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Theory Solvers

Given a theory T , a Theory Solver for T takes as input a set Φ
of literals and determines whether Φ is T -satisfiable.

Φ is T -satisfiable iff there is some model M of T such that
each formula in Φ holds in M .

We next consider some examples of theory solvers.
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Congruence Closure and QF_UF

Recall that QF_UF is the theory with only equality and
uninterpreted function symbols.

If Γ is a set of equalities and ∆ is a set of disequalities, then
the satisfiability of Γ ∪ ∆ in QF_UF can be determined as
follows [NO80, DST80]:

• Let τ be the set of terms appearing in Γ ∪ ∆.
• Let ∼ be the equiavlence relation on τ induced by Γ (i.e.
t1 ∼ t2 iff t1 = t2 ∈ Γ or t2 = t1 ∈ Γ).

• Let ∼∗ be the congruence closure of ∼, obtained by
closing ∼ with respect to the congruence property:

s = t→ f(s) = f(t).

• Γ ∪ ∆ is satisfiable iff for each s 6= t ∈ ∆, s 6∼∗ t.
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A Solver for QF_UF

union and find are abstract operations for manipulating
equivalence classes.

union(x, y) makes y the new equivalence class representative
for x.

find(x) returns the unique representative for the equivalence
class containing x.

The signature of a term is defined as:
sig(f(x1, . . . , xn)) = f(find(x1), . . . , find(xn)).
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A Solver for QF_UF
CC(Γ,∆)

while Γ 6= ∅
Remove some equality a = b from Γ;
Merge(find(a),find(b));

if find(a) = find(b) for some a 6= b ∈ ∆ then
return False;

return True;
Merge(a, b)

if a = b then return;
Let A be the set of terms containing

a as an argument
union(a, b);
foreach x ∈ A

if sig(x) = sig(y) for some y then
Merge(find(x), find(y));
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Example

f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)

t find(t) sig(t)

a a a

f(a) f(a) f(a)

f(f(a)) f(f(a)) f(f(a))

f(f(f(a))) f(f(f(a))) f(f(f(a)))

b b b

g(a, b) g(a, b) g(a, b)

g(f(a), b) g(f(a), b) g(f(a), b)
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f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)
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f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)

t find(t) sig(t)

a a a

f(a) f(a) f(a)

f(f(a)) a f(f(a))

f(f(f(a))) f(f(f(a))) f(a)
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Example
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Example
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Example

f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)
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Example
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Example

f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)

t find(t) sig(t)

a a a

f(a) a f(a)
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b b b
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g(f(a), b) g(f(a), b) g(a, b)
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Example

f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)
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Example

f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)

t find(t) sig(t)

a a a

f(a) a f(a)

f(f(a)) a f(a)

f(f(f(a))) a f(a)

b b b
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Example

f(f(a)) = a ∧ f(f(f(a))) = a ∧ g(a, b) 6= g(f(a), b)

t find(t) sig(t)

a a a

f(a) a f(a)

f(f(a)) a f(a)

f(f(f(a))) a f(a)

b b b

g(a, b) g(a, b) g(a, b)

g(f(a), b) g(a, b) g(a, b)

find(g(a, b)) = find(g(f(a), b)) → Unsatisfiable
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Difference Logic

In difference logic [NO05], we are interested in the
satisfiability of a conjunction of arithmetic atoms.

Each atom is of the form x− y ⊲⊳ c, where x and y are
variables, c is a numeric constant, and ⊲⊳ ∈ {=, <,≤, >,≥}.

The variables can range over either the integers (QF_IDL)
or the reals (QF_RDL).
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Difference Logic

The first step is to rewrite everything in terms of ≤:
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Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c
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Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c
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Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c

• x− y ≥ c =⇒ y − x ≤ −c

• x− y > c =⇒ y − x < −c
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Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c

• x− y ≥ c =⇒ y − x ≤ −c

• x− y > c =⇒ y − x < −c

• x− y < c =⇒ x− y ≤ c− 1 (integers)
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Difference Logic

The first step is to rewrite everything in terms of ≤:

• x− y = c =⇒ x− y ≤ c ∧ x− y ≥ c

• x− y ≥ c =⇒ y − x ≤ −c

• x− y > c =⇒ y − x < −c

• x− y < c =⇒ x− y ≤ c− 1 (integers)
• x− y < c =⇒ x− y ≤ c− δ (reals)
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Difference Logic

Now we have a conjunction of literals, all of the form
x− y ≤ c.

From these literals, we form a weighted directed graph with a
vertex for each variable.

For each literal x− y ≤ c, there is an edge x c
−→ y.

The set of literals is satisfiable iff there is no cycle for which
the sum of the weights on the edges is negative.

There are a number of efficient algorithms for detecting
negative cycles in graphs [CG96].
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Example: QF_IDL

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w−x = 2 ∧ z−w < 0
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Example: QF_IDL

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w−x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2

z − x > 2 ⇒

w − x = 2 w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0
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Example: QF_IDL

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w−x = 2 ∧ z−w < 0

x− y = 5

z − y ≥ 2
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w − x = 2 w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0
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Example: QF_IDL

x− y = 5 ∧ z− y ≥ 2 ∧ z− x > 2 ∧ w−x = 2 ∧ z−w < 0

x− y = 5 x− y ≤ 5 ∧ y − x ≤ −5

z − y ≥ 2 y − z ≤ −2

z − x > 2 ⇒ x− z ≤ −3

w − x = 2 w − x ≤ 2 ∧ x− w ≤ −2

z − w < 0 z − w ≤ −1
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Example: QF_IDL

−3

−2

−12

−2

5

−5

y

zx

w
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Roadmap

Theory Solvers

• Examples of Theory Solvers
• Combining Theory Solvers
• Extending Theory Solvers for SMT
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Combining Theory Solvers

Theory solvers become much more useful if they can be used
together.

mux_sel = 0 → mux_out = select(regfile, addr)
mux_sel = 1 → mux_out = ALU(alu0, alu1)

For such formulas, we are interested in satisfiability with
respect to a combination of theories.

Fortunately, there exist methods for combining theory solvers.
The standard technique for this is the Nelson-Oppen
method [NO79, TH96].
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The Nelson-Oppen Method

The Nelson-Oppen method is applicable when:

1. The theories have no shared symbols (other than
equality).

2. The theories are stably-infinite.
A theory T is stably-infinite if every T -satisfiable
quantifier-free formula is satisfiable in an infinite
model.

3. The formulas to be tested for satisfiability are
quantifier-free

Many theories fit these criteria, and extensions exist in some
cases when they do not.
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The Nelson-Oppen Method

Suppose that T1 and T2 are theories and that Sat 1 is a theory
solver for T1-satisfiability and Sat 2 for T1-satisfiability.

We wish to determine if φ is T1 ∪ T2-satisfiable.

1. Convert φ to its separate form φ1 ∧ φ2.

2. Let S be the set of variables shared between φ1 and φ2.

3. For each arrangement ∆ of S:
(a) Run Sat 1 on φ1 ∪ ∆.
(b) Run Sat 2 on φ2 ∪ ∆.
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The Nelson-Oppen Method

If there exists an arrangement such that both Sat 1 and Sat 2

succeed, then φ is T1 ∪ T2-satisfiable.

If no such arrangement exists, then φ is T1 ∪ T2-unsatisfiable.
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Example

Consider the following QF_UFLIA formula:

φ = 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2).
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Example

Consider the following QF_UFLIA formula:

φ = 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2).

We first convert φ to a separate form:

φUF = f(x) 6= f(y) ∧ f(x) 6= f(z)
φLIA = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

The shared variables are {x, y, z}. There are 5 possible
arrangements based on equivalence classes of x, y, and z.
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Example

φUF = f(x) 6= f(y) ∧ f(x) 6= f(z)
φLIA = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}

2. {x = y, x 6= z, y 6= z}

3. {x 6= y, x = z, y 6= z}

4. {x 6= y, x 6= z, y = z}

5. {x 6= y, x 6= z, y 6= z}
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Example

φUF = f(x) 6= f(y) ∧ f(x) 6= f(z)
φLIA = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φUF .

2. {x = y, x 6= z, y 6= z}
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5. {x 6= y, x 6= z, y 6= z}
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Example

φUF = f(x) 6= f(y) ∧ f(x) 6= f(z)
φLIA = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φUF .

2. {x = y, x 6= z, y 6= z}: inconsistent with φUF .

3. {x 6= y, x = z, y 6= z}: inconsistent with φUF .

4. {x 6= y, x 6= z, y = z}: inconsistent with φLIA.

5. {x 6= y, x 6= z, y 6= z}: inconsistent with φLIA.

Therefore, φ is unsatisfiable.
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Roadmap

Theory Solvers

• Examples of Theory Solvers
• Combining Theory Solvers
• Extending Theory Solvers for SMT
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Desirable Characteristics of Theory Solvers

Theory solvers must be able to determine whether a
conjunction of literals is satisfiable.

However, in order to integrate a theory solver into a modern
SMT solver, it is helpful if the theory solvers can do more.
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Desirable Characteristics of Theory Solvers

Some desirable characterstics of theory solvers include:

• Incrementality - easy to add new literals or backtrack to a
previous state

• Layered/Lazy - able to detect simple inconsistencies
quickly, able to detect difficult inconsistencies eventually

• Equality Propagating - If theory solvers can detect when
two terms are equivalent, this greatly simplifies the
search for a satisfying arrangement
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Desirable Characteristics of Theory Solvers

Some desirable characterstics of theory solvers include:

• Model Generating - When reporting satisfiable, the theory
solver also provides a concrete value for each variable or
function symbol

• Proof Generating - When reporting unsatisfiable, the
theory solver also provides a checkable proof

• Interpolant Generating - If φ ∧ ¬ψ is unsatisfiable, find a
formula α containing only symbols appearing in both φ
and ψ such that:
◦ φ ∧ ¬α is unsatisfiable
◦ α ∧ ¬ψ is unsatisfiable
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Lazy SMT

Theory solvers check the satisfiability of conjunctions of
literals.

What about more general Boolean structure?

What is needed is a combination of Boolean reasoning and
theory reasoning.

The eager approach to SMT does this by encoding theory
reasoning as a Boolean satisfiability problem.

Here, I will focus on the lazy approach in which both a
Boolean engine and a theory solver work together to solve
the problem [dMRS02, BDS02a].
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Roadmap

From SAT to SMT

• Abstract DPLL
• Abstract DPLL Modulo Theories
• Key Optimizations
• Quantifier Instantiation
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers [NOT06].
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We start with an abstract description of DPLL, the algorithm
used by most SAT solvers [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
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Abstract DPLL

We start with an abstract description of DPLL, the algorithm
used by most SAT solvers [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
• Transitions between states are defined by a set of

conditional transition rules.
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Abstract DPLL

The final state is either:
• a special fail state: fail , if F is unsatisfiable, or
• M || G, where G is a CNF formula equisatisfiable with the

original formula F , with M |= G

We write M |= C to mean that C is satisfied whenever M is
satisfied. Or in other words, C is a propositional consequence
of the conjunction of the literals in M .
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Abstract DPLL Rules
UnitProp :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

8

<

:

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

l occurs in some clause of F

−l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

8

<

:

l or ¬l occurs in a clause of F

l is undefined in M

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if

8

<

:

M ld N |= ¬C

N contains no decision literals

Fail :

M || F, C =⇒ fail if

8

<

:

M |= ¬C

M contains no decision literals
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable
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Additional Abstract DPLL Rules

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

M ld N |= ¬C, and there is

some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and

l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |= C

Forget :

M || F, C =⇒ M || F if

n

F |= C

Restart :

M || F =⇒ ∅ || F
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Roadmap

From SAT to SMT

• Abstract DPLL
• Abstract DPLL Modulo Theories
• Key Optimizations
• Quantifier Instantiation
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Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework to include theory
reasoning [NOT06].

Assume we have a theory T and a solver Sat T that can check
satisfiability of conjunctions of literals in T .

Suppose we want to check the T -satisfiability of an arbitrary
(quantifier-free) formula φ.

We start by converting φ to CNF.

We can then use the Abstract DPLL rules, allowing any
first-order literal where before we had propositional literals.
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Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework to include theory
reasoning [NOT06].

Assume we have a theory T and a solver Sat T that can check
satisfiability of conjunctions of literals in T .

Suppose we want to check the T -satisfiability of an arbitrary
(quantifier-free) formula φ.

We start by converting φ to CNF.

What other changes do we need to make to Abstract DPLL so
it will work for SMT?
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The DPLL rules will take care of this
automatically if we add a clause C such that M |= ¬C.
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Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The DPLL rules will take care of this
automatically if we add a clause C such that M |= ¬C.

What clause should we add?

ICCAD 2009 Tutorial – p. 58/78



Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The DPLL rules will take care of this
automatically if we add a clause C such that M |= ¬C.

What clause should we add? How about ¬M?
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Abstract DPLL Modulo Theories

The justification for adding ¬M is that |=T ¬M .

Note that Γ |=T φ denotes that φ holds whenever both Γ and
T are satisfied.

We can generalize this to allow any clause C to be added as
long as F |=T C. The following modified Learn rule allows this
(we also modify the Forget rule in an analagous way):

Theory Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |=T C

Theory Forget :

M || F, C =⇒ M || F if

n

F |=T C
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Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.
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Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?
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Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.
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Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.

The remaining rules form a sound and complete procedure
for SMT.
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Example of Lazy SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3
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Example of Lazy SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3
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Example of Lazy SMT

g(a) = c
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1
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∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
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3
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1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
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|| 1, 2 ∨ 3, 4 ∨ 3
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Example of Lazy SMT
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Example of Lazy SMT

g(a) = c
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1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
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3

∧ c 6= d
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4
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3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4
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Example of Lazy SMT
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Example of Lazy SMT
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Example of Lazy SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

ICCAD 2009 Tutorial – p. 61/78



Example of Lazy SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3, 1 ∨ 2 ∨ 3 ∨ 4

ICCAD 2009 Tutorial – p. 61/78



Example of Lazy SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3, 1 ∨ 2 ∨ 3 ∨ 4 =⇒ (Fail)

fail
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Roadmap

From SAT to SMT

• Abstract DPLL
• Abstract DPLL Modulo Theories
• Key Optimizations
• Quantifier Instantiation
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Key Optimizations

We will mention three ways to improve the algorithm.

• Minimizing learned clauses
• Early conflict detection
• Theory propagation
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Minimizing Learned Clauses

The main problem with the approach as described so far is
that learning ¬M in every pseudo-final state is very
inefficient.

To see why, recall that a pseudo-final state is:
• M || F , where

• M |= F , and

• Sat T (M) = False

Note that M is a sequence of literals and could be quite large.

However, it is often the case that a small subset of M is
sufficient to cause an inconsistency in T .
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Minimizing Learned Clauses

To solve the problem, whenever Sat T (M) is called, an effort
must be made to find the smallest possible subset of M which
is inconsistent.

There are several methods:
• Brute-force minimization (typically too slow)
• Traverse a proof tree for each inconsistency (similar to

traversing an implication graph in SAT solvers)
• Ad hoc per-theory techniques
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Example with Minimized Learned Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3
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Example with Minimized Learned Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸
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︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3
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Example with Minimized Learned Clauses
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∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)
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1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3
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Example with Minimized Learned Clauses
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4
d

|| 1, 2 ∨ 3, 4 ∨ 3
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Example with Minimized Learned Clauses
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4
d
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Example with Minimized Learned Clauses
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d

4
d
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1 2
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4
d
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1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2
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Example with Minimized Learned Clauses
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Example with Minimized Learned Clauses
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fail
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Early Conflict Detection

So far, we have indicated that we will check M for
T -satisfiability only when a pseudo-final state is reached.

In contrast, we could check M for T -satisfiability every time M
changes, possibly resulting in earlier detection of conflicts.

Experimental results show that this approach is significantly
better.

It requires Sat T to be online: able quickly to determine the
consistency of incrementally more literals or to backtrack to a
previous state.

It also requires that the SAT solver be instrumented to call
Sat T every time a variable is assigned a value.
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Example with Early Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3
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Example with Early Conflict Detection
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Example with Early Conflict Detection
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Theory Propagation

A final improvement is to add the following rule:
Theory Propagate :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

M |=T l

l or ¬l occurs in F

l is undefined in M

This rule allows Sat T to inform the SAT solver if it is able to
deduce that an unassigned literal is entailed by the current
set of literals (M ).

Experimental results show that this can also be very helpful in
practice.

Techniques for implementing theory propagation vary by
solver and by theory.
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Example with Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
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︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3
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Example with Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

ICCAD 2009 Tutorial – p. 70/78



Example with Theory Propagation
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Example with Theory Propagation
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Example with Theory Propagation
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Example with Theory Propagation
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Roadmap

From SAT to SMT

• Abstract DPLL
• Abstract DPLL Modulo Theories
• Key Optimizations
• Quantifier Instantiation
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Quantifiers

The Abstract DPLL Modulo Theories framework can also be
extended to include rules for quantifier instantiation [GBT07].

• First, we extend the notion of literal to that of an abstract
literal which may include quantified formulas in place of
atomic formulas.

• Add two additional rules:

Inst_∃ :

M || F =⇒ M || F, (¬∃x. P ∨ P [x/sk]) if

8

<

:

∃x P is an abstract literal in M

sk is a fresh constant.

Inst_∀ :

M || F =⇒ M || F, (¬∀x. P ∨ P [x/t]) if

8

<

:

∀x P is an abstract literal in M

t is a ground term.
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An Example

Suppose a and b are constant symbols and f is an
uninterpreted function symbol. We show how to prove the
validity of the following formula:

(0 ≤ b ∧ (∀x. 0 ≤ x→ f(x) = a)) → f(b) = a

We first negate the formula and put it into abstract CNF. The
result is three unit clauses:

(0 ≤ b) ∧ (∀x. (¬0 ≤ x ∨ f(x) = a)) ∧ (¬f(b) = a)
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An Example

Let l1, l2, l3 denote the three abstract literals in the above
clauses. Then the following is a derivation in the extended
framework:

∅ || (l1)(l2)(l3) =⇒ (UnitProp)

l1, l2, l3 || (l1)(l2)(l3) =⇒ (Inst_∀)

l1, l2, l3 || (l1)(l2)(l3)(¬(0 ≤ b) ∨ f(b) = a) =⇒ (Fail)

fail

The last transition is possible because M falsifies the last
clause in F and contains no decisions (case-splits). As a
result, we may conclude that the original set of clauses is
unsatisfiable, which implies that the original formula is valid.
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Quantifiers

The simple technique of quantifier instantiation is remarkably
effective on verification benchmarks.

The main difficulty is coming up with the right terms to
instantiate.

Matching techniques pioneered by Simplify [DNS03] have
recently been adopted and improved by several modern SMT
solvers [FJS04, BdM07, GBT07].
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