do original research, theoretical or applied
— Sample topics will be announced by end of this week
— Project proposal due mid Feb.
— Culminates In final presentation + written paper

— ~50% of past projects led to conference papers!
S. A. Seshia

39

Misc.

o Office hours: W 1:30 — 2:30, and by
appointment

* Pre-requisites: check webpage; come talk
to me If unsure about taking the course

— Undergraduates need special permission to
take this class

S. A. Seshia

40

Related Classes this Semester

« Embedded Systems [249B — Lee]

e Logic Synthesis for Hardware Systems
[219B — Kuehlmann]

 Numerical Simulation 2 [290A —
Roychowdhury]

* Nonlinear Control [222 — Tomlin]
 Network Security [261N — Paxson]

JOINT PROJECTS ARE ENCOURAGED

S. A. Seshia

41

