
1

EECS 219C: Computer-Aided Verification

Inductive Learning
(Machine Learning Theory)

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments: Avrim Blum

2

Outline

• Basic Concepts

• Batch vs. Online Learning

• More on Batch Learning

• More on Online Learning

• Teaching vs. Learning

(whiteboard material augments what’s in the
following slides)

2

3

Example: Decision ListsExample: Decision Lists

Given a dataset S of m examples over n boolean
features, drawn according to unknown distrib
D, labeled by unknown target f:

1. Algorithm AA will find a consistent DL if one
exists, in time O(mn).

2. If m > (1/)[n(2+ln n) + ln(1/)], then
Pr[exists consistent DL h with err(h) >] < .

4

How can we find a consistent DL?How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else
if (x4=1) then +, else -

3

5

Decision List algorithmDecision List algorithm
• Start with empty list.
• Find if-then rule consistent with data.

(and satisfied by at least one example)
• Put rule at bottom of list so far, and cross off

examples covered. Repeat until no examples remain.

If algorithm fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine. Now why should we expect it
to do well on future data?

6

Confidence/sampleConfidence/sample--complexitycomplexity
• Consider some hypothesis h with err(h) > .
• Chance that h survives m examples is at

most (1-)m.
• Number of DLs over n Boolean features is

at most n!4n. (for each feature there are 4 possible rules, and
no feature will appear more than once)

⇒ Pr[some DL h with err(h)> is consistent]
< n!4n(1-)m.

• This is < for m > n(2+ln n) + ln

4

7

2

8

5

9

10

6

11

OccamOccam’’ss razor (contd)razor (contd)22

• Even if we have different notions of what’s
simpler (e.g., different representation
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will
be a short explanation for the data. That
depends on your representation.

Nice interpretation:

14

Online Learning SettingOnline Learning Setting
• View learning as a sequence of trials.
• In each trial, algorithm is given x, asked to

predict f, and then is told the correct value.
• Make no assumptions about how examples

are chosen.
• Goal is to minimize number of mistakes.

Note: can no longer talk about # examples needed
to converge. Instead, we focus on number of
mistakes. Need to “learn from our mistakes”.

7

15

Simple example: learning an OR fnSimple example: learning an OR fn
• Suppose features are boolean: X = {0,1}n.
• Target is an OR function, like x3 v x9 v x12,

with no noise.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v … v xn

– Invariant: {vars in h} contains {vars in f }
– Mistake on negative: throw out vars in h set to 1

in x. Maintains invariant and decreases |h| by 1.
– No mistakes on postives. So at most n mistakes

total.

17

N Experts ProblemN Experts Problem
• We have n “experts”.
• One of these is perfect (never makes a mistake).

We just don’t know which one.
• Can we find a strategy that makes no more than

lg(n) mistakes?
Answer: sure. Just take majority vote over all experts that
have been correct so far. Called “halving algorithm”.

Followup question: what if we have a “prior” p over the
experts. Can we make no more than lg(1/pi) mistakes, where
expert i is the perfect one?
Sure, just take weighted vote according to p.

8

18

Relation to concept learningRelation to concept learning

• If computation time is no object, can have
one “expert” per concept in C.

• If target in C, then number of mistakes at
most lg(|C|).

• More generally, for any description
language, number of mistakes is at most
number of bits to write down f.

19

Back to expertBack to expert--adviceadvice
What if no expert is perfect? Goal is to do nearly

as well as the best one in hindsight.

Strategy #1:
• Iterated halving algorithm. Same as before, but

once we've crossed off all the experts, restart
from the beginning.

• Makes at most log(n)*OPT mistakes, where OPT
is # mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better? Yes.

9

20

Weighted Majority AlgorithmWeighted Majority Algorithm
Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.
– Predict based on weighted majority vote.
– Penalize mistakes by cutting weight in half.

21

Weighted Majority AlgorithmWeighted Majority Algorithm
Weighted Majority Alg:

– Start with all experts having weight 1.
– Predict based on weighted majority vote.
– Penalize mistakes by cutting weight in half.

Example:

10

22

Analysis: do nearly as well as best Analysis: do nearly as well as best
expert in hindsightexpert in hindsight

• M = # mistakes we've made so far.
• m = # mistakes best expert has made so far.
• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,
constant

comp. ratio

