
1

EECS 219C: Computer-Aided Verification

Abstraction & Symbolic Model
Checking without BDDs

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

S. A. Seshia 2

Key Optimizations in (Symbolic)
Model Checking

• Abstraction
– Compute a smaller state graph by “merging

states” s.t. if the property holds on the smaller
system model, it holds on the larger one

• Symmetry Reduction
– Group states into equivalence classes by

exploiting symmetries in the model

• Compositional Reasoning
– Compose proofs of correctness of modules to

prove the overall system correct

2

S. A. Seshia 3

Today’s Lecture

• Abstraction
– Counter-example guided abstraction

refinement (CEGAR)

• Symbolic Model Checking without BDDs
– Uses SAT instead of BDDs

– Started with Bounded Model Checking

– Extended to Unbounded Model Checking
• Abstraction + BMC

• Interpolation-based model checking

S. A. Seshia 4

Abstraction

3

S. A. Seshia 5

Abstraction

• Extracting information from a system
description that is relevant to proving a
property

• Goal: Reduce size of system model

• Terminology:
– Original model = Concrete system/model

S. A. Seshia 6

Abstraction (2)

• Reduce the size of the system model by
throwing out information / grouping states
– If this information is irrelevant to the property

of interest (i.e., the property is true on the
original model iff it is true on the abstract
model) then it is a precise abstraction

– If the property is true on the original model if it
is true on the abstract model, it is a safe
abstraction

4

S. A. Seshia 7

Example

• Abstractions exhibit more behaviors
• Consider the foll 2 properties on the original

model and abstraction:
G(go X stop) G F go

S. A. Seshia 8

A Simple Form of Abstraction

• Suppose the temporal logic property
mentions only a subset of variable V’ of
the entire set V

• Can I use this information to construct a
precise abstraction of the original model?

5

S. A. Seshia 9

A Simple Form of Abstraction
• Suppose the temporal logic property

mentions only a subset of variable V’ of
the entire set V

• Can I use this information to construct a
precise abstraction of the original model?
– YES. One such method is the “cone of

influence” reduction.
• Transitively propagate syntactic dependences on

variables and “delete” all variables not in the
transitive closure

S. A. Seshia 10

Formal Definition
• Abstraction is defined by an abstraction

function

• Abstraction function  : S  Ŝ
– S – set of concrete states

– Ŝ – set of abstract states

• An abstraction induces an equivalence
relation over the concrete states
– Two concrete states are equivalent if they are

mapped to the same abstract state

6

S. A. Seshia 11

Formal Definition
• Suppose concrete system is (S, S0, R, L),

and abstract system (Ŝ, Ŝ0, R, L)

• Abstraction function  : S  Ŝ
– S – set of concrete states

– Ŝ – set of abstract states

• Ŝ0 = { t | ∃ s . S0(s) ∧ (s) = t }

• R = ?
– How do we algorithmically construct Ŝ0 and R ?

– How are labels assigned to abstract states?

S. A. Seshia 12

Example of Abstraction
• Our examples in this lecture will be

abstractions that extract a subset of state
variables
– State variables partitioned into: visible and

invisible

– An abstract state is an evaluation of visible
variables

– What is  ?

– Two concrete states that agree on values of
visible variables are grouped together

7

S. A. Seshia 13

Example

• Abstractions exhibit more behaviors

S. A. Seshia 14

Abstraction and Properties

• If an LTL property is true on the abstract
model, is it necessarily true on the
concrete model?

• If an LTL property is false on the abstract
model, is it necessarily false on the
concrete model?

8

S. A. Seshia 15

Cone-of-influence

• Suppose the property  mentions a subset of
variables V’ of the total set V
– Track variables that V’ syntactically depend on, add

them to V’, and iterate until no new variable
dependencies generated

– Resulting V’ is the cone-of-influence and its elements
are the visible variables

• Problem: Final V’ might be as big as V because
it only tracks syntactic dependencies
– But resulting abstraction is precise  if  is false in

abstract model it is false in concrete model

S. A. Seshia 16

Example: Cone-of-influence can be
conservative

a

b c

g

What are the expressions for next state variables c’ and g’ ?

Suppose we want to prove G(c Xc) . What’s the
cone of influence?

If we make g invisible, can we still prove the property?
• what about a and b?

Let a, b, c, g be state variables

9

S. A. Seshia 17

Another approach to Abstraction

• Start with an arbitrary subset of variables
as visible
– An option: the ones mentioned in the property

• Construct abstract model, model check it
– If property passes, we’re done

– If we get a counterexample, check whether it
is a counterexample for the concrete model

• If yes, we’re done

• If not (spurious counterex.) we must make more
variables visible and repeat (REFINEMENT)

S. A. Seshia 18

Counter-Example Guided
Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

• Start with a choice of 
• Construct abstract model, model check it

– If property passes, we’re done

– If we get a counterexample, check whether
it’s is a counterexample for the concrete
model (How do we do this?)

• If yes, we’re done

• If not (spurious counterex.), we must refine  and
repeat

10

S. A. Seshia 19

Intuition about Refinement

• Remember that  partitions the concrete
states into equivalence classes
– C1, C2, …, Ck

• A refinement ’ can further break up the
Ci’s
– States that are equivalent under ’ should

also be equivalent under 

S. A. Seshia 20

Formal Definition of Refinement

• ’ refines  if
– ∀ s, t . ’(s) = ’(t)  (s) = (t)

– ∃ s, t . ’(s)  ’(t) ∧ (s) = (t)

• Given above definition, why will the
CEGAR iteration terminate?

11

S. A. Seshia 21

Visible/Invisible Abstraction

• The set of variables is partitioned into
visible V and invisible I

• Questions:
– How do we construct the abstract model?

• Given an arbitrary set of visible variables

– How do we refine the abstraction?
• i.e., how do we pick new variables to make visible?

• We want to pick those that will remove the current
spurious counterexample

S. A. Seshia 22

Constructing Abstract Model

• Simply make all invisible variables take
arbitrary values
– Non-deterministically assigned 0 or 1 on each

step

• How does this make model checking more
efficient?

12

S. A. Seshia 23

Constructing Abstract Model

• Simply make all invisible variables take
arbitrary values
– Non-deterministically assigned 0 or 1 on each

step

• How does this make model checking more
efficient?
– Avoids some existential quantification,

simplifies transition relation

S. A. Seshia 24

Refining the Abstraction

• The CEGAR approach is most often used
today in conjunction with a technique
called Bounded Model Checking

• We will study abstraction-refinement in
that context

13

S. A. Seshia 25

Bounded Model Checking (BMC)
• Given

– A FSM M described by S0, R
– A property G p and a integer k ≥ 1

• Determine

– Does M generate a counterexample to
G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

[Biere, Clarke, Cimatti, Zhu, ‘99]

S. A. Seshia 26

Unfolding in BMC
• Unfold the model k times:

Uk = R0  R1  ...  Rk-1

a
b

c

g a
b

c

g a
b

c

g
...S0 Ek =

¬ p

• Use SAT solver to check satisfiability of
S0  Uk  Ek

• A satisfying assignment is a counterexample
of k steps

14

S. A. Seshia 27

Old view on BMC

• Originally introduced as a debugging tool
– By finding counterexamples

• Proving properties:
– Only possible if a bound on the diameter of

the state graph is known
• The diameter is the maximum over shortest path

lengths between any two states.

– Worst case is exponential in system
description.

S. A. Seshia 28

BMC + CEGAR
• BMC + Abstraction can prove properties too!

• Here’s how it works:

Create
abstraction A

Perform (unbounded)
model checking on A

Prove that this abstract
counterexample of length k

is a concrete counterex.
using k-step BMC on M

Extract information
for refinement
from refutation

Property
true

Counter-
example of

length k
OK

Proof succeeds

Proof fails

Counterexample

Why does this terminate?
(make few variables visible)

(make more
variables visible)

15

S. A. Seshia 29

Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious

S. A. Seshia 30

Steps

1. Create abstraction A 

2. Model check A 

3. Prove that abstract counterexample is a
concrete counterexample using BMC

4. Use refutation of abstract
counterexample to do refinement

16

S. A. Seshia 31

Checking Abstract Counterex.

• Recall: BMC for length k
– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

• How do we use this to prove the abstract
counterexample of length k also holds for
concrete model?

S. A. Seshia 32

Checking Abstract Counterex.

• Recall: we use BMC for the length k of the
abstract counterexample
– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to
values of the visible variables

– If SAT solver reports “SAT” we have a
concrete counterexample

• What is a satisfying assignment?

– If not, we have a refutation  proof of
unsatisfiability

17

S. A. Seshia 33

Refinement

• Given proof of unsatisfiability of
S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to
values of the visible variables

• Look at unsatisfiable core of proof
– Invisible variables that appear in the core

indicate why the abstract counterexample is
spurious

– Make those variables visible

S. A. Seshia 34

Modifying the Abstraction-
Refinement Loop

• Insight: Why pick an abstraction to start
with?
– Initial abstraction may not be the best start

point

– Why not do BMC initially and use its results to
generate abstractions?

18

S. A. Seshia 35

Proof-based Abstraction (PBA)

BMC on M
at depth k

Cex?

No Cex?

Use refutation to
choose abstraction

Unbounded MC
on abstraction

Property
true?

False, counterexample of
length k’

In
cr

ea
se

 k
 t

o
k’

OK

Counter-
example

Other differences
with earlier loop?

[McMillan, Amla, 2003]Pick k

S. A. Seshia 36

Termination of PBA
• Depth k increases at each iteration

• Eventually k > diameter d

• If k > d, no counterexample is possible

19

S. A. Seshia 37

CEGAR vs. PBA

• Refutation via k-step BMC
– PBA refutes all concrete counterexamples of

up to length k

– CEGAR refutes only the abstract
counterexample of length k

• So PBA does more work in the refutation,
but usually results in fewer iterations of the
loop

S. A. Seshia 38

Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious

20

S. A. Seshia 41

Abstraction and Reachability
• An abstraction expands the set of states

reachable from the initial state
– OVER-APPROXIMATION

• Instead of starting by abstracting states,
one can directly abstract the transition
relation
– Each time you compute the set of next states,

you get an over-approximation of the actual
set of next states

– Gives a way of computing an over-
approximation of the set of reachable states

S. A. Seshia 42

Abstraction using Interpolation
• Abstraction is extracting sufficient/relevant

information from a system to prove a given
property.

• This notion is in some sense closely related
to a notion of “interpolant” and a lemma
called “Craig's interpolation lemma”

21

S. A. Seshia 43

Interpolation Lemma

• If A  B = false, there exists an interpolant A'
for (A,B) such that:
(i) A A'

(ii) A'  B = false

(iii) A' refers only to common variables of A,B

• Example:
– A = p  q, B = q  r, A' = q

(Craig, 57)

S. A. Seshia 44

Interpolants from Proofs

• Interpolant A’ for A ∧ B:
A A'

A'  B = false

A' refers only to common variables of A,B

• Interpolants can be obtained from proofs
– given a resolution-based refutation (proof of

unsatisfiability) of A  B,

A' can be derived in time linear in the proof

(Pudlak,Krajicek,97)

22

S. A. Seshia 45

Interpolation based Model
Checking

• Main Idea: Pose the problem of over-
approximating the set of next states as
finding an interpolant

(McMillan, 2003)

S0 Ek

R R R R R R R

A B

k0

S0(v0) ∧ R(v0, v1) ∧ R(v1, v2) ∧ … ∧ R(vk-1, vk) ∧ Ek(vk)

S. A. Seshia 46

Interpolation based Model Checking

S0
Ek

R R R R R R R

A B

k0

S0(v0) ∧ R(v0, v1) ∧ R(v1, v2) ∧ … ∧ R(vk-1, vk) ∧ Ek(vk)

A = S0(v0) ∧ R(v0, v1)
B = R(v1, v2) ∧ … ∧ R(vk-1, vk) ∧ Ek(vk)

A’ is a function of v1 s.t.
1. A  A’

2. A’ ∧ B is unsat

What set of states
does A’ represent?

23

S. A. Seshia 47

Interpolation based MC
For a fixed k:

1. Set Z initially to S0

2. Do BMC starting from Z for k steps
• If SAT: have we found a counterexample?

• If UNSAT, continue

3. Use interpolation to compute over-approximation
of next states of Z and add them back into Z
– Can newly added states lead to error states in k-1

steps? In k steps?

4. If Z does not increase
– We’ve reached a fixed point Z=P. Is the property true?

5. Otherwise, back to step 2

S. A. Seshia 48

Intuition

• A' tells us everything the prover deduced
about the image of S0 in proving it can't
reach an error in k steps.

• Hence, A' is in some sense an abstraction
of the image relative to the property and
the bound k

A'

S0 Ek

R R R R R R R

A B

k0

The fixed point P is an inductive invariant

24

S. A. Seshia 49

Inductive Invariant P

• P is true in the initial state
– S0 ⇒ P

• R is maintained by the transition relation
– P(s) ∧ R(s,s’) ⇒ P(s’)

• In other words: every reachable state
satisfies P

• The system is deemed to be correct if
P ∧ E is UNSAT.

S. A. Seshia 50

Refinement

• The procedure may be inconclusive for a
fixed k
– May add a state that reaches error in k steps

(getting SAT in step 2 with Z != S0)

• Refinement is just increasing k
– How big can k get?

