EECS 219C: Computer-Aided Verification Abstraction \& Symbolic Model Checking without BDDs

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

Key Optimizations in (Symbolic) Model Checking

- Abstraction
- Compute a smaller state graph by "merging states" s.t. if the property holds on the smaller system model, it holds on the larger one
- Symmetry Reduction
- Group states into equivalence classes by exploiting symmetries in the model
- Compositional Reasoning
- Compose proofs of correctness of modules to prove the overall system correct

Today's Lecture

- Abstraction
- Counter-example guided abstraction refinement (CEGAR)
- Symbolic Model Checking without BDDs
- Uses SAT instead of BDDs
- Started with Bounded Model Checking
- Extended to Unbounded Model Checking
- Abstraction + BMC
- Interpolation-based model checking

Abstraction

Abstraction

- Extracting information from a system description that is relevant to proving a property
- Goal: Reduce size of system model
- Terminology:
- Original model $=$ Concrete system/model

Abstraction (2)

- Reduce the size of the system model by throwing out information / grouping states
- If this information is irrelevant to the property of interest (i.e., the property is true on the original model iff it is true on the abstract model) then it is a precise abstraction
- If the property is true on the original model if it is true on the abstract model, it is a safe abstraction

- Abstractions exhibit more behaviors
- Consider the foll 2 properties on the original model and abstraction:

$$
\mathrm{G}(\mathrm{go} \rightarrow \mathrm{X} \text { stop }) \quad \mathrm{G} F \text { go }
$$

A Simple Form of Abstraction

- Suppose the temporal logic property mentions only a subset of variable V' of the entire set V
- Can I use this information to construct a precise abstraction of the original model?

A Simple Form of Abstraction

- Suppose the temporal logic property mentions only a subset of variable V' of the entire set V
- Can I use this information to construct a precise abstraction of the original model?
- YES. One such method is the "cone of influence" reduction.
- Transitively propagate syntactic dependences on variables and "delete" all variables not in the transitive closure

Formal Definition

- Abstraction is defined by an abstraction function
- Abstraction function $\alpha: S \rightarrow$ S
- S - set of concrete states
- S - set of abstract states
- An abstraction induces an equivalence relation over the concrete states
- Two concrete states are equivalent if they are mapped to the same abstract state

Formal Definition

- Suppose concrete system is ($\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}$), and abstract system ($\left.\hat{\mathrm{S}}, \hat{\mathrm{S}}_{0}, \hat{\mathrm{R}}, \hat{\mathrm{L}}\right)$
- Abstraction function $\alpha: S \rightarrow \hat{S}$
- S - set of concrete states
- Ŝ - set of abstract states
- $\hat{S}_{0}=\left\{t \mid \exists s . S_{0}(s) \wedge \alpha(s)=t\right\}$
- $\hat{R}=$?
- How do we algorithmically construct \hat{S}_{0} and \hat{R} ?
- How are labels assigned to abstract states?

Example of Abstraction

- Our examples in this lecture will be abstractions that extract a subset of state variables
- State variables partitioned into: visible and invisible
- An abstract state is an evaluation of visible variables
- What is α ?
- Two concrete states that agree on values of visible variables are grouped together

- Abstractions exhibit more behaviors

Abstraction and Properties

- If an LTL property is true on the abstract model, is it necessarily true on the concrete model?
- If an LTL property is false on the abstract model, is it necessarily false on the concrete model?

Cone-of-influence

- Suppose the property ϕ mentions a subset of variables V' of the total set V
- Track variables that V' syntactically depend on, add them to V^{\prime}, and iterate until no new variable dependencies generated
- Resulting V^{\prime} is the cone-of-influence and its elements are the visible variables
- Problem: Final V' might be as big as V because it only tracks syntactic dependencies
- But resulting abstraction is precise \rightarrow if ϕ is false in abstract model it is false in concrete model

Example: Cone-of-influence can be conservative

What are the expressions for next state variables c' and g^{\prime} ? Suppose we want to prove $G(c \rightarrow X c)$. What's the cone of influence?

If we make g invisible, can we still prove the property?

Another approach to Abstraction

- Start with an arbitrary subset of variables as visible
- An option: the ones mentioned in the property
- Construct abstract model, model check it
- If property passes, we're done
- If we get a counterexample, check whether it is a counterexample for the concrete model
- If yes, we're done
- If not (spurious counterex.) we must make more variables visible and repeat (REFINEMENT)

Counter-Example Guided Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

- Start with a choice of α
- Construct abstract model, model check it
- If property passes, we're done
- If we get a counterexample, check whether it's is a counterexample for the concrete model (How do we do this?)
- If yes, we're done
- If not (spurious counterex.), we must refine α and repeat

Intuition about Refinement

- Remember that α partitions the concrete states into equivalence classes
$-\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$
- A refinement α ' can further break up the C_{i} 's
- States that are equivalent under α ' should also be equivalent under α

Formal Definition of Refinement

- α^{\prime} refines α if
$-\forall \mathrm{s}, \mathrm{t} \cdot \alpha^{\prime}(\mathrm{s})=\alpha^{\prime}(\mathrm{t}) \rightarrow \alpha(\mathrm{s})=\alpha(\mathrm{t})$
$-\exists \mathrm{s}, \mathrm{t} \cdot \alpha^{\prime}(\mathrm{s}) \neq \alpha^{\prime}(\mathrm{t}) \wedge \alpha(\mathrm{s})=\alpha(\mathrm{t})$
- Given above definition, why will the CEGAR iteration terminate?

Visible/Invisible Abstraction

- The set of variables is partitioned into visible V and invisible I
- Questions:
- How do we construct the abstract model?
- Given an arbitrary set of visible variables
- How do we refine the abstraction?
- i.e., how do we pick new variables to make visible?
- We want to pick those that will remove the current spurious counterexample

Constructing Abstract Model

- Simply make all invisible variables take arbitrary values
- Non-deterministically assigned 0 or 1 on each step
- How does this make model checking more efficient?

Constructing Abstract Model

- Simply make all invisible variables take arbitrary values
- Non-deterministically assigned 0 or 1 on each step
- How does this make model checking more efficient?
- Avoids some existential quantification, simplifies transition relation

Refining the Abstraction

- The CEGAR approach is most often used today in conjunction with a technique called Bounded Model Checking
- We will study abstraction-refinement in that context

Bounded Model Checking (BMC)

- Given
[Biere, Clarke, Cimatti, Zhu, '99]
-A FSM M described by S_{0}, R
-A property G p and a integer $k \geq 1$
- Determine
-Does M generate a counterexample to G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

Unfolding in BMC

- Unfold the model k times:

$$
U_{k}=R_{0} \wedge R_{1} \wedge \ldots \wedge R_{k-1}
$$

- Use SAT solver to check satisfiability of

$$
S_{0} \wedge U_{k} \wedge E_{k}
$$

- A satisfying assignment is a counterexample of k steps

Old view on BMC

- Originally introduced as a debugging tool
- By finding counterexamples
- Proving properties:
- Only possible if a bound on the diameter of the state graph is known
- The diameter is the maximum over shortest path lengths between any two states.
- Worst case is exponential in system description.

BMC + CEGAR

- BMC + Abstraction can prove properties too!
- Here's how it works:

S. A. Seshia

Why does this terminate?

$\begin{array}{c}\text { Extract information } \\ \text { for refinement } \\ \text { from refutation }\end{array}$ $\begin{array}{c}\text { Proof fails } \\ \text { Counterexample of length k } \\ \text { is a concrete counterex. } \\ \text { using k-step BMC on M }\end{array}$ Counterexample

Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious

Steps

1. Create abstraction A \checkmark
2. Model check A \checkmark
3. Prove that abstract counterexample is a concrete counterexample using BMC
4. Use refutation of abstract counterexample to do refinement

Checking Abstract Counterex.

- Recall: BMC for length k
- Use SAT solver to check satisfiability of $S_{0} \wedge U_{k} \wedge E_{k}$
- How do we use this to prove the abstract counterexample of length k also holds for concrete model?

Checking Abstract Counterex.

- Recall: we use BMC for the length k of the abstract counterexample
- Use SAT solver to check satisfiability of $S_{0} \wedge U_{k} \wedge E_{k}$
under the partial assignment corresponding to values of the visible variables
- If SAT solver reports "SAT" we have a concrete counterexample
- What is a satisfying assignment?
- If not, we have a refutation \leftarrow proof of unsatisfiability

Refinement

- Given proof of unsatisfiability of

$$
S_{0} \wedge U_{k} \wedge E_{k}
$$

under the partial assignment corresponding to values of the visible variables

- Look at unsatisfiable core of proof
- Invisible variables that appear in the core indicate why the abstract counterexample is spurious
- Make those variables visible

Modifying the AbstractionRefinement Loop

- Insight: Why pick an abstraction to start with?
- Initial abstraction may not be the best start point
- Why not do BMC initially and use its results to generate abstractions?

Termination of PBA

- Depth k increases at each iteration
- Eventually k > diameter d
- If $k>d$, no counterexample is possible

CEGAR vs. PBA

- Refutation via k-step BMC
- PBA refutes all concrete counterexamples of up to length k
- CEGAR refutes only the abstract counterexample of length k
- So PBA does more work in the refutation, but usually results in fewer iterations of the loop

Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious

Abstraction and Reachability

- An abstraction expands the set of states reachable from the initial state
- OVER-APPROXIMATION
- Instead of starting by abstracting states, one can directly abstract the transition relation
- Each time you compute the set of next states, you get an over-approximation of the actual set of next states
- Gives a way of computing an overapproximation of the set of reachable states

Abstraction using Interpolation

- Abstraction is extracting sufficient/relevant information from a system to prove a given property.
- This notion is in some sense closely related to a notion of "interpolant" and a lemma called "Craig's interpolation lemma"

Interpolation Lemma (Craig, 57)

- If $A \wedge B=$ false, there exists an interpolant A^{\prime} for (A, B) such that:
(i) $A \Rightarrow A^{\prime}$
(ii) $\mathrm{A}^{\prime} \wedge \mathrm{B}=$ false
(iii) A^{\prime} refers only to common variables of A, B
- Example:
$-A=p \wedge q, \quad B=\neg q \wedge r, \quad A^{\prime}=q$

Interpolants from Proofs

(Pudlak,Krajicek,97)

- Interpolant A^{\prime} for $\mathrm{A} \wedge \mathrm{B}$:

$$
\begin{gathered}
A \Rightarrow A^{\prime} \\
A^{\prime} \wedge B=\text { false }
\end{gathered}
$$

A^{\prime} refers only to common variables of A, B

- Interpolants can be obtained from proofs
- given a resolution-based refutation (proof of unsatisfiability) of $A \wedge B$,
A ' can be derived in time linear in the proof

Interpolation based Model Checking

- Main Idea: Pose the problem of overapproximating the set of next states as finding an interpolant

Interpolation based Model Checking

A^{\prime} is a function of v_{1} s.t. What set of states
2. $A^{\prime} \wedge B$ is unsat does A' represent?

Interpolation based MC

For a fixed k:

1. Set Z initially to S_{0}
2. Do BMC starting from Z for k steps

- If SAT: have we found a counterexample?
- If UNSAT, continue

3. Use interpolation to compute over-approximation of next states of Z and add them back into Z

- Can newly added states lead to error states in $k-1$ steps? In k steps?

4. If Z does not increase

- We've reached a fixed point $Z=P$. Is the property true?

5. Otherwise, back to step 2

Intuition

- A' tells us everything the prover deduced about the image of S_{0} in proving it can't reach an error in k steps.
- Hence, A^{\prime} is in some sense an abstraction of the image relative to the property and the bound k

The fixed point P is an inductive invariant

Inductive Invariant P

- P is true in the initial state
$-S_{0} \Rightarrow P$
- R is maintained by the transition relation
$-P(s) \wedge R\left(s, s^{\prime}\right) \Rightarrow P\left(s^{\prime}\right)$
- In other words: every reachable state satisfies P
- The system is deemed to be correct if $\mathrm{P} \wedge \mathrm{E}$ is UNSAT.

Refinement

- The procedure may be inconclusive for a fixed k
- May add a state that reaches error in k steps (getting SAT in step 2 with $Z!=S_{0}$)
- Refinement is just increasing k
- How big can k get?

