
Synthesis from temporal logic

Guest Lecture
219C, Sanjit A. Seshia

26th November 2012

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 1 / 24

Verification and synthesis of reactive systems

Verification:

Input
O
utput

+ G(u = 0→
X(v = 1)) ⇒

Satisfied

Not satisfied
(+ counter-example)

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 2 / 24

Verification and synthesis of reactive systems

Synthesis:

G(u = 0→
X(v = 1))

+

Input = {u, . . .}
Output = {v , . . .}

⇒
Realisable

Not realisable

Input
O
utput

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 2 / 24

Synthesis of reactive systems - example

Atomic propositions

API = {button}
APO = {grind , brew}

A run of the system

ρ =

0
0
0

1
1
0

0
1
0

0
0
1

0
0
1

0
0
1

0
0
0

 . . .

Specification

Whenever the user presses the button, the grinding
unit should be activated for the next 2 steps. After
that, the grinding module should be inactive while
the brewing unit brews for the next 3 steps.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 3 / 24

Synthesis of reactive systems - example

Atomic propositions

API = {button}
APO = {grind , brew}

A run of the system

ρ =

0
0
0

1
1
0

0
1
0

0
0
1

0
0
1

0
0
1

0
0
0

 . . .

Specification

Whenever the user presses the button, the grinding
unit should be activated for the next 2 steps. After
that, the grinding module should be inactive while
the brewing unit brews for the next 3 steps.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 3 / 24

Synthesis of reactive systems - example

Atomic propositions

API = {button}
APO = {grind , brew}

A run of the system

ρ =

0
0
0

1
1
0

0
1
0

0
0
1

0
0
1

0
0
1

0
0
0

 . . .

Specification

Whenever the user presses the button, the grinding
unit should be activated for the next 2 steps. After
that, the grinding module should be inactive while
the brewing unit brews for the next 3 steps.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 3 / 24

Synthesis of reactive systems - formalizing the example

Informal specification

Whenever the user presses the button, the grinding unit should be
activated for the next 2 steps. After that, the grinding module should be
inactive while the brewing unit brews for the next 3 steps.

Formal specification in linear-time temporal logic (LTL)

G(button → (grind ∧ X grind ∧ XX (brew ∧ ¬grind)

∧ XXX (brew ∧ ¬grind) ∧ XXXX (brew ∧ ¬grind)))

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 4 / 24

Synthesis of reactive systems - formalizing the example

Informal specification

Whenever the user presses the button, the grinding unit should be
activated for the next 2 steps. After that, the grinding module should be
inactive while the brewing unit brews for the next 3 steps.

Formal specification in linear-time temporal logic (LTL)

G(button → (grind ∧ X grind ∧ XX (brew ∧ ¬grind)

∧ XXX (brew ∧ ¬grind) ∧ XXXX (brew ∧ ¬grind)))

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 4 / 24

Synthesis of reactive systems - analyzing the example

Formal specification in linear-time temporal logic (LTL)

G(button → (grind ∧ X grind ∧ XX (brew ∧ ¬grind)

∧ XXX (brew ∧ ¬grind) ∧ XXXX (brew ∧ ¬grind)))

A surprise

The specification is unrealisable.
Example:

ρ =

0
0
0

1
1
0

1
1
0

 0
???
1

 . . .

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 5 / 24

What do we want as a result?

The computed implementation should be...

...finite-state,

...deterministic, and

...non-terminating and input-responsive

Kripke structures

∅
{button,
grind} {grind}

{brew}{brew}{brew}

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 6 / 24

What do we want as a result?

The computed implementation should be...

...finite-state,

...deterministic, and

...non-terminating and input-responsive

Kripke structures

∅
{button,
grind} {grind}

{brew}{brew}{brew}

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 6 / 24

What do we want as a result?

The computed implementation should be...

...finite-state,

...deterministic, and

...non-terminating and input-responsive

Kripke structures

∅
{button,
grind} {grind}

{brew}{brew}{brew}

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 6 / 24

Adapted computation models

Moore machines

M = (S ,ΣI ,ΣO , s0, δ, L) with:

Set of states S

Input/output alphabets ΣI/ΣO

Initial state s0

Transition function
δ : S × ΣI → S

State labeling: L : S → ΣO

∅ {grind} {grind}

{brew}{brew}{brew}

button

button *

*

**

*

Mealy machines

M = (S ,ΣI ,ΣO , s0, δ) with:

Set of states S

Input/output alphabets ΣI/ΣO

Initial state s0

Transition function
δ : S × ΣI → S × ΣO

button br gr

button br gr
*

br gr

*br gr*br gr

*

br gr

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 7 / 24

General synthesis workflow

Specification
Mealy machine

G(r → Xg)

|=

q0start q1
r

¬r r ∧ g

¬r ∧ g

q0start q1

⊥

r *

¬r *

¬r

¬g
g

r

g

¬g

q0start q1
r g

¬r g

¬rg

r

g

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 8 / 24

General synthesis workflow

Specification

Word automaton

Mealy machine

G(r → Xg)

|=
q0start q1

r

¬r r ∧ g

¬r ∧ g

q0start q1

⊥

r *

¬r *

¬r

¬g
g

r

g

¬g

q0start q1
r g

¬r g

¬rg

r

g

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 8 / 24

General synthesis workflow

Specification

Word automaton Game

Strategy /
Mealy machine

G(r → Xg)

|=
q0start q1

r

¬r r ∧ g

¬r ∧ g

q0start q1

⊥

r *

¬r *

¬r

¬g
g

r

g

¬g

q0start q1
r g

¬r g

¬rg

r

g

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 8 / 24

Games

Definition

Every player in a (two-player) game
G = (V0,V1,Σ0,Σ1,E0,E1, v0,F)
has:

Positions

Actions

Transitions

A goal

Additionally, there is some initial
position.

q0start q1

⊥

r *

¬r *

¬r
¬g

g

r

g

¬g

∗

∗

1

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 9 / 24

Games for synthesis

Strategies

One player is the system player,
whereas the other player is the
environment player.
If player p ∈ {0, 1} has a stategy to
win, then she can enforce to win a
play by playing the strategy. We say
that player p wins the game in such
a case.

q0start q1

⊥

r *

¬r *

¬rg

r

g

¬g
¬g

∗

∗

Strategies in Synthesis games

In games that correspond to a specification, winning strategies for the
system player represent Mealy or Moore machines that satisfy the
specification.

2

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 10 / 24

Games for synthesis

Strategies

One player is the system player,
whereas the other player is the
environment player.
If player p ∈ {0, 1} has a stategy to
win, then she can enforce to win a
play by playing the strategy. We say
that player p wins the game in such
a case.

q0start q1

⊥

r ¬g
¬r ¬g

¬rg

r

g

¬g
¬g

∗

∗

Strategies in Synthesis games

In games that correspond to a specification, winning strategies for the
system player represent Mealy or Moore machines that satisfy the
specification.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 10 / 24

Games for synthesis

Strategies

One player is the system player,
whereas the other player is the
environment player.
If player p ∈ {0, 1} has a stategy to
win, then she can enforce to win a
play by playing the strategy. We say
that player p wins the game in such
a case.

q0start q1
r ¬g

¬r ¬g

¬rg

r

g

This is a Mealy Machine!

Strategies in Synthesis games

In games that correspond to a specification, winning strategies for the
system player represent Mealy or Moore machines that satisfy the
specification.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 10 / 24

Games for synthesis

Strategies

One player is the system player,
whereas the other player is the
environment player.
If player p ∈ {0, 1} has a stategy to
win, then she can enforce to win a
play by playing the strategy. We say
that player p wins the game in such
a case.

q0start q1
r ¬g

¬r ¬g

¬rg

r

g

Strategies in Synthesis games

In games that correspond to a specification, winning strategies for the
system player represent Mealy or Moore machines that satisfy the
specification.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 10 / 24

Main questions

1 How do we solve a game (determine the winner and a
winning strategy for her)?

2 What winning condition do we need to use for general
LTL?

3 How do we build games that correspond to
specifications?

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 11 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥ g1g2

(g1 → g2)
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥ g1g2

(g1 → g2)
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥ g1g2

(g1 → g2)
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥ g1g2

(g1 → g2)
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥ g1g2

(g1 → g2)
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥ g1g2

(g1 → g2)
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2 g1g2 ⊥

g1g2

g1g2
g1g2

r

r

(g2 → g1)
⊥

g1g2

g1g2 (g2 → g1)
⊥

rr

g1g2

(g1 → g2)
⊥

(g1 → g2)
⊥ g1g2

g1
⊥

*
⊥

*
⊥r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 11

r

r

g1 ∨ g2

g1g2

g1g2
g1g2

r

rg1g2

g1g2

rr

g1g2

(g1 → g2)
⊥

g1g2

r

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10 ⊥

r

r

g1 ∨ g2

g1g2

g1g2
g1g2

r

rg1g2

g1g2

rr

g1g2

(g1 → g2)
⊥

g1g2

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10

r

r

g1 ∨ g2

g1g2

g1g2

r

rg1g2

g1g2

rr

g1g2

(g1 → g2)
⊥

g1g2

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

A more complicated (safety) game

00 01

10

r

r

g1g2

g1g2

r

rg1g2

g1g2

rr

g1g2

(g1 → g2)
⊥

g1g2

r

3
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 12 / 24

Building safety games from deterministic safety automata

q0start q1
r

¬r r ∧ g

¬r ∧ g

⇒
q0start q1

⊥

r *

¬r *

¬r

¬g
g

r

g

¬g

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 13 / 24

Building deterministic safety automata

ψ = (a ∧ Xb) R c , AP = {a, b, c}

q0

start

q1

q2

c

a

b

*

q0start q0, q1

q0, q1, q2 q1, q2

q0, q2

q1 q2

ac

ac

abc

abc

abc

abc

ac

ac

c

ac
b

abc

ac ac

ac

ac

*

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 14 / 24

From safety to general LTL

To get from safety to the general LTL case, we need to ...

... scale up from the safety winning condition to something more complex

Upcoming:

Büchi games

Parity games

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 15 / 24

Example deterministic Büchi automaton and game

LTL Specification

G(r → Fg)

Büchi automaton

okstart

wait

¬r ∨ g

rg g

g

Büchi game

ok

start

wait

r

¬r

*

g

¬g

*

¬g

g

4
Ruediger Ehlers Synthesis from temporal logic 26th November 2012 16 / 24

On using non-deterministic Büchi automata

LTL

(GFr ∧ GFg) ∨
(FG¬r ∧ FG¬g)

Büchi automaton

q0

q1

q2

q3

q4

*

*

* rg

r g
r

g
*

Büchi game

v0

v1

v2

v3 v4

⊥

*

*

*

*
r

g g

r *

r *
r * *

g

g

**

*

*

;Ruediger Ehlers Synthesis from temporal logic 26th November 2012 17 / 24

Deterministic vs. non-deterministic Büchi automata

Properties of Büchi automata

For every LTL formula, there exists a non-deterministic Büchi
automaton

For some LTL formulas, there exist no deterministic Büchi automata

Problem

The automaton→game construction only works for deterministic automata

Solution

Use a richer automaton model/game winning condition: parity automata

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 18 / 24

Parity automata and games

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 19 / 24

Building parity automata

Classical approach

Construct a non-deterministic Büchi automaton from the LTL
specification

Translate the Büchi automaton to a deterministic parity automaton
(Piterman, 2006)

→ doubly-exponential blow-up!

More practical approach

Many LTL subsets allow building the deterministic parity automaton
directly (see, e.g., Bloem et al., 2012, where this is done implicitly)

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 20 / 24

How to solve games, the general case

Safety: Wsys = νX .(Venv ∩ ⊥ ∩2X) ∪ (Vsys ∩ ⊥ ∩3X)

Büchi:

Parity:

All games have positional winning strategies.
All complexities are polynomial (for some constant c)

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 21 / 24

How to solve games, the general case

Safety: Wsys = νX .(Venv ∩ ⊥ ∩2X) ∪ (Vsys ∩ ⊥ ∩3X)

Büchi: Wsys = νX .µY .(Venv ∩ F ∩2Y) ∪ (Vsys ∩ F ∩3Y)
∪ (Venv ∩ F ∩2X) ∪ (Vsys ∩ F ∩3X)

Parity: ⋃
i∈{c−1,...,0}(Venv ∩ Ci ∩2Xi) ∪ (Vsys ∩ Ci ∩3Xi)

All games have positional winning strategies.
All complexities are polynomial (for some constant c)

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 21 / 24

How to solve games, the general case

Safety: Wsys = νX .(Venv ∩ ⊥ ∩2X) ∪ (Vsys ∩ ⊥ ∩3X)

Büchi: Wsys = νX .µY .(Venv ∩ F ∩2Y) ∪ (Vsys ∩ F ∩3Y)
∪ (Venv ∩ F ∩2X) ∪ (Vsys ∩ F ∩3X)

Parity: Wsys = γXc−1. . . . νX2.µX1.νX0.⋃
i∈{c−1,...,0}(Venv ∩ Ci ∩2Xi) ∪ (Vsys ∩ Ci ∩3Xi)

⋃
i∈{c−1,...,0}(Venv ∩ Ci ∩2Xi) ∪ (Vsys ∩ Ci ∩3Xi)

All games have positional winning strategies.
All complexities are polynomial (for some constant c)

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 21 / 24

How to solve games, the general case

Safety: Wsys = νX .(Venv ∩ ⊥ ∩2X) ∪ (Vsys ∩ ⊥ ∩3X)

Büchi: Wsys = νX .µY .(Venv ∩ F ∩2Y) ∪ (Vsys ∩ F ∩3Y)
∪ (Venv ∩ F ∩2X) ∪ (Vsys ∩ F ∩3X)

Parity: Wsys = γXc−1. . . . νX2.µX1.νX0.⋃
i∈{c−1,...,0}(Venv ∩ Ci ∩2Xi) ∪ (Vsys ∩ Ci ∩3Xi)

⋃
i∈{c−1,...,0}(Venv ∩ Ci ∩2Xi) ∪ (Vsys ∩ Ci ∩3Xi)

All games have positional winning strategies.
All complexities are polynomial (for some constant c)

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 21 / 24

Conceptual summary

Specification

Word automaton Game

Strategy /
Mealy machine

G(r → Xg)

|=
q0start q1

r

¬r r ∧ g

¬r ∧ g

q0start q1

⊥

r *

¬r *

¬r

¬g
g

r

g

¬g

q0start q1
r g

¬r g

¬rg

r

g

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 22 / 24

Efficiently implementing reactive synthesis

Symbolic data structures

Binary decision diagrams

Safety games: list of worst-case positions → antichains

Targeting specific specification classes - Example 1/2

Specification form:

(a1 ∧ a2 ∧ . . . ∧ an)→ (g1 ∧ g2 ∧ . . . ∧ gm)

for which every ai and gi is of one of the following forms:

(1) ψ

(2) G(ψ1 → X(ψ2))

(3) GF(ψ)

Targeting specific specification classes - Example 2/2

Specification form:

(a1 ∧ a2 ∧ . . . ∧ an)→ (g1 ∧ g2 ∧ . . . ∧ gm)

for which most of a1, . . . , gm are safety properties.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 23 / 24

Efficiently implementing reactive synthesis

Symbolic data structures

Binary decision diagrams

Safety games: list of worst-case positions → antichains

Targeting specific specification classes - Example 2/2

Specification form:

(a1 ∧ a2 ∧ . . . ∧ an)→ (g1 ∧ g2 ∧ . . . ∧ gm)

for which most of a1, . . . , gm are safety properties.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 23 / 24

Reactive Synthesis - summary

Main concepts

Mealy/Moore machines

Deterministic word automata

Games with ω-regular winning condition

Main difficulties

Complexity! It is 2EXPTIME for LTL specifications

Complicated constructions (e.g., Büchi→parity)

Main applications

Automatic system construction

Fast prototyping

Specification debugging

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 24 / 24

References I

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of
reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

Nir Piterman. From nondeterministic Buchi and Streett automata to deterministic parity
automata. In LICS, pages 255–264. IEEE Computer Society, 2006.

Ruediger Ehlers Synthesis from temporal logic 26th November 2012 25 / 24

