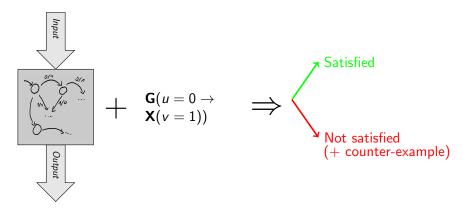
Synthesis from temporal logic

Guest Lecture 219C, Sanjit A. Seshia

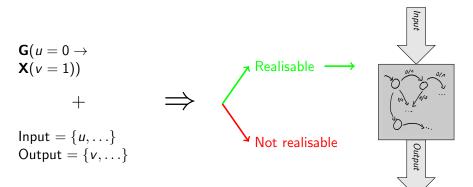
26th November 2012

Verification:

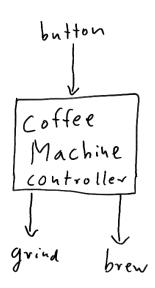


Verification and synthesis of reactive systems

Synthesis:



Synthesis of reactive systems - example



Atomic propositions

- $AP_I = \{ button \}$
- $AP_O = \{grind, brew\}$

Synthesis of reactive systems - example

button Coffee Machine controller

Atomic propositions

- $AP_I = \{ button \}$
- $AP_O = \{grind, brew\}$

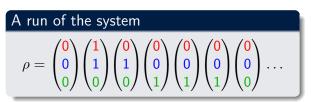
A run of the system $\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \dots$

Synthesis of reactive systems - example

button Coffee Machine <u>cont</u>roller

Atomic propositions

- $AP_I = \{ button \}$
- $AP_O = \{grind, brew\}$



Specification

Whenever the user presses the button, the grinding unit should be activated for the next 2 steps. After that, the grinding module should be inactive while the brewing unit brews for the next 3 steps.

Informal specification

Whenever the user presses the button, the grinding unit should be activated for the next 2 steps. After that, the grinding module should be inactive while the brewing unit brews for the next 3 steps.

Informal specification

Whenever the user presses the button, the grinding unit should be activated for the next 2 steps. After that, the grinding module should be inactive while the brewing unit brews for the next 3 steps.

Formal specification in linear-time temporal logic (LTL)

 $\mathbf{G}(button \rightarrow (grind \land \mathbf{X} grind \land \mathbf{XX} (brew \land \neg grind))$

 \land XXX (brew $\land \neg$ grind) \land XXXX (brew $\land \neg$ grind)))

Formal specification in linear-time temporal logic (LTL)

$$\mathbf{G}(button \rightarrow (grind \land \mathbf{X} grind \land \mathbf{XX} (brew \land \neg grind))$$

 \land XXX (brew $\land \neg$ grind) \land XXXX (brew $\land \neg$ grind)))

A surprise

The specification is *unrealisable*. Example:

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ ??? \\ 1 \end{pmatrix} \dots$$

What do we want as a result?

The computed implementation should be...

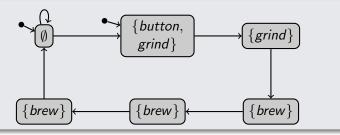
- …finite-state,
- ...deterministic, and
- ...non-terminating and input-responsive

What do we want as a result?

The computed implementation should be...

- …finite-state,
- ...deterministic, and
- ...non-terminating and input-responsive

Kripke structures

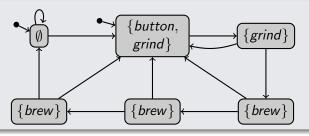


What do we want as a result?

The computed implementation should be...

- …finite-state,
- ...deterministic, and
- ...non-terminating and input-responsive

Kripke structures

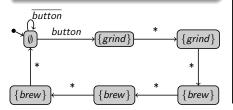


Adapted computation models

Moore machines

- $\mathcal{M} = (S, \Sigma', \Sigma^O, s_0, \delta, L)$ with:
 - Set of states S
 - Input/output alphabets Σ^{I}/Σ^{O}
 - Initial state s₀
 - Transition function $\delta: S \times \Sigma' \to S$

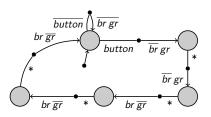
• State labeling:
$$L: S \to \Sigma^O$$

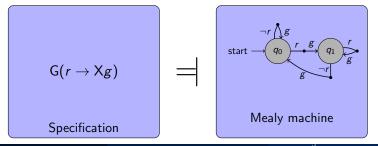


Mealy machines

$$\mathcal{M} = (S, \Sigma', \Sigma^O, s_0, \delta)$$
 with:

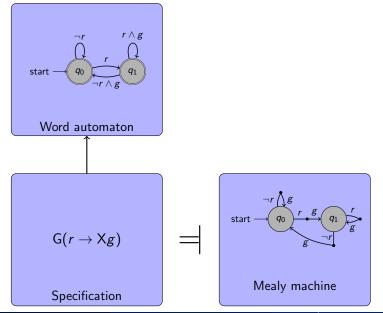
- Set of states S
- Input/output alphabets Σ^{I}/Σ^{O}
- Initial state s₀
- Transition function $\delta: S \times \Sigma' \to S \times \Sigma^O$





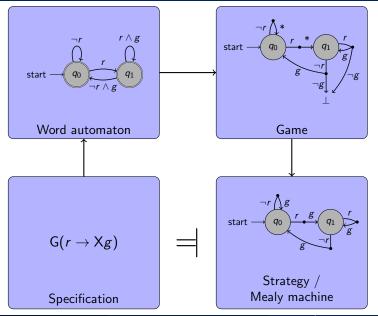
Ruediger Ehlers

General synthesis workflow



Ruediger Ehlers

General synthesis workflow



Ruediger Ehlers

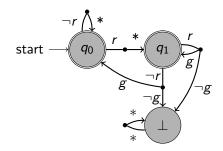
Synthesis from temporal logic

Definition

Every player in a (two-player) game $\mathcal{G} = (V_0, V_1, \Sigma_0, \Sigma_1, E_0, E_1, v_0, \mathcal{F})$ has:

- Positions
- Actions
- Transitions
- A goal

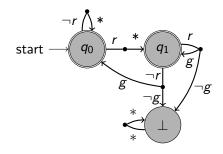
Additionally, there is some initial position.



Strategies

One player is the **system player**, whereas the other player is the **environment player**.

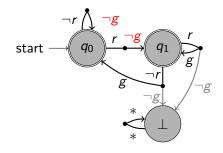
If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win a play by playing the strategy. We say that player p wins the game in such a case.



Strategies

One player is the **system player**, whereas the other player is the **environment player**.

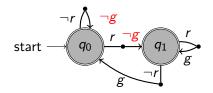
If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win a play by playing the strategy. We say that player p wins the game in such a case.



Strategies

One player is the **system player**, whereas the other player is the **environment player**.

If player $p \in \{0, 1\}$ has a **stategy** to win, then she can enforce to win a play by playing the strategy. We say that player p wins the game in such a case.

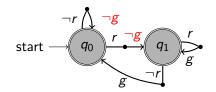


This is a Mealy Machine!

Strategies

One player is the **system player**, whereas the other player is the **environment player**.

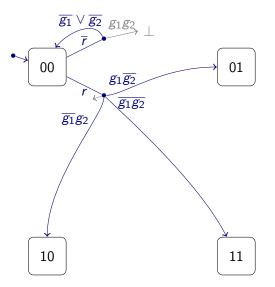
If player $p \in \{0,1\}$ has a **stategy** to win, then she can enforce to win a play by playing the strategy. We say that player p wins the game in such a case.

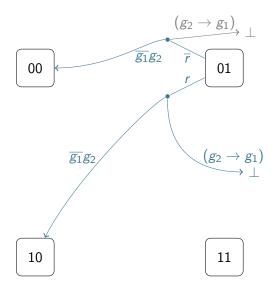


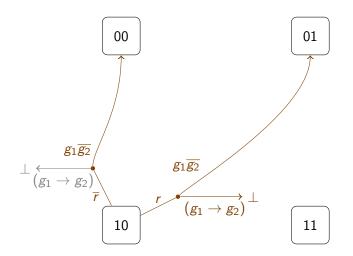
Strategies in Synthesis games

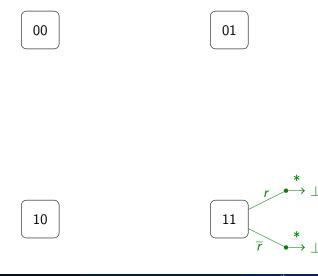
In games that correspond to a specification, winning strategies for the system player represent Mealy or Moore machines that satisfy the specification.

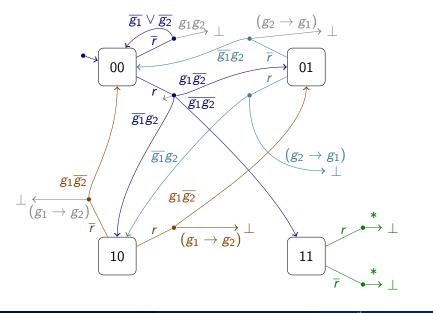
- How do we solve a game (determine the winner and a winning strategy for her)?
- What winning condition do we need to use for general LTL?
- How do we build games that correspond to specifications?

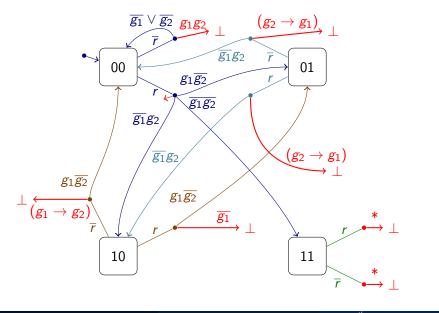


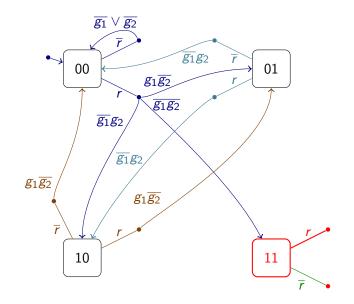


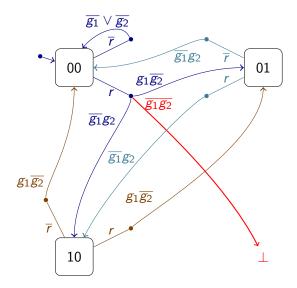


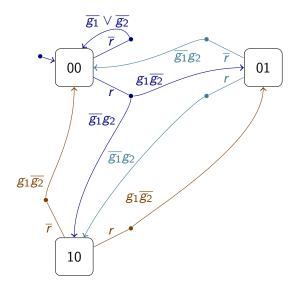


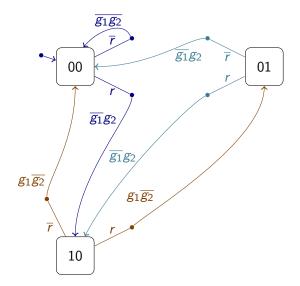




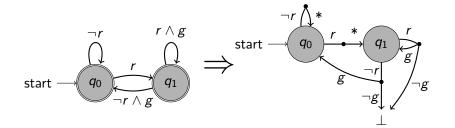




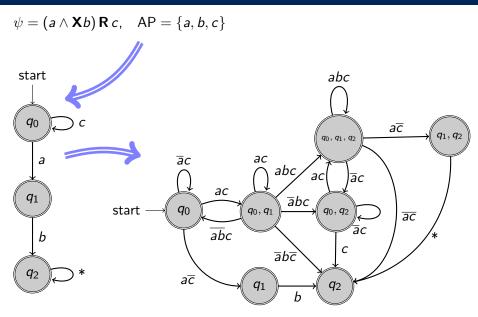




Building safety games from deterministic safety automata



Building deterministic safety automata



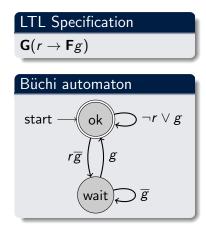
To get from safety to the general LTL case, we need to ...

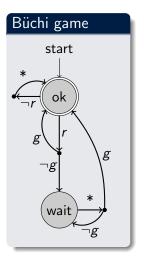
... scale up from the safety winning condition to something more complex

Upcoming:

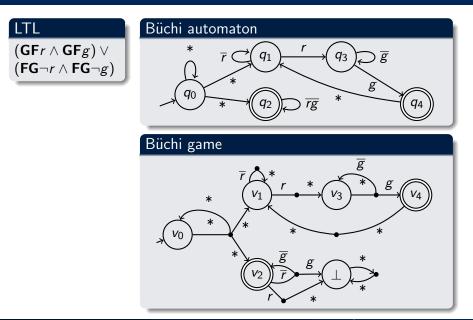
- Büchi games
- Parity games

Example deterministic Büchi automaton and game





On using non-deterministic Büchi automata



Properties of Büchi automata

- For every LTL formula, there exists a non-deterministic Büchi automaton
- For some LTL formulas, there exist no deterministic Büchi automata

Problem

The automaton \rightarrow game construction only works for *deterministic* automata

Solution

Use a richer automaton model/game winning condition: parity automata

Parity automata and games

6Fr->GFg 9 ā r 8 rg

Classical approach

- Construct a non-deterministic Büchi automaton from the LTL specification
- Translate the Büchi automaton to a deterministic parity automaton (Piterman, 2006)
- \rightarrow doubly-exponential blow-up!

More practical approach

Many LTL subsets allow building the deterministic parity automaton directly (see, e.g., Bloem et al., 2012, where this is done implicitly)

Safety: $W_{sys} = \nu X . (V_{env} \cap \overline{\perp} \cap \Box X) \cup (V_{sys} \cap \overline{\perp} \cap \Diamond X)$

Büchi:

Parity:

Safety:
$$W_{sys} = \nu X.(V_{env} \cap \overline{\perp} \cap \Box X) \cup (V_{sys} \cap \overline{\perp} \cap \Diamond X)$$

$$\begin{array}{ll} \mathsf{Büchi:} \quad W_{sys} = \nu X.\mu Y.(V_{env} \cap \overline{F} \cap \Box Y) \cup (V_{sys} \cap \overline{F} \cap \Diamond Y) \\ \cup (V_{env} \cap F \cap \Box X) \cup (V_{sys} \cap F \cap \Diamond X) \end{array}$$

Parity:

Safety:
$$W_{sys} = \nu X . (V_{env} \cap \overline{\perp} \cap \Box X) \cup (V_{sys} \cap \overline{\perp} \cap \Diamond X)$$

$$\begin{array}{ll} \mathsf{Büchi:} \quad W_{sys} = \nu X.\mu Y.(V_{env} \cap \overline{F} \cap \Box Y) \cup (V_{sys} \cap \overline{F} \cap \Diamond Y) \\ \cup (V_{env} \cap F \cap \Box X) \cup (V_{sys} \cap F \cap \Diamond X) \end{array}$$

$$\begin{array}{ll} \mathsf{Parity:} \quad W_{\mathsf{sys}} = \gamma X_{\mathsf{c}-1} \dots \nu X_2 . \mu X_1 . \nu X_0 . \\ \bigcup_{i \in \{\mathsf{c}-1, \dots, 0\}} (V_{\mathsf{env}} \cap C_i \cap \Box X_i) \cup (V_{\mathsf{sys}} \cap C_i \cap \Diamond X_i) \end{array}$$

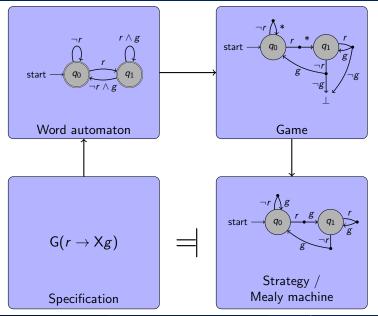
Safety:
$$W_{sys} = \nu X \cdot (V_{env} \cap \overline{\perp} \cap \Box X) \cup (V_{sys} \cap \overline{\perp} \cap \Diamond X)$$

$$\begin{array}{ll} \mathsf{Büchi:} \quad W_{sys} = \nu X.\mu Y.(V_{env} \cap \overline{F} \cap \Box Y) \cup (V_{sys} \cap \overline{F} \cap \Diamond Y) \\ \cup (V_{env} \cap F \cap \Box X) \cup (V_{sys} \cap F \cap \Diamond X) \end{array}$$

$$\begin{array}{ll} \mathsf{Parity:} \quad W_{\mathsf{sys}} = \gamma X_{c-1} \dots \nu X_2 \dots \mu X_1 \dots \nu X_0. \\ \bigcup_{i \in \{c-1, \dots, 0\}} (V_{\mathsf{env}} \cap C_i \cap \Box X_i) \cup (V_{\mathsf{sys}} \cap C_i \cap \Diamond X_i) \end{array}$$

All games have positional winning strategies. All complexities are polynomial (for some constant c)

Conceptual summary



Ruediger Ehlers

Synthesis from temporal logic

Efficiently implementing reactive synthesis

Symbolic data structures

- Binary decision diagrams
- \bullet Safety games: list of worst-case positions \rightarrow antichains

Targeting specific specification classes - Example 1/2

Specification form:

$$(a_1 \wedge a_2 \wedge \ldots \wedge a_n) \rightarrow (g_1 \wedge g_2 \wedge \ldots \wedge g_m)$$

for which every a_i and g_i is of one of the following forms:

(1)
$$\psi$$

(2) $G(\psi_1 \to X(\psi_2))$

(3) $GF(\psi)$

Efficiently implementing reactive synthesis

Symbolic data structures

- Binary decision diagrams
- \bullet Safety games: list of worst-case positions \rightarrow antichains

Targeting specific specification classes - Example 2/2

Specification form:

$$(a_1 \wedge a_2 \wedge \ldots \wedge a_n) \rightarrow (g_1 \wedge g_2 \wedge \ldots \wedge g_m)$$

for which most of a_1, \ldots, g_m are *safety* properties.

Reactive Synthesis - summary

Main concepts

- Mealy/Moore machines
- Deterministic word automata
- Games with ω -regular winning condition

Main difficulties

- Complexity! It is 2EXPTIME for LTL specifications
- Complicated constructions (e.g., Büchi→parity)

Main applications

- Automatic system construction
- Fast prototyping
- Specification debugging

- Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa'ar. Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911-938, 2012.
- Nir Piterman. From nondeterministic Buchi and Streett automata to deterministic parity automata. In *LICS*, pages 255–264. IEEE Computer Society, 2006.