
EECS 219C:  Computer-Aided Verification

Binary Decision Diagrams 
(BDDs)

Sanjit A. Seshia
EECS, UC Berkeley



2

Boolean Function Representations

• Syntactic: e.g.: CNF, DNF (SOP), Circuit
• Semantic: e.g.: Truth table, Binary 

Decision Tree, BDD

S. A. Seshia
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Reduced Ordered BDDs 
• Introduced by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper is one of 
the most highly cited papers in EECS 

• Useful data structure to represent Boolean 
functions
– Applications in logic synthesis, verification, 

program analysis, AI planning,  …
• Commonly known simply as BDDs

– Lee [1959] and Akers [1978] also presented BDDs, but 
not ROBDDs

• Many variants of BDDs have also proved useful
• Links to coding theory (trellises), etc.
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RoadMap for this Lecture

• Cofactor of a Boolean function

• From truth table to BDD

• Properties of BDDs

• Operating on BDDs

• Variants
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Cofactors
• A Boolean function F of n variables x1, x2, …, 

xn

F : {0,1}n  {0,1}
• Suppose we define new Boolean functions of 

n-1 variables as follows:
Fx1

(x2, …, xn)  = F(1, x2, x3, …, xn)
Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

• Fxi
and Fxi’

are called cofactors of F.               
Fxi

is the positive cofactor, and Fxi’
is the 

negative cofactor 



6

Shannon Expansion

• F(x1, …, xn) =  xi . Fxi
+  xi’ . Fxi’

• Proof?
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Shannon expansion with many 
variables

• F(x, y, z, w) = 
xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’
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Properties of Cofactors
• Suppose you construct a new function H 

from two existing functions F and G: e.g.,
– H = F’
– H = F.G
– H = F + G
– Etc.

• What is the relation between cofactors of H 
and those of F and G?
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Very Useful Property

• Cofactor of NOT is NOT of cofactors
• Cofactor of AND is AND of cofactors
• … 

• Works for any binary operator
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BDDs from Truth Tables
Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram 
(ROBDD, simply called BDD)
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Example: Odd Parity Function

Binary Decision Tree

a
b
c
d

Edge labels 
along a root-
leaf path form 
an assignment 
to a,b,c,d
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Nodes & Edges
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Ordering: variables appear in same 
order from root to leaf along any path

Each node is some 
cofactor of the function
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Reduction

• Identify Redundancies

• 3 Rules:
1. Merge equivalent leaves
2. Merge isomorphic nodes
3. Eliminate redundant tests
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Merge Equivalent Leaves
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Merge Isomorphic Nodes
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Eliminate Redundant Tests
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Example
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Example



20

Final ROBDD for Odd Parity Function
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Example of Rule 3
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What can BDDs be used for?
• Uniquely representing a Boolean function

– And a Boolean function can represent sets
• Symbolic simulation of a combinational (or 

sequential) circuit
• Equivalence checking and verification

– Satisfiability (SAT) solving
• Finding / counting all solutions to a SAT 

(combinatorial) problem
• Operations on “quantified” Boolean 

formulas
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(RO)BDDs are canonical
• Theorem (R. Bryant): If G, G’ are 

ROBDD’s of a Boolean function f with k 
inputs, using same variable ordering, then 
G and G’ are identical. 
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Sensitivity to Ordering
• Given a function with n inputs, one input ordering 

may require exponential # vertices in ROBDD, while 
other may be linear in size.

• Example: f = x1 x2 + x3 x4 + x5 x6
x1 < x2 < x3 < x4 < x5 < x6

1

2
3

4
5

0 1

6

x1 < x4 < x5 < x2 < x3 < x6

1
4

5
4

2

5

6

5

2

5

3 2
3

2

0 1
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Constructing BDDs in Practice

• Strategy: Define how to perform basic 
Boolean operations

• Build a few core operators and define 
everything else in terms of those

Advantage:
• Less programming work
• Easier to add new operators later by writing “wrappers”
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Core Operators

• Just two of them!
1. Restrict(Function F, variable v, constant 

k)
• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)
• “if-then-else” operator
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ITE
• Just like:

– “if then else” in a programming language
– A mux in hardware

• ITE(I(x), T(x), E(x))
– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0
ITE(I(x), T(x), E(x))
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The ITE Function

• ITE( I(x), T(x), E(x) ) 
• =
• I(x) . T(x)   +  I’(x). E(x) 
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What good is the ITE?

• How do we express
• NOT?

• OR?

• AND?
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How do we implement ITE?

• Divide and conquer!

• Use Shannon cofactoring…
• Recall: Operator of cofactors is Cofactor of 

operators…
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ITE Algorithm
ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; }
else { // general case

Let x be the topmost variable of I, T, E;
PosFactor = ITE(Ix , Tx , Ex) ;
NegFactor = ITE(Ix’ , Tx’ , Ex’);
R = new node labeled by x;
R.low = NegFactor; // R.low is 0-child of R

R.high = PosFactor; // R.high is 1-child of R

Reduce(R);
return R;

}
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Terminal Cases (complete these)
• ITE(1, T, E) = 

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) = 

• …
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General Case

• Still need to do cofactor (Restrict)

• How hard is that?
– Which variable are we cofactoring out? (2 

cases)
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Practical Issues

• Previous calls to ITE are cached
– “memoization”

• Every BDD node created goes into a 
“unique table”
– Before creating a new node R, look up this 

table
– Avoids need for reduction
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Sharing: Multi-Rooted DAG

• BDD for 4-bit adder:   
5 output bits  5 
Boolean functions

• Each output bit (of the 
sum & carry) is a 
distinct rooted BDD

• But they share sub-
DAGs



36

More on BDDs

• Circuit width and bounds on BDD size 
(reading exercise – slide summary posted)

• Dynamically changing variable ordering
• Some BDD variants
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Bounds on BDD Size: Warm-up

• Suppose the number of nodes at any level 
in a BDD is bounded above by B

• Then, what is an upper bound on the total 
number of nodes in the BDD?
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Cross-section of a BDD at level i

• Suppose a BDD represents Boolean 
function F(x1, x2, …, xn) with variable order 
x1 < x2 < … < xn

• Size of cross section of the BDD at level i 
is the number of distinct Boolean functions 
F’ that depend on xi given by
F’(xi, xi+1, …, xn) = F(v1, v2, …, vi-1, xi, …, xn)
for some Boolean constants vi’s (in {0,1})
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Circuit Width
• Consider a circuit representation of a Boolean 

function F
• Impose a linear order on the gates of the circuit

– Primary inputs and outputs are also considered as 
“gates” and primary output is at the end of the ordering

– Forward cross section at a gate g: set of wires going 
from output of g1 to input of g2 where  g1 · g < g2

– Similarly define reverse cross section: set of wires 
going from output of g1 to input of g2 where  g2 · g < g1

– Forward width (wf): maximum forward cross section 
size

– Similarly, reverse width wr
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BDD Upper Bounds from Circuit 
Widths

• Theorem: Let a circuit representing F with 
n variables have forward width wf and 
reverse width wr for some linear order L on 
its gates. Then, there is a BDD 
representing F of size bounded above by 
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BDD Ordering in Practice
• If we can derive a small upper bound using 

circuit width, then that’s fine
– Use the corresponding linear order on the variables

• What if we can’t? 

• There are many BDD variable ordering 
heuristics around, but the most common way to 
deal with variable ordering is to start with 
something “reasonable” and then swap variables 
around to improve BDD size
– DYNAMIC VARIABLE REORDERING  SIFTING
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Sifting

• Dynamic variable re-ordering, proposed by R. 
Rudell 

• Based on a primitive “swap” operation that 
interchanges xi and xi+1 in the variable order
– Key point: the swap is a local operation involving only 

levels i and i+1
• Overall idea: pick a variable xi and move it up 

and down the order using swaps until the 
process no longer improves the size
– A “hill climbing” strategy



43

Some BDD Variants

• Free BDDs (FBDDs)
– Relax the restriction that variables have to 

appear in the same order along all paths
– How can this help?  smaller BDD
– Is it canonical?  NO
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Some BDD Variants

• MTBDD (Multi-Terminal BDD)
– Terminal (leaf) values are not just 0 or 1, but 

some finite set of numerical values
– Represents function of Boolean variables with 

non-Boolean value (integer, rational)
• E.g., input-dependent delay in a circuit, transition 

probabilities in a Markov chain
– Similar reduction / construction rules to BDDs
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Some BDD packages

• CUDD – from Colorado University, Fabio 
Somenzi’s group
– PerlDD front-end to CUDD

• BuDDy – from IT Univ. of Copenhagen
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Reading

• Bryant’s 1992 survey paper is required 
reading (posted on bCourses)

• Optional reading: Don Knuth’s chapter on 
BDDs (posted on bCourses)


