EECS 219C: Computer-Aided Verification
Inductive Learning

(Machine Learning Theory)

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: Avrim Blum

Outline

Basic Concepts

Batch vs. Online Learning
More on Batch Learning
More on Online Learning
Teaching vs. Learning

(whiteboard material augments what'’s in the
following slides)

Example: Decision Lists
xl;l‘? |£—{ le? ‘—m—{ @7 |0

!

0 1

Given a dataset S of m examples over n boolean
features, drawn according to unknown distrib
D, labeled by unknown target f:

1. Algorithm A will find a consistent DL if one
exists, in fime O(mn).

2. If m> (1/€)[n(2+In n) + In(1/8)], then
Pr[exists consistent DL h with err(h) > €] < 8.

3

How can we find a consistent DL?

x1 @2 3 T4 x5 |label
1 0 O 1 1 -+
O— 1T — 1T —0 0 =
T T I—0 0] =+
O— 0 0 1 0 =
11 0 1 1 -+
1 0 0 O 1 —

if (x;=0) then -, else
if (x,=1) then +, else
if (x4=1) then +, else - 4

Decision List algorithm

+ Start with empty list.

* Find if-then rule consistent with data.
(and satisfied by at least one example)

* Put rule at bottom of list so far, and cross of f
examples covered. Repeat until no examples remain.

If algorithm fails, then:
‘No DL consistent with remaining data.
*So, no DL consistent with original data.

OK, fine. Now why should we expect it
to do well on future data? :

Confidence/sample-complexity

- Consider some hypothesis h with err(h) > €.

- Chance that h survives m examples is at
most (1-&)™.

* Number of DLs over n Boolean features is

at most nl4n, (for each feature there are 4 possible rules, and
no feature will appear more than once)

= Pr[some DL h with err(h)>c is consistent]
< nl4n(1-¢)m,

* This is <& for m > (1/¢)[n(2+In n) + In(1/8)]

6

DL: summary

Suppose the target f is, in fact, a decision list.

Then with probability > 1 — §, the hypothesis h
produced by the algorithm has error < ¢, so long
as the number of examples m seen satisfies

m>1 n(2+|nn)+ln%].

I.e., it's Probably Approximately Correct

Confidence / sample complexity

Nothing special about DLs in our argument.

e All we said was: “if not too many rules to
choose from, then unlikely some bad one will
fool you just by chance.”

e Generalize to any hypothesis space H.

o After m examples, with probability > 1 -4, all
h € H with err{h) > ¢ have err(h) > 0, for

m > % log(|H|) + log (;)] :

Occam’s razor

William of OQccam {(~ 1320 AD):

"“Entities should not be multiplied unnec-
essarily” (in Latin)

Which we interpret as: “in general, prefer simpler
explanations”.

Why? Is this a good policy? What If we have
different notions of what'’s simpler?

Occam'’s razor (contd)

A computer-science-ish way of looking at it:

o Say “simple” = “short description”.
o At most 2% explanations that are < s bits long.

e If humber of examples seen satisfies

m2%[3|h2+ln (%)]

then it’s unlikely a bad simple explanation will
fool you just by chance.

10

Qccam's razor (contd)?

Nice interpretation:

- Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam'’s razor.

- Of course, there's no guarantee there will
be a short explanation for the data. That
depends on your representation.

11

Online Learning Setting

- View learning as a sequence of trials.

* In each trial, algorithm is given x, asked to
predict 7, and then is fold the correct value.

* Make no assumptions about how examples
are chosen.

- Goal is to minimize humber of mistakes.

Note: can no longer talk about # examples needed
to converge. Instead, we focus on number of
mistakes. Need to “learn from our mistakes".

14

Simple example: learning an OR fn
- Suppose features are boolean: X = {0,1}".

- Target is an OR function, like x5 v Xg v X5,
with no noise.
Can we find an on-line strategy that makes
at most n mistakes?
- Sure.
- Start with h(x) =x; vx, V... VX,
- Invariant: {vars in h} contains {vars in f}
- Mistake on negative: throw out vars in h set to 1
in x. Maintains invariant and decreases |h| by 1.
- No rrl\is‘rakes on postives. So at most n mistakes
total.

N Experts Problem

* We have n "experts”.

* One of these is perfect (never makes a mistake).
We just don't know which one.

* Can we find a strategy that makes no more than
Ig(n) mistakes?

Answer: sure. Just take majority vote over all experts that
have been correct so far. Called “halving algorithm®.

Followup question: what if we have a "prior” p over the
experts. Can we make no more than Ig(1/p;) mistakes, where
expert /is the perfect one?

17

Relation to concept learning

- If computation time is no object, can have
one “"expert” per concept in C.

- If target in C, then number of mistakes at
most Ig(|C]).

* More generally, for any description
language, number of mistakes is at most
number of bits to write down f.

18

Back to expert-advice

What if no expert is perfect? Goal is to do nearly
as well as the best one in hindsight.

Strategy #1:

I’rer'a’red halving algorithm. Same as before, but
once we've crossed of f all the experts, restart
from the beginning.

- Makes at most log(n)*OPT mistakes, where OPT
is # mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better? Yes.

19

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

20

Weighted Majority Algorithm
Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Example:

prediction correct

weights 1 1 1 1

predictions Y Y Y N Y Y

weights 1 1 1 .5

predictions Y N N Y N Y

weights 1 .5 .5 .5

predictions Y N N N N N

weights .5 .5 .5 .5

predictions N Y N Y either N

weights .6 .26 .6 .25 21

Analysis: do nearly as well as best
expert in hindsight
M = # mistakes we've made so far.

m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)m. So,

(1/2)™ < n(3/4)M
(4/3)M < n2™
M < 24(m+Ign) »

10

