
Sciduction: Combining Induction,
Deduction and Structure for
Verification and Synthesis

Sciduction: Combining Induction,
Deduction and Structure for
Verification and Synthesis

Sanjit A. SeshiaSanjit A. Seshia

Associate ProfessorAssociate Professor
EECS DepartmentEECS Department

UC BerkeleyUC Berkeley

Design Automation Conference
June 5, 2012

(abridged version of DAC slides)

– 2 –

A Perspective on Formal MethodsA Perspective on Formal Methods

Model
Checking

Theorem
Proving BDDs &

Symbolic methods

SAT
SMT

What can we learn?
WHAT’S NEXT?

– 3 –

The Human AspectThe Human Aspect

System
Model

Environment
Model

Specification

VERIFICATION
TOOL

Auxiliary Inputs
(abstraction, invariants,
compositional lemmas, etc.)
No Result

VALID

DON’T
KNOW

ERROR

DEBUG

– 4 –

The End GoalThe End Goal

 Improve designer / programmer Improve designer / programmer
creativitycreativity and and productivityproductivity
–– Automate tedious tasksAutomate tedious tasks
–– Enable user to express creative insightsEnable user to express creative insights
–– CorrectCorrect--byby--construction synthesis construction synthesis

(from high(from high--level spec.)level spec.)

E. M. Clarke and E. A. Emerson, 1981:E. M. Clarke and E. A. Emerson, 1981:
““We propose a method of constructing concurrent programs We propose a method of constructing concurrent programs

in which the in which the synchronization skeleton of the program is synchronization skeleton of the program is
automatically synthesizedautomatically synthesized from a highfrom a high--level (branching level (branching
time) Temporal Logic specification.time) Temporal Logic specification.””

(1(1stst sentence of their original model checking paper)sentence of their original model checking paper)

– 5 –

Verification and Synthesis: Where Do We
Spend Time?
Verification and Synthesis: Where Do We
Spend Time?

Environment
Model E

Specification

VERIFIER

S is CORRECT / BUGGY

System S Environment
Model E

Specification

SYNTHESIZER

System S
(satisfying under E)

Auxiliary
Inputs

– 6 –

Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive / auxiliary invariantsInductive / auxiliary invariants
 Auxiliary specifications (e.g., pre/postAuxiliary specifications (e.g., pre/post--

conditions, function summaries)conditions, function summaries)
 Environment assumptions / Environment assumptions / EnvEnv model / model /

interface specificationsinterface specifications
 Abstraction functions / abstract modelsAbstraction functions / abstract models
 InterpolantsInterpolants
 Ranking functionsRanking functions
 Intermediate lemmas for compositional Intermediate lemmas for compositional

reasoning reasoning
 Theory lemma instances in SMT solvingTheory lemma instances in SMT solving
 ……

EVERYTHING IS A SYNTHESIS PROBLEM!

– 7 –

Perspectives, so far…Perspectives, so far…

 Verification Verification ““==”” SynthesisSynthesis
–– The hard parts of verification involve The hard parts of verification involve ““synthesis synthesis

subsub--taskstasks””

 3 Challenges; Human input is crucial3 Challenges; Human input is crucial
–– Writing specifications Writing specifications
–– Modeling environment Modeling environment
–– Guiding verification/synthesis engineGuiding verification/synthesis engine

 How to help usersHow to help users provide creative input provide creative input whilewhile
automating tedious tasksautomating tedious tasks??

– 8 –

The Lens: Examining Human-
Computer Interaction in Verification
The Lens: Examining Human-
Computer Interaction in Verification
 User identifies synthesis subUser identifies synthesis sub--task task

–– ““Generate abstract modelGenerate abstract model””
and expresses creative insightand expresses creative insight
–– ““Use localization abstractionUse localization abstraction””

STRUCTURE HYPOTHESIS

DEDUCTION: General to specific
+

INDUCTION: Specific to general

 Tool automates searchTool automates search
–– CounterexampleCounterexample--guided abstraction refinement guided abstraction refinement

(CEGAR) using DPLL(CEGAR) using DPLL--based SAT solvingbased SAT solving

– 9 –

SciductionSciduction

Structure-Constrained Induction and Deduction

Inductive Reasoning
(Active Learning: Generalizing from Examples)

Structure Hypotheses
(on artifacts to be synthesized)

+

Deductive Reasoning
(“Lightweight” Logical inference &

Constraint solving)

+

– 10 –

Demonstrated ApplicationsDemonstrated Applications

Timing analysis
of software

Switching logic
synthesis

Program
synthesis

Floating-point
to fixed-point

Synthesis from
temporal logic

RTL
verification

Structure Hypothesis

Deductive Reasoning

Inductive Inference
+

+

– 11 –

Counterexample-guided Abstraction
Refinement involves Synthesis
Counterexample-guided Abstraction
Refinement involves Synthesis

Abstract
Domain

Design
+Property

Generate
Abstraction

Abstract Model
+ Property

Invoke
Model

Checker
DoneCounter-

example

Valid

Spurious
Counterexample

Check
Counterexample:

Spurious? Done

YES
NO

Refine
Abstraction

Function

New
Abstraction

Function

The structure
hypothesis is the
abstract domain

Abstraction
Function

– 12 –

ApproachApproach

Identify the synthesis sub-task(s)

Make structure hypothesisMake structure hypothesis

Devise topDevise top--level synthesis strategy level synthesis strategy
(inductive or deductive)(inductive or deductive)

Devise subroutines Devise subroutines
(inductive or deductive)(inductive or deductive)

– 13 –

Synthesis Sub-TaskSynthesis Sub-Task

 Find artifact satisfying specification Find artifact satisfying specification

CEGARCEGAR
 CCSS = All (finite= All (finite--state) abstract modelsstate) abstract models
 = Abstract model must be = Abstract model must be

–– sound (oversound (over--approximate) approximate)
–– complete (no spurious counterexamples)complete (no spurious counterexamples)

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines
CCSS

– 14 –

Structure Hypothesis HStructure Hypothesis H

 Shrink set of artifacts from CShrink set of artifacts from CSS to to CCHH

CEGARCEGAR
 HH = The abstract domain = The abstract domain

(localization abstraction)(localization abstraction)
 CCHH = Abstract models generated using H= Abstract models generated using H

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines

– 15 –

Top-Level StrategyTop-Level Strategy

 TopTop--level search strategy for: level search strategy for:
 c c CCHH s.ts.t. c satisfies . c satisfies ??

CEGARCEGAR
 Learn from spurious counterexamplesLearn from spurious counterexamples

–– most overmost over--approximate model satisfying approximate model satisfying
 Soundness (trivial): by construction (overSoundness (trivial): by construction (over--

approximation)approximation)
 Completeness: the Completeness: the original concrete system is original concrete system is

in Cin CHH

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines

– 16 –

InductionInduction

 Learning algorithmLearning algorithm
–– Active learning: choose examples to learn fromActive learning: choose examples to learn from

CEGARCEGAR
 Example: Spurious CounterexampleExample: Spurious Counterexample
 Partially concretize abstract model to rule Partially concretize abstract model to rule

out spurious counterexampleout spurious counterexample
–– CEGAR as Inductive Learning CEGAR as Inductive Learning [[AnubhavAnubhav Gupta, Gupta,

PhD thesis 2006]PhD thesis 2006]

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines

– 17 –

DeductionDeduction

 Lightweight decision procedureLightweight decision procedure
–– Solves decision problem that is Solves decision problem that is

““easiereasier”” than original than original
–– Generates examples, labels for examples, Generates examples, labels for examples,

verifies artifact, etc.verifies artifact, etc.

CEGARCEGAR
 Model checker Model checker

–– Generates counterexample, if one existsGenerates counterexample, if one exists
 SAT solver SAT solver

–– Checks if counterexample is spuriousChecks if counterexample is spurious

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines

– 18 –

CEGAR and SciductionCEGAR and Sciduction

Generate
Abstraction

Invoke
Model

Checker

Spurious
Counterexample

Refine
Abstraction

Function

Abstraction
Function

Done

Check
Counterexample:

Spurious?

Counter-
example

Program
+Property

Abstract Model
+ Property

New
Abstraction

Function

Done

Valid

YES
NO

The structure
hypothesis is the
abstract domain

INDUCTIVE STEP

DEDUCTIVE STEPS

– 19 –

Related Work: A SampleRelated Work: A Sample

 Instances of Sciduction Instances of Sciduction (also inspiration!)(also inspiration!)
–– CEGAR CEGAR [Clarke et al., [Clarke et al., ’’00]00]
–– Compositional Reasoning, Invariant Generation Compositional Reasoning, Invariant Generation

based on Automata Learning (L*) based on Automata Learning (L*) [[CobleighCobleigh et al, et al, ’’03]03]
–– CounterexampleCounterexample--guided inductive synthesis guided inductive synthesis

(CEGIS) (CEGIS) [Solar[Solar--LezamaLezama et al., et al., ’’06]06]

 Purely Purely DeductiveDeductive GeneralizationGeneralization
–– DPLLDPLL--based SAT solversbased SAT solvers
–– Lazy SMT solvers Lazy SMT solvers ---- DPLL(T)DPLL(T)
–– AutomataAutomata--theoretic synthesis from LTLtheoretic synthesis from LTL

[see paper for details]

