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Key Optimizations in (Symbolic)       
Model Checking

• Abstraction
– Compute a smaller state graph by “merging 

states” s.t. if the property holds on the smaller 
system model, it holds on the larger one

• Symmetry Reduction
– Group states into equivalence classes by 

exploiting symmetries in the model

• Compositional Reasoning
– Compose proofs of correctness of modules to 

prove the overall system correct 
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Today’s Lecture

• Abstraction
– Counter-example guided abstraction 

refinement (CEGAR)

• Symbolic Model Checking without BDDs
– Uses SAT instead of BDDs

– Started with Bounded Model Checking

– Extended to Unbounded Model Checking
• Abstraction + BMC

• Interpolation-based model checking 
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Abstraction
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Abstraction

• Extracting information from a system 
description that is relevant to proving a 
property 

• Goal: Reduce size of system model

• Terminology:
– Original model = Concrete system/model
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Abstraction (2)

• Reduce the size of the system model by 
throwing out information / grouping states
– If this information is irrelevant to the property 

of interest (i.e., the property is true on the 
original model iff it is true on the abstract 
model) then it is a precise abstraction

– If the property is true on the original model if it 
is true on the abstract model, it is a safe
abstraction 
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Example

• Abstractions exhibit more behaviors
• Consider the foll 2 properties on the original 

model and abstraction:
G(go X stop) G F go
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A Simple Form of Abstraction

• Suppose the temporal logic property 
mentions only a subset of variable V’ of 
the entire set V

• Can I use this information to construct a 
precise abstraction of the original model?
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A Simple Form of Abstraction
• Suppose the temporal logic property 

mentions only a subset of variable V’ of 
the entire set V

• Can I use this information to construct a 
precise abstraction of the original model?
– YES. One such method is the “cone of 

influence” reduction.
• Transitively propagate syntactic dependences on 

variables and “delete” all variables not in the 
transitive closure
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Formal Definition
• Abstraction is defined by an abstraction 

function

• Abstraction function  : S  Ŝ
– S – set of concrete states

– Ŝ – set of abstract states

• An abstraction induces an equivalence 
relation over the concrete states 
– Two concrete states are equivalent if they are 

mapped to the same abstract state 
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Formal Definition
• Suppose concrete system is (S, S0, R, L), 

and abstract system (Ŝ, Ŝ0, R, L)

• Abstraction function  : S  Ŝ
– S – set of concrete states

– Ŝ – set of abstract states

• Ŝ0 = { t | ∃ s . S0(s) ∧ (s) = t }

• R = ?
– How do we algorithmically construct Ŝ0 and R ?

– How are labels assigned to abstract states?
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Example of Abstraction
• Our examples in this lecture will be 

abstractions that extract a subset of state 
variables
– State variables partitioned into: visible and 

invisible

– An abstract state is an evaluation of visible 
variables

– What is  ?

– Two concrete states that agree on values of 
visible variables are grouped together
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Example

• Abstractions exhibit more behaviors
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Abstraction and Properties

• If an LTL property is true on the abstract 
model, is it necessarily true on the 
concrete model?

• If an LTL property is false on the abstract 
model, is it necessarily false on the 
concrete model?
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Cone-of-influence

• Suppose the property  mentions a subset of 
variables V’ of the total set V
– Track variables that V’ syntactically depend on, add 

them to V’, and iterate until no new variable 
dependencies generated

– Resulting V’ is the cone-of-influence and its elements 
are the visible variables

• Problem: Final V’ might be as big as V because 
it only tracks syntactic dependencies
– But resulting abstraction is precise  if  is false in 

abstract model it is false in concrete model
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Example: Cone-of-influence can be 
conservative

a

b c

g

What are the expressions for next state variables c’ and g’ ?

Suppose we want to prove G(c Xc) . What’s the 
cone of influence?

If we make g invisible, can we still prove the property? 
• what about a and b?

Let a, b, c, g be state variables
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Another approach to Abstraction

• Start with an arbitrary subset of variables 
as visible
– An option: the ones mentioned in the property

• Construct abstract model, model check it
– If property passes, we’re done

– If we get a counterexample, check whether it 
is a counterexample for the concrete model

• If yes, we’re done

• If not (spurious counterex.) we must make more 
variables visible and repeat (REFINEMENT)
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Counter-Example Guided 
Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

• Start with a choice of 
• Construct abstract model, model check it

– If property passes, we’re done

– If we get a counterexample, check whether 
it’s is a counterexample for the concrete 
model (How do we do this?)

• If yes, we’re done

• If not (spurious counterex.), we must refine  and 
repeat
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Intuition about Refinement

• Remember that  partitions the concrete 
states into equivalence classes
– C1, C2, …, Ck

• A refinement ’ can further break up the 
Ci’s
– States that are equivalent under ’ should 

also be equivalent under 
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Formal Definition of Refinement

• ’ refines  if
– ∀ s, t  . ’(s) = ’(t)  (s) = (t)

– ∃ s, t  . ’(s)  ’(t) ∧ (s) = (t)

• Given above definition, why will the 
CEGAR iteration terminate?



11

S. A. Seshia 21

Visible/Invisible Abstraction

• The set of variables is partitioned into 
visible V and invisible I

• Questions:
– How do we construct the abstract model?

• Given an arbitrary set of visible variables

– How do we refine the abstraction?
• i.e., how do we pick new variables to make visible?

• We want to pick those that will remove the current 
spurious counterexample 

S. A. Seshia 22

Constructing Abstract Model

• Simply make all invisible variables take 
arbitrary values
– Non-deterministically assigned 0 or 1 on each 

step

• How does this make model checking more 
efficient?
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Constructing Abstract Model

• Simply make all invisible variables take 
arbitrary values
– Non-deterministically assigned 0 or 1 on each 

step

• How does this make model checking more 
efficient?
– Avoids some existential quantification, 

simplifies transition relation
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Refining the Abstraction

• The CEGAR approach is most often used 
today in conjunction with a technique 
called Bounded Model Checking

• We will study abstraction-refinement in 
that context
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Bounded Model Checking (BMC)
• Given

– A FSM M described by S0, R 
– A property G p and a integer k ≥ 1

• Determine

– Does M generate a counterexample to     
G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

[Biere, Clarke, Cimatti, Zhu, ‘99]
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Unfolding in BMC
• Unfold the model k times:

Uk = R0  R1  ...  Rk-1

a
b

c

g a
b

c

g a
b

c

g
...S0 Ek = 

¬ p

• Use SAT solver to check satisfiability of
S0  Uk  Ek

• A satisfying assignment is a counterexample 
of k steps
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Old view on BMC  

• Originally introduced as a debugging tool
– By finding counterexamples 

• Proving properties:
– Only possible if a bound on the diameter of 

the state graph is known
• The diameter is the maximum over shortest path 

lengths between any two states.

– Worst case is exponential in system 
description.
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BMC + CEGAR
• BMC + Abstraction can prove properties too!

• Here’s how it works:

Create 
abstraction A

Perform (unbounded) 
model checking on A

Prove that this abstract 
counterexample of length k 

is a concrete counterex. 
using k-step BMC on M

Extract information 
for refinement
from refutation

Property 
true

Counter-
example of 

length k
OK

Proof succeeds

Proof fails

Counterexample

Why does this terminate?
(make few variables visible)

(make more 
variables visible)
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Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious
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Steps

1. Create abstraction A 

2. Model check A 

3. Prove that abstract counterexample is a 
concrete counterexample using BMC

4. Use refutation of abstract 
counterexample to do refinement
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Checking Abstract Counterex.

• Recall: BMC for length k 
– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

• How do we use this to prove the abstract 
counterexample of length k also holds for 
concrete model?
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Checking Abstract Counterex.

• Recall: we use BMC for the length k of the 
abstract counterexample
– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to 
values of the visible variables

– If SAT solver reports “SAT” we have a 
concrete counterexample

• What is a satisfying assignment?

– If not, we have a refutation  proof of 
unsatisfiability
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Refinement

• Given proof of unsatisfiability of
S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to 
values of the visible variables

• Look at unsatisfiable core of proof 
– Invisible variables that appear in the core 

indicate why the abstract counterexample is 
spurious

– Make those variables visible
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Modifying the Abstraction-
Refinement Loop

• Insight: Why pick an abstraction to start 
with?
– Initial abstraction may not be the best start 

point

– Why not do BMC initially and use its results to 
generate abstractions?
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Proof-based Abstraction (PBA)

BMC on M
at depth k

Cex?

No Cex?

Use refutation to 
choose abstraction

Unbounded MC  
on abstraction

Property 
true?

False, counterexample of 
length k’

In
cr

ea
se

 k
 t

o 
k’

OK

Counter-
example

Other differences 
with earlier loop?

[McMillan, Amla, 2003]Pick k
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Termination of PBA
• Depth k increases at each iteration

• Eventually k > diameter d

• If k > d, no counterexample is possible
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CEGAR vs. PBA

• Refutation via k-step BMC 
– PBA refutes all concrete counterexamples of 

up to length k

– CEGAR refutes only the abstract 
counterexample of length k

• So PBA does more work in the refutation, 
but usually results in fewer iterations of the 
loop
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Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious
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Abstraction and Reachability
• An abstraction expands the set of states 

reachable from the initial state
– OVER-APPROXIMATION

• Instead of starting by abstracting states, 
one can directly abstract the transition 
relation
– Each time you compute the set of next states, 

you get an over-approximation of the actual 
set of next states

– Gives a way of computing an over-
approximation of the set of reachable states
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Abstraction using Interpolation
• Abstraction is extracting sufficient/relevant 

information from a system to prove a given 
property.

• This notion is in some sense closely related 
to a notion of “interpolant” and a lemma 
called “Craig's interpolation lemma”
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Interpolation Lemma

• If A  B = false, there exists an interpolant A' 
for (A,B) such that:
(i)  A A'

(ii)  A'  B = false

(iii) A' refers only to common variables of A,B

• Example: 
– A = p  q,   B = q  r,    A' = q

(Craig, 57)
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Interpolants from Proofs

• Interpolant A’ for A ∧ B:
A A'

A'  B = false

A' refers only to common variables of A,B

• Interpolants can be obtained from proofs
– given a resolution-based refutation (proof of 

unsatisfiability) of A  B, 

A' can be derived in time linear in the proof

(Pudlak,Krajicek,97)
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Interpolation based Model 
Checking

• Main Idea: Pose the problem of over-
approximating the set of next states as 
finding an interpolant

(McMillan, 2003)

S0 Ek

R R R R R R R

A B

k0

S0(v0) ∧ R(v0, v1) ∧ R(v1, v2) ∧ … ∧ R(vk-1, vk) ∧ Ek(vk)

S. A. Seshia 46

Interpolation based Model Checking

S0
Ek

R R R R R R R

A B

k0

S0(v0) ∧ R(v0, v1) ∧ R(v1, v2) ∧ … ∧ R(vk-1, vk) ∧ Ek(vk)

A = S0(v0) ∧ R(v0, v1) 
B = R(v1, v2) ∧ … ∧ R(vk-1, vk) ∧ Ek(vk)

A’ is a function of v1 s.t.
1. A  A’

2. A’ ∧ B is unsat

What set of states 
does A’ represent?
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Interpolation based MC
For a fixed k:

1. Set Z initially to S0

2. Do BMC starting from Z for k steps
• If SAT: have we found a counterexample?

• If UNSAT, continue

3. Use interpolation to compute over-approximation 
of next states of Z and add them back into Z
– Can newly added states lead to error states in   k-1 

steps? In k steps?

4. If Z does not increase
– We’ve reached a fixed point Z=P. Is the property true?

5. Otherwise, back to step 2
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Intuition

• A' tells us everything the prover deduced 
about the image of S0 in proving it can't 
reach an error in k steps. 

• Hence, A' is in some sense an abstraction 
of the image relative to the property and
the bound k 

A'

S0 Ek

R R R R R R R

A B

k0

The fixed point P is an inductive invariant
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Inductive Invariant P

• P is true in the initial state 
– S0 ⇒ P

• R is maintained by the transition relation
– P(s) ∧ R(s,s’) ⇒ P(s’)

• In other words: every reachable state 
satisfies P

• The system is deemed to be correct if              
P ∧ E is UNSAT.  
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Refinement

• The procedure may be inconclusive for a 
fixed k
– May add a state that reaches error in k steps 

(getting SAT in step 2 with Z != S0)

• Refinement is just increasing k
– How big can k get?


