EECS 219C: Computer-Aided Verification

Satisfiability Modulo Theories

Theory Solvers, Combination of Theories

Sanjit A. Seshia
EECS, UC Berkeley

Topics for Today

• Examples of Theory Solvers
 – Equality and Uninterpreted Functions
 – Difference Logic
 – Arrays

• Combination of Theories
 – The Nelson-Oppen Framework
Conjunctions Only

- Focus: solving conjunctions of constraints
- Expect: no case-splitting
 - But: Sometimes need to perform case-splitting even if there are no disjunctions (ORs) to start with!

Theory of Equality

- The theory of equality is all known as the free/empty theory.
- The theory does not restrict the possible values of symbols in any way. For this reason, it is sometimes called the theory of equality with uninterpreted functions (EUF).
- The satisfiability problem for conjunctions of literals in this theory is decidable in polynomial time using congruence closure.
• Example:
 \[g(g(g(x))) = x \]
 \[\land \ g(g(g(g(x)))) = x \]
 \[\land \ g(x) \neq x \]

Properties of Congruence Closure

• Does it always terminate? Why?
Difference Logic

• Recall that a difference constraint is a linear constraint of the form
 \[x_i - x_j \leq c \text{ or } x_i \leq c \text{ or } -x_i \leq c \]
• Consider a system of such constraints. How do we solve this?
• We can turn this into a shortest path problem!

Constraint Graph

• Add a node for every variable \(x_i \)
• Given the constraint \(x_i - x_j \leq c \), add an edge from node \(i \) to node \(j \) labeled with \(c \)
• Questions:
 – What about \(\pm x_i \leq c \) ?
 – What if we have two constraints of the form \(x_i - x_j \leq c_1 \) and \(x_i - x_j \leq c_2 \)?
Example: SAT or UNSAT?

\[\begin{align*}
 x_1 & \geq x_2 \\
 x_3 & \leq 0 \\
 x_2 + 3 & \geq x_1 \\
 x_1 + 1 & \leq x_3 \\
 x_2 + 1 & \geq 0 \\
 x_4 + 2 & \geq 0 \\
 x_4 & \leq x_2 - 2
\end{align*} \]

Algorithm

- **Theorem:** A set of difference constraints is satisfiable iff there is no negative-weight cycle in the constraint graph
- **Proof:**

 (a) soundness: if there is a neg-wt cycle, then the constraints are really unsat:

 Draw out a negative weight cycle – what constraint is implied by it?
Algorithm

- Theorem: A set of difference constraints is satisfiable iff there is no negative-weight cycle in the constraint graph
- Proof:
 (b) completeness: if there is no neg-wt cycle, then the constraints are satisfiable:
 Intuition: (i) we can compute the shortest paths between any x_i and x_0; (ii) the length of the shortest path from x_0 to x_i gives the satisfying assignment for x_i

Complexity

- What is the asymptotic running time of the shortest-path based algorithm for difference logic?
Theory of Arrays

• Two main axioms: For all A, i, j, d
 – $\text{select} (\text{store}(A, i, d), i) = d$
 – $\text{select} (\text{store}(A, i, d), j) = \text{select}(A, j)$, if $i \neq j$

• Decision procedure operates by performing case-splits

• Example:

  ```
  int a[10];
  int fun3(int i) {
      int j;
      for(j=0; j<10; j++) a[j] = j;
      assert(a[i] <= 5);
  }
  ```

Theory of Arrays

• Two main axioms: For all A, i, j, d
 – $\text{select} (\text{store}(A, i, d), i) = d$
 – $\text{select} (\text{store}(A, i, d), j) = \text{select}(A, j)$, if $i \neq j$

• Decision procedure operates by performing case-splits

• Example:

 $a[0] = 0 \land a[1] = 1 \land a[2] = 2 \land \ldots a[10] = 10 \land a[i] > 5$
Nelson-Oppen Framework

• Often, the SMT problem is not expressible in a single theory
• Therefore we need to combine decision procedures for different theories to work on the combined theory
• The main approach for this purpose is the one proposed by Nelson and Oppen in ‘79