Outline

- Basic Concepts
- Batch vs. Online Learning
- More on Batch Learning
- More on Online Learning
- Teaching vs. Learning

(whiteboard material augments what’s in the following slides)
Example: Decision Lists

Given a dataset S of m examples over n boolean features, drawn according to unknown distrib D, labeled by unknown target f:

1. Algorithm A will find a consistent DL if one exists, in time $O(mn)$.
2. If $m > \frac{1}{\varepsilon}[n(2+\ln n) + \ln(1/\delta)]$, then $\Pr[\exists$ consistent DL h with err(h) $> \varepsilon] < \delta$.

How can we find a consistent DL?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

if ($x_1=0$) then -, else
if ($x_2=1$) then +, else
if ($x_4=1$) then +, else -
Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data. (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If algorithm fails, then:
- No DL consistent with remaining data.
- So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some hypothesis h with $\text{err}(h) > \varepsilon$.
- Chance that h survives m examples is at most $(1-\varepsilon)^m$.
- Number of DLs over n Boolean features is at most $n!4^n$. (for each feature there are 4 possible rules, and no feature will appear more than once)

$$\Rightarrow \Pr[\text{some DL } h \text{ with } \text{err}(h) > \varepsilon \text{ is consistent}] < n!4^n(1-\varepsilon)^m.$$
- This is $< \delta$ for $m > (1/\varepsilon)[n(2+\ln n) + \ln(1/\delta)]$
DL: summary

Suppose the target f is, in fact, a decision list.

Then with probability $\geq 1 - \delta$, the hypothesis h produced by the algorithm has error $< \varepsilon$, so long as the number of examples m seen satisfies

$$m \geq \frac{1}{\varepsilon} \left[n (2 + \ln n) + \ln \frac{1}{\delta} \right].$$

I.e., it’s Probably Approximately Correct.

Confidence / sample complexity

Nothing special about DLs in our argument.

- All we said was: “If not too many rules to choose from, then unlikely some bad one will fool you just by chance.”

- Generalize to any hypothesis space H.

- After m examples, with probability $\geq 1 - \delta$, all $h \in H$ with $err(h) \geq \varepsilon$ have $err(h) > 0$, for

$$m \geq \frac{1}{\varepsilon} \left[\log(|H|) + \log \left(\frac{1}{\delta} \right) \right].$$
Occam’s razor

William of Occam (~ 1320 AD):

“Entities should not be multiplied unnecessarily” (in Latin)

Which we interpret as: “In general, prefer simpler explanations”.

Why? Is this a good policy? What if we have different notions of what’s simpler?

Occam’s razor (contd)

A computer-science-ish way of looking at it:

- Say “simple” = “short description”.
- At most 2^s explanations that are $< s$ bits long.
- If number of examples seen satisfies

$$m \geq \frac{1}{\varepsilon} \left[s \ln 2 + \ln \left(\frac{1}{\delta} \right) \right].$$

then it’s unlikely a bad simple explanation will fool you just by chance.
Occam's razor (contd)2

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.

- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Online Learning Setting

- View learning as a sequence of trials.
- In each trial, algorithm is given x, asked to predict f, and then is told the correct value.
- Make no assumptions about how examples are chosen.
- Goal is to minimize number of mistakes.

Note: can no longer talk about # examples needed to converge. Instead, we focus on number of mistakes. Need to “learn from our mistakes”.
Simple example: learning an OR fn

- Suppose features are boolean: \(X = \{0,1\}^n\).
- Target is an OR function, like \(x_3 \lor x_9 \lor x_{12}\), with no noise.
- Can we find an on-line strategy that makes at most \(n\) mistakes?
- Sure.
 - Start with \(h(x) = x_1 \lor x_2 \lor \ldots \lor x_n\)
 - Invariant: \{vars in \(h\}\} contains \{vars in \(f\}\}
 - Mistake on negative: throw out vars in \(h\) set to 1 in \(x\). Maintains invariant and decreases \(|h|\) by 1.
 - No mistakes on postives. So at most \(n\) mistakes total.

N Experts Problem

- We have \(n\) “experts”.
- One of these is perfect (never makes a mistake). We just don’t know which one.
- Can we find a strategy that makes no more than \(\lg(n)\) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far. Called “halving algorithm”.

Followup question: what if we have a “prior” \(p\) over the experts. Can we make no more than \(\lg(1/p)\) mistakes, where expert /is the perfect one?

Sure, just take weighted vote according to \(p\).
Relation to concept learning

- If computation time is no object, can have one “expert” per concept in C.
- If target in C, then number of mistakes at most $\log(|C|)$.
- More generally, for any description language, number of mistakes is at most number of bits to write down f.

Back to expert-advice

What if no expert is perfect? Goal is to do nearly as well as the best one in hindsight.

Strategy #1:
- Iterated halving algorithm. Same as before, but once we’ve crossed off all the experts, restart from the beginning.
- Makes at most $\log(n) \times \text{OPT}$ mistakes, where OPT is # mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we’ve “learned”. Can we do better? Yes.
Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Example:

<table>
<thead>
<tr>
<th>weights</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>prediction</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weights</th>
<th>1</th>
<th>1</th>
<th>.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictions</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>prediction</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weights</th>
<th>.5</th>
<th>.5</th>
<th>.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictions</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>prediction</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weights</th>
<th>.5</th>
<th>.5</th>
<th>.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictions</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>prediction</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>weights</th>
<th>.5</th>
<th>.25</th>
<th>.5</th>
<th>.25</th>
</tr>
</thead>
</table>
Analysis: do nearly as well as best expert in hindsight

- $M = \#\text{ mistakes we've made so far.}$
- $m = \#\text{ mistakes best expert has made so far.}$
- $W = \text{total weight (starts at n).}$
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most $n(3/4)^M$.
- Weight of best expert is $(1/2)^m$. So,

$$
\begin{align*}
(1/2)^m & \leq n(3/4)^M \\
(4/3)^M & \leq n2^m \\
M & \leq 2.4(m + \lg n)
\end{align*}
$$

constant comp. ratio