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Outline

• Basic Concepts

• Batch vs. Online Learning

• More on Batch Learning

• More on Online Learning

• Teaching vs. Learning

(whiteboard material augments what’s in the 
following slides)
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Example: Decision ListsExample: Decision Lists

Given a dataset S of m examples over n boolean 
features, drawn according to unknown distrib
D, labeled by unknown target f:

1. Algorithm AA will find a consistent DL if one 
exists, in time O(mn).

2. If m > (1/)[n(2+ln n) + ln(1/)], then
Pr[exists consistent DL h with err(h) > ] < .
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How can we find a consistent DL?How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else
if (x4=1) then +, else -



3

5

Decision List algorithmDecision List algorithm
• Start with empty list.
• Find if-then rule consistent with data. 

(and satisfied by at least one example)
• Put rule at bottom of list so far, and cross off 

examples covered. Repeat until no examples remain.

If algorithm fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine.  Now why should we expect it 
to do well on future data?
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Confidence/sampleConfidence/sample--complexitycomplexity
• Consider some hypothesis h with err(h) > .
• Chance that h survives m examples is at 

most (1-)m.
• Number of DLs over n Boolean features is 

at most n!4n. (for each feature there are 4 possible rules, and 
no feature will appear more than once)

⇒ Pr[some DL h with err(h)> is consistent] 
< n!4n(1-)m.

• This is <  for m > n(2+ln n) + ln



4

7

2

8



5

9

10



6

11

OccamOccam’’ss razor (contd)razor (contd)22

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will 
be a short explanation for the data.  That 
depends on your representation.

Nice interpretation:
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Online Learning SettingOnline Learning Setting
• View learning as a sequence of trials.
• In each trial, algorithm is given x, asked to 

predict f, and then is told the correct value.  
• Make no assumptions about how examples 

are chosen.
• Goal is to minimize number of mistakes.

Note: can no longer talk about # examples needed 
to converge. Instead, we focus on number of 
mistakes.   Need to “learn from our mistakes”.
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Simple example: learning an OR fnSimple example: learning an OR fn
• Suppose features are boolean: X = {0,1}n.
• Target is an OR function, like x3 v x9 v x12, 

with no noise.
• Can we find an on-line strategy that makes 

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v … v xn

– Invariant: {vars in h} contains {vars in f }
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1.
– No mistakes on postives.  So at most n mistakes 

total.
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N Experts ProblemN Experts Problem
• We have n “experts”.
• One of these is perfect (never makes a mistake).  

We just don’t know which one.
• Can we find a strategy that makes no more than 

lg(n) mistakes?
Answer: sure.  Just take majority vote over all experts that 
have been correct so far.  Called “halving algorithm”.

Followup question: what if we have a “prior” p over the 
experts. Can we make no more than lg(1/pi) mistakes, where 
expert i is the perfect one?
Sure, just take weighted vote according to p.
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Relation to concept learningRelation to concept learning

• If computation time is no object, can have 
one “expert” per concept in C.

• If target in C, then number of mistakes at 
most lg(|C|).

• More generally, for any description 
language, number of mistakes is at most 
number of bits to write down f.
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Back to expertBack to expert--adviceadvice
What if no expert is perfect?  Goal is to do nearly 

as well as the best one in hindsight. 

Strategy #1:
• Iterated halving algorithm.  Same as before, but 

once we've crossed off all the experts, restart 
from the beginning.

• Makes at most log(n)*OPT mistakes, where OPT
is # mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better? Yes.
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Weighted Majority AlgorithmWeighted Majority Algorithm
Intuition: Making a mistake doesn't completely 

disqualify an expert. So, instead of crossing 
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.
– Predict based on weighted majority vote.
– Penalize mistakes by cutting weight in half.
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Weighted Majority AlgorithmWeighted Majority Algorithm
Weighted Majority Alg:

– Start with all experts having weight 1.
– Predict based on weighted majority vote.
– Penalize mistakes by cutting weight in half.

Example:
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Analysis: do nearly as well as best Analysis: do nearly as well as best 
expert in hindsightexpert in hindsight

• M = # mistakes we've made so far.
• m = # mistakes best expert has made so far.
• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,
constant 

comp. ratio


