## EECS 219C: Computer-Aided Verification <br> Satisfiability Modulo Theories

Introduction, Survey of Theories
Sanjit A. Seshia
EECS, UC Berkeley


Is there an assignment to the $x, y, z, w$ variables

## Satisfiability Modulo Theories

- Given a formula in first-order logic, with associated background theories, is the formula satisfiable?
- If SAT, return a satisfying assignment (a 'model')
- If UNSAT, optionally generate a proof of unsatisfiability
- A hot topic of research in the last $\sim 10 \mathrm{yrs}$
- SMTLIB, SMTCOMP


## Reference

## Satisfiability Modulo Theories

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Chapter 8 in the Handbook of Satisfiability, Armin Biere, Hans van Maaren, and Toby Walsh, editors, IOS Press, 2009.
(available from my webpage)

## First-Order Logic

- A formal notation for mathematics, with expressions involving
- Propositional symbols
- Predicates
- Functions and constant symbols
- Quantifiers
- In contrast, propositional (Boolean) logic only involves propositional symbols and operators


## First-Order Logic: Syntax

- As with propositional logic, expressions in first-order logic are made up of sequences of symbols.
- Symbols are divided into logical symbols and non-logical symbols or parameters.
- Example:

$$
(x=y) \wedge(y=z) \wedge(f(z) \geq f(x)+1)
$$

## First-Order Logic: Syntax

- Logical Symbols
- Parentheses: (, )
- Propositional connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
- Variables: v1, v2, . . .
- Quantifiers: $\forall, \exists$
- Non-logical symbols/Parameters
- Equality: =
- Functions: +, -, \%, bit-wise \&, f(), concat, ...
- Predicates: $\leq$, is_substring, ...
- Constant symbols: 0, 1.0, null, ...


## Quantifier-free Subset

- We will largely restrict ourselves to formulas without quantifiers $(\forall, \exists)$
- This is called the quantifier-free subset/fragment of FOL with the relevant theory


## Logical Theory

- Defines a set of parameters (non-logical symbols) and their meanings
- This definition is called a signature.
- Example of a signature:

Theory of linear arithmetic over integers
Signature is ( $0,1,+,-, \leq$ ) interpreted over $\mathbb{Z}$

## Common Theories

- Equality (with uninterpreted functions)
- Finite-precision bit-vectors - integers or floating-point
- Difference logic (over $\mathbb{Q}$ or $\mathbb{Z}$ )
- Linear arithmetic (over $\mathbb{Q}$ or $\mathbb{Z}$ )
- Arrays / memories
- Misc.: Non-linear arithmetic, strings, inductive datatypes (e.g. lists), sets, ...


## Theory of Equality and Uninterpreted Functions (EUF)

- Also called the "free theory"
- Because function symbols can take any meaning. The only property required is that these symbols map identical arguments to identical values i.e., $x=y \Rightarrow f(x)=f(y)$
- Also need the properties the equality operator satisfies
- SMTLIB name: QF_UF



## Hardware Abstraction with EUF



- For any Block that Transforms or Evaluates Data:
- Replace with generic, unspecified function
- Also view instruction memory as function


## Example QF_UF (EUF) Formula

$$
(x=y) \wedge(y=z) \wedge(f(x) \neq f(z))
$$

Transitivity:

$$
(x=y) \wedge(y=z) \Rightarrow(x=z)
$$

Congruence:

$$
(\mathrm{x}=\mathrm{z}) \Rightarrow(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{z}))
$$

## Equivalence Checking of Program Fragments

int fun1(int y) \{
int $x, z$;
$z=y$;
$\mathrm{y}=\mathrm{x}$;
X = z ;
return $x^{*} x$;
\}
int fun2(int y) \{ return $y^{*} y$;
\}
What if we use SAT to check equivalence?
SMT formula $\phi$ Satisfiable iff programs non-equivalent
$\left(z=y \wedge y 1=x \wedge x 1=z \wedge\right.$ ret1 $\left.=x 1^{*} x 1\right)$
$\wedge$
(ret2 = $y^{*} y$ )
$\wedge$ ( ret1 $\neq$ ret2 $)$
\}

## Equivalence Checking of Program Fragments

int fun1(int y) \{ SMT formula $\phi$ int $x, z$; Satisfiable iff programs non-equivalent
$z=y$;
$y=x$;
$\mathrm{x}=\mathrm{z}$;
$(z=y \wedge y 1=x \wedge x 1=z \wedge$ ret1 = x1*x1)
$\wedge$
$\left(\operatorname{ret} 2=y^{*} y\right)$
return $x^{*} x$;
\}
( ret1 $\neq$ ret2 $)$
int fun2(int y) \{ return $y^{\star} y$; \}

Using SAT to check equivalence (w/ Minisat)
32 bits for $y$ : Did not finish in over 5 hours
16 bits for y : 37 sec .
8 bits for $\mathrm{y}: 0.5 \mathrm{sec}$.

## Equivalence Checking of Program Fragments

int fun1(int y) \{
int $x, z$;
$z=y$;
$\mathrm{y}=\mathrm{x}$;
$\mathrm{x}=\mathrm{z}$;
return $x^{*} x$;
\}
int fun2(int y) \{
return $y^{\star} y$;
\}
SMT formula $\phi$ '
$(z=y \wedge y 1=x \wedge x 1=z \wedge r e t 1=s q(x 1))$
$\wedge$
( ret2 = sq(y) )
$\wedge$
$(\operatorname{ret} 1 \neq \operatorname{ret} 2)$

Using EUF solver: 0.01 sec

## Equivalence Checking of Program Fragments

int fun1(int y) \{
int $x$;
Does EUF still work?
$x=x^{\wedge} y$;
$y=x^{\wedge} y$;
$x=x^{\wedge} y$;
return $x^{*} x$;
\}
int fun2(int y) \{ return $y^{*} y$; \}

No!
Must reason about bit-wise XOR.

Need a solver for bit-vector arithmetic.
Solvable in less than a sec. with a current bit-vector solver.

## Finite-Precision Bit-Vector Arithmetic (QF_BV)

- Fixed width data words
- Can model int, short, long, etc.
- Arithmetic operations
- E.g., add/subtract/multiply/divide \& comparisons
- Two's complement and unsigned operations
- Bit-wise logical operations
- E.g., and/or/xor, shift/extract and equality
- Boolean connectives


## Linear Arithmetic <br> (QF_LRA, QF_LIA)

- Boolean combination of linear constraints of the form

$$
\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \sim b\right)
$$

- $x_{i}$ 's could be in $\mathbb{Q}$ or $\mathbb{Z}, \sim \in\{\geq,>, \leq,<,=\}$
- Many applications, including:
- Verification of analog circuits
- Software verification, e.g., of array bounds


## Difference Logic (QF_IDL, QF_RDL)

- Boolean combination of linear constraints of the form

$$
\begin{aligned}
\quad x_{i} & \geq x_{j}+c_{i j} \\
\text { or } x_{i} & \geq c_{j}
\end{aligned}
$$

- Applications:
- Software verification (most linear constraints are of this form)
- Processor datapath verification
- Job shop scheduling / real-time systems
- Timing verification for circuits


## Scheduling Jobs

- n jobs, with execution times $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$
- Let $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$ be the start times, $\mathrm{f}_{1}, \mathrm{f}_{2}$, $\ldots, f_{n}$ the finish times
- No pre-emption
- Some jobs need the same resource (cannot execute simultaneously)
- Need to finish all jobs before time t=T, starting at $t=0$


## Scheduling Jobs

- n jobs, with execution times $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$
- Let $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$ be the start times, $\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$ the finish times
- No pre-emption
- Some jobs need the same resource (cannot execute simultaneously)

Formulation in QF_IDL: A conjunction of the following:

- $f_{i}=s_{i}+T_{i}$
- If jobs $i$ and $j$ share the same resource, then

$$
\left(s_{i} \geq f_{j}\right) \text { or }\left(s_{j} \geq f_{i}\right)
$$

- $\max _{\mathrm{i}} \mathrm{f}_{\mathrm{i}}<\mathrm{T}$


## Linear Arithmetic <br> (QF_LRA, QF_LIA)

- Boolean combination of linear constraints of the form

$$
\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \geq b\right)
$$

- $x_{i}$ 's could be in $\mathbb{Q}$ or $\mathbb{Z}$


## Modeling and Verifying Hybrid Systems with QF_LRA



Can we write an SMT formula to check whether $x$ can ever be $<0$ ?

## Arrays/Memories

- SMT solvers can also be very effective in modeling data structures in software and hardware
- Arrays in programs
- Memories in hardware designs: e.g. instruction and data memories, CAMs, etc.


## Theory of Arrays (QF_AX) Select and Store

- Two interpreted functions: select and store
- select(A,i)
- store(A,i,d)
- Two main axioms:
- select(store(A,i,d), i) = d
$-\operatorname{select}($ store $(A, i, d), j)=\operatorname{select}(A, j)$ for $i \neq j$
- One other axiom: "extensionality"
$-(\forall i . \operatorname{select}(A, i)=\operatorname{select}(B, i)) \Rightarrow A=B$


## Equivalence Checking of Program Fragments

```
int fun1(int y) {
    int x[2];
    x[0] = y;
    y = x[1];
    x[1] = x[0];
    return x[1]*x[1];
}
int fun2(int y) {
        return y*y;
    }
```

How can we express the equivalence checking problem as an SMT formula with arrays?


