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A Perspective on Formal MethodsA Perspective on Formal Methods
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What can we learn?  
WHAT’S NEXT?
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The Human AspectThe Human Aspect
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The End GoalThe End Goal

 Improve designer / programmer                     Improve designer / programmer                     
creativitycreativity and and productivityproductivity
–– Automate tedious tasksAutomate tedious tasks
–– Enable user to express creative insightsEnable user to express creative insights
–– CorrectCorrect--byby--construction synthesis                        construction synthesis                        

(from high(from high--level spec.)level spec.)

E. M. Clarke and E. A. Emerson, 1981:E. M. Clarke and E. A. Emerson, 1981:
““We propose a method of constructing concurrent programs We propose a method of constructing concurrent programs 

in which the in which the synchronization skeleton of  the program is synchronization skeleton of  the program is 
automatically synthesizedautomatically synthesized from a highfrom a high--level (branching level (branching 
time) Temporal Logic specification.time) Temporal Logic specification.””

(1(1stst sentence of their original model checking paper)sentence of their original model checking paper)
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Verification and Synthesis: Where Do We 
Spend Time?
Verification and Synthesis: Where Do We 
Spend Time?
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Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive / auxiliary invariantsInductive / auxiliary invariants
 Auxiliary specifications (e.g., pre/postAuxiliary specifications (e.g., pre/post--

conditions, function summaries)conditions, function summaries)
 Environment assumptions / Environment assumptions / EnvEnv model / model / 

interface specificationsinterface specifications
 Abstraction functions / abstract modelsAbstraction functions / abstract models
 InterpolantsInterpolants
 Ranking functionsRanking functions
 Intermediate lemmas for compositional Intermediate lemmas for compositional 

reasoning reasoning 
 Theory lemma instances in SMT solvingTheory lemma instances in SMT solving
 ……

EVERYTHING IS A SYNTHESIS PROBLEM!
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Perspectives, so far…Perspectives, so far…

 Verification Verification ““==”” SynthesisSynthesis
–– The hard parts of verification involve The hard parts of verification involve ““synthesis synthesis 

subsub--taskstasks””

 3 Challenges; Human input is crucial3 Challenges; Human input is crucial
–– Writing specifications Writing specifications 
–– Modeling environment Modeling environment 
–– Guiding verification/synthesis engineGuiding verification/synthesis engine

 How to help usersHow to help users provide creative input  provide creative input  whilewhile
automating tedious tasksautomating tedious tasks??
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The Lens: Examining Human-
Computer Interaction in Verification 
The Lens: Examining Human-
Computer Interaction in Verification 
 User identifies synthesis subUser identifies synthesis sub--task task 

–– ““Generate abstract modelGenerate abstract model””
and  expresses creative insightand  expresses creative insight
–– ““Use localization abstractionUse localization abstraction””

STRUCTURE HYPOTHESIS

DEDUCTION: General to specific
+

INDUCTION: Specific to general

 Tool automates searchTool automates search
–– CounterexampleCounterexample--guided abstraction refinement guided abstraction refinement 

(CEGAR) using DPLL(CEGAR) using DPLL--based SAT solvingbased SAT solving
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SciductionSciduction

Structure-Constrained Induction and Deduction

Inductive Reasoning 
(Active Learning: Generalizing from Examples)

Structure Hypotheses
(on artifacts to be synthesized)

+

Deductive Reasoning 
(“Lightweight” Logical inference & 

Constraint solving)

+
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Demonstrated ApplicationsDemonstrated Applications

Timing analysis 
of software

Switching logic 
synthesis

Program 
synthesis

Floating-point 
to fixed-point

Synthesis from 
temporal logic

RTL 
verification

Structure Hypothesis 

Deductive Reasoning

Inductive Inference
+

+
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Counterexample-guided Abstraction 
Refinement involves Synthesis
Counterexample-guided Abstraction 
Refinement involves Synthesis
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ApproachApproach

Identify the synthesis sub-task(s)

Make structure hypothesisMake structure hypothesis

Devise topDevise top--level synthesis strategy                  level synthesis strategy                  
(inductive or deductive)(inductive or deductive)

Devise subroutines                        Devise subroutines                        
(inductive or deductive)(inductive or deductive)



– 13 –

Synthesis Sub-TaskSynthesis Sub-Task

 Find artifact satisfying specification Find artifact satisfying specification 

CEGARCEGAR
 CCSS = All (finite= All (finite--state) abstract modelsstate) abstract models
  = Abstract model must be = Abstract model must be 

–– sound (oversound (over--approximate) approximate) 
–– complete (no spurious counterexamples)complete (no spurious counterexamples)

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines
CCSS
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Structure Hypothesis HStructure Hypothesis H

 Shrink set of artifacts from CShrink set of artifacts from CSS to to CCHH

CEGARCEGAR
 HH = The abstract domain                         = The abstract domain                         

(localization abstraction)(localization abstraction)
 CCHH = Abstract models generated using H= Abstract models generated using H

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines
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Top-Level StrategyTop-Level Strategy

 TopTop--level search strategy for:    level search strategy for:    
 c c  CCHH s.ts.t. c satisfies . c satisfies ??

CEGARCEGAR
 Learn from spurious counterexamplesLearn from spurious counterexamples

–– most overmost over--approximate model satisfying approximate model satisfying 
 Soundness (trivial): by construction (overSoundness (trivial): by construction (over--

approximation)approximation)
 Completeness: the Completeness: the original concrete system is original concrete system is 

in Cin CHH

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines
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InductionInduction

 Learning algorithmLearning algorithm
–– Active learning: choose examples to learn fromActive learning: choose examples to learn from

CEGARCEGAR
 Example: Spurious CounterexampleExample: Spurious Counterexample
 Partially concretize abstract model to rule Partially concretize abstract model to rule 

out spurious counterexampleout spurious counterexample
–– CEGAR as Inductive Learning CEGAR as Inductive Learning [[AnubhavAnubhav Gupta, Gupta, 

PhD thesis 2006]PhD thesis 2006]

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines
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DeductionDeduction

 Lightweight decision procedureLightweight decision procedure
–– Solves decision problem that is                      Solves decision problem that is                      

““easiereasier”” than original than original 
–– Generates examples, labels for examples, Generates examples, labels for examples, 

verifies artifact, etc.verifies artifact, etc.

CEGARCEGAR
 Model checker Model checker 

–– Generates counterexample, if one existsGenerates counterexample, if one exists
 SAT solver SAT solver 

–– Checks if counterexample is spuriousChecks if counterexample is spurious

Synth. Task

Structure Hypothesis

Top-Level Strategy

Subroutines



– 18 –

CEGAR and SciductionCEGAR and Sciduction
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Related Work: A SampleRelated Work: A Sample

 Instances of Sciduction Instances of Sciduction (also inspiration!)(also inspiration!)
–– CEGAR   CEGAR   [Clarke et al., [Clarke et al., ’’00]00]
–– Compositional Reasoning, Invariant Generation Compositional Reasoning, Invariant Generation 

based on Automata Learning (L*) based on Automata Learning (L*) [[CobleighCobleigh et al, et al, ’’03]03]
–– CounterexampleCounterexample--guided inductive synthesis guided inductive synthesis 

(CEGIS)  (CEGIS)  [Solar[Solar--LezamaLezama et al., et al., ’’06]06]

 Purely Purely DeductiveDeductive GeneralizationGeneralization
–– DPLLDPLL--based SAT solversbased SAT solvers
–– Lazy SMT solvers Lazy SMT solvers ---- DPLL(T)DPLL(T)
–– AutomataAutomata--theoretic synthesis from LTLtheoretic synthesis from LTL

[see paper for details]


