EECS 219C: Computer-Aided Verification

Abstraction & Symbolic Model
Checking without BDDs

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

Key Optimizations in (Symbolic)
Model Checking

* Abstraction

— Compute a smaller state graph by “merging
states” s.t. if the property holds on the smaller
system model, it holds on the larger one

« Symmetry Reduction

— Group states into equivalence classes by
exploiting symmetries in the model

« Compositional Reasoning

— Compose proofs of correctness of modules to
prove the overall system correct

S. A. Seshia

Today’s Lecture

* Abstraction

— Counter-example guided abstraction
refinement (CEGAR)

« Symbolic Model Checking without BDDs
— Uses SAT instead of BDDs
— Started with Bounded Model Checking

— Extended to Unbounded Model Checking
* Abstraction + BMC
* Interpolation-based model checking

S. A. Seshia

Abstraction

S. A. Seshia

Abstraction

 Extracting information from a system
description that is relevant to proving a

property
» Goal: Reduce size of system model

« Terminology:
— Original model = Concrete system/model

S. A. Seshia

Abstraction (2)

» Reduce the size of the system model by
throwing out information / grouping states
— If this information is irrelevant to the property
of interest (i.e., the property is true on the
original model iff it is true on the abstract
model) then it is a precise abstraction

— If the property is true on the original model if it
is true on the abstract model, it is a safe
abstraction

S. A. Seshia

Example

Jy - &

» Abstractions exhibit more behaviors

» Consider the foll 2 properties on the original
model and abstraction:

G(go = X stop) GFgo

S. A. Seshia

A Simple Form of Abstraction

» Suppose the temporal logic property
mentions only a subset of variable V'’ of
the entire set V

e Can | use this information to construct a
precise abstraction of the original model?

S. A. Seshia

A Simple Form of Abstraction

» Suppose the temporal logic property
mentions only a subset of variable V’ of
the entire set V

* Can | use this information to construct a
precise abstraction of the original model?
— YES. One such method is the “cone of

influence” reduction.

 Transitively propagate syntactic dependences on
variables and “delete” all variables not in the
transitive closure

S. A. Seshia

Formal Definition

 Abstraction is defined by an abstraction
function

« Abstraction function . : S > §
— S — set of concrete states
— S — set of abstract states

» An abstraction induces an equivalence
relation over the concrete states

— Two concrete states are equivalent if they are
mapped to the same abstract state

S. A. Seshia

Formal Definition

Suppose concrete system is (S, Sp, R, L),
and abstract system (S, S;, R, L)
Abstraction functiona.: S > S

— S — set of concrete states

— 8 — set of abstract states

§,={t|3Is.Sys)Aa(s)=t}

- R=?

— How do we algorithmically construct S, and R?
— How are labels assigned to abstract states?

S. A. Seshia

Example of Abstraction

* Our examples in this lecture will be
abstractions that extract a subset of state
variables
— State variables partitioned into: visible and
invisible

— An abstract state is an evaluation of visible
variables

—Whatis a ?

— Two concrete states that agree on values of
visible variables are grouped together

S. A. Seshia

Example

2y~ 8

» Abstractions exhibit more behaviors

S. A. Seshia

Abstraction and Properties

 If an LTL property is true on the abstract
model, is it necessarily true on the
concrete model?

 If an LTL property is false on the abstract
model, is it necessarily false on the
concrete model?

S. A. Seshia

Cone-of-influence

» Suppose the property ¢ mentions a subset of
variables V'’ of the total set V

— Track variables that V' syntactically depend on, add
them to V’, and iterate until no new variable
dependencies generated

— Resulting V'’ is the cone-of-influence and its elements
are the visible variables
* Problem: Final V' might be as big as V because
it only tracks syntactic dependencies

— But resulting abstraction is precise - if ¢ is false in
abstract model it is false in concrete model

S. A. Seshia

Example: Cone-of-influence can be
conservative

Let a, b, ¢, g be state variables

e =Y

What are the expressions for next state variables ¢’ and g’ ?

Suppose we want to prove G(c = Xc) . What'’s the
cone of influence?

If we make g invisible, can we still prove the property?
s A seshia ® What about a and b?

Another approach to Abstraction

« Start with an arbitrary subset of variables
as visible
— An option: the ones mentioned in the property

» Construct abstract model, model check it
— If property passes, we're done

— If we get a counterexample, check whether it
is a counterexample for the concrete model
* If yes, we're done

* If not (spurious counterex.) we must make more
variables visible and repeat (REFINEMENT)

S. A. Seshia

Counter-Example Guided
Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]
e Start with a choice of a

» Construct abstract model, model check it
— If property passes, we're done
— If we get a counterexample, check whether
it's is a counterexample for the concrete
model (How do we do this?)
* If yes, we're done

« If not (spurious counterex.), we must refine a and

repeat
S. A. Seshia

Intuition about Refinement

 Remember that o partitions the concrete
states into equivalence classes
~C,,C,, ..., C,
« A refinement o’ can further break up the
C's
— States that are equivalent under o’ should
also be equivalent under o

S. A. Seshia

Formal Definition of Refinement
o refines aif

— Vs, t.a(s)=a(t) =2 a(s) = alt)

— Is, t . a(s) = (t) A as) = aft)

» Given above definition, why will the
CEGAR iteration terminate?

S. A. Seshia

20

10

Visible/Invisible Abstraction

» The set of variables is partitioned into
visible V and invisible |

* Questions:
— How do we construct the abstract model?
» Given an arbitrary set of visible variables
— How do we refine the abstraction?

* i.e., how do we pick new variables to make visible?

» We want to pick those that will remove the current
spurious counterexample

S. A. Seshia 21

Constructing Abstract Model

« Simply make all invisible variables take
arbitrary values

— Non-deterministically assigned 0 or 1 on each
step

* How does this make model checking more
efficient?

S. A. Seshia 22

11

Constructing Abstract Model

« Simply make all invisible variables take
arbitrary values

— Non-deterministically assigned 0 or 1 on each
step

« How does this make model checking more
efficient?

— Avoids some existential quantification,
simplifies transition relation

S. A. Seshia 23

Refining the Abstraction

« The CEGAR approach is most often used
today in conjunction with a technique
called Bounded Model Checking

» We will study abstraction-refinement in
that context

S. A. Seshia 24

12

Bounded Model Checking (BMC)

: [Biere, Clarke, Cimatti, Zhu, '99]
* Given

—A FSM M described by S, R
—A property G p and a integer k > 1
» Determine

—Does M generate a counterexample to
G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

S. A. Seshia 25

Unfolding in BMC

* Unfold the model k times:
U, =Ry ARy Ao AR

sl 1 1 T R
-p
» Use SAT solver to check satisfiability of

So/\Uk/\Ek

- A satisfying assignment is a counterexample
of k steps

S. A. Seshia 26

13

Old view on BMC

« Originally introduced as a debugging tool
— By finding counterexamples

* Proving properties:
— Only possible if a bound on the diameter of
the state graph is known

* The diameter is the maximum over shortest path
lengths between any two states.

— Worst case is exponential in system
description.

S. A. Seshia 27

BMC + CEGAR

 BMC + Abstraction can prove properties too!

 Here’s how it works: Why does this terminate?

(make few variables visible)

(make more | Extract information
Create variables visible) for refinement
abstraction A from refutation
Proof fails
Perform (unbounded) Prove that this abstract
model checking on A counterexample of length k
[r' is a concrete counterex.
Property Counter- using k-step BMC on M
true example of '
length k l Proof succeeds
OK

Counterexample

S. A. Seshia 28

14

Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious
S. A. Seshia 29

Steps

1. Create abstraction A v
2. Model check A v

3. Prove that abstract counterexample is a
concrete counterexample using BMC

4. Use refutation of abstract
counterexample to do refinement

S. A. Seshia 30

15

Checking Abstract Counterex.

* Recall: BMC for length k
— Use SAT solver to check satisfiability of
S, AU, A E,
 How do we use this to prove the abstract
counterexample of length k also holds for
concrete model?

S. A. Seshia 31

Checking Abstract Counterex.

» Recall: we use BMC for the length k of the
abstract counterexample

— Use SAT solver to check satisfiability of
So AU A E
under the partial assignment corresponding to
values of the visible variables
— If SAT solver reports “SAT” we have a
concrete counterexample
* What is a satisfying assignment?

— If not, we have a refutation < proof of
unsatisfiability

S. A. Seshia 32

16

Refinement

 Given proof of unsatisfiability of
So AU A E
under the partial assignment corresponding to
values of the visible variables
» Look at unsatisfiable core of proof

— Invisible variables that appear in the core
indicate why the abstract counterexample is
spurious

— Make those variables visible

S. A. Seshia

33

Modifying the Abstraction-
Refinement Loop
* Insight: Why pick an abstraction to start
with?
— Initial abstraction may not be the best start
point

— Why not do BMC initially and use its results to
generate abstractions?

S. A. Seshia

34

17

Proof-based Abstraction (PBA)

Pick k [McMillan, Amla, 2003]
BMC on M Cex? , Counter-
N |
> at depth k exampre
;“o l No Cex?
< Use refutation to Other differences
‘z choose abstraction with earlier loop?
d
2 v Property
H Unbounded MC | true? R
onh abstraction OK
False, counterexample of
length K’
S. A. Seshia

35

Termination of PBA

» Depth k increases at each iteration
« Eventually k > diameter d
 If k > d, no counterexample is possible

S. A. Seshia

36

18

CEGAR vs. PBA

» Refutation via k-step BMC

— PBA refutes all concrete counterexamples of
up to length k

— CEGAR refutes only the abstract
counterexample of length k
» So PBA does more work in the refutation,
but usually results in fewer iterations of the
loop

S. A. Seshia 37

Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious
S. A. Seshia 38

19

Abstraction and Reachability

« An abstraction expands the set of states
reachable from the initial state

— OVER-APPROXIMATION

* Instead of starting by abstracting states,
one can directly abstract the transition
relation

— Each time you compute the set of next states,
you get an over-approximation of the actual
set of next states

— Gives a way of computing an over-
approximation of the set of reachable states

S. A. Seshia

41

Abstraction using Interpolation

 Abstraction is extracting sufficient/relevant
information from a system to prove a given
property.

» This notion is in some sense closely related
to a notion of “interpolant” and a lemma
called “Craig's interpolation lemma”

S. A. Seshia

42

20

Interpolation Lemma (¢raig, 57)

 If A A B = false, there exists an interpolant A'
for (A,B) such that:

(i) A=A
(i) A' A B =false
(iii) A" refers only to common variables of A,B

« Example:
—A=pAaAq, B==agar, A'=q

S. A. Seshia 43

Interpolants from Proofs

(Pudlak,Krajicek,97)
* Interpolant A’ for A A B:

A=A
A' A B = false
A' refers only to common variables of A,B
* Interpolants can be obtained from proofs

— given a resolution-based refutation (proof of
unsatisfiability) of A A B,

A' can be derived in time linear in the proof

S. A. Seshia 44

21

Interpolation based Model
Checklng (McMillan, 2003)
» Main ldea: Pose the problem of over-

approximating the set of next states as
finding an interpolant

SO Ek
So(Vo) A R(vg, V) ARV, Vo) A oo ARV, Vi) A E(vy)

S. A. Seshia 45

Interpolation based Model Checking
A

B
—
R R R R R R R
f—)%
0 k
Sy =

So(Vo) A R(vg, Vi) AR(Vy, Vo) Ao A R(Vieq, Vi) A Ey(Ve)

A = Sp(vo) A R(vg, vq)
B =R(vy, Vo) A ... AR(Viq, Vi) A E(vy)

A’ is a function of v, s.t.
1.A2>A
2. A’ A Bis unsat

What set of states
does A’ represent?

S. A. Seshia 46

22

Interpolation based MC

For a fixed k:
1. Set Zinitially to S,

2. Do BMC starting from Z for k steps
+ If SAT: have we found a counterexample?
+ If UNSAT, continue

3. Use interpolation to compute over-approximation
of next states of Z and add them back into Z

— Can newly added states lead to error states in k-1
steps? In k steps?

4. If Z does not increase
— We've reached a fixed point Z=P. Is the property true?
5. Otherwise, back to step 2

S. A. Seshia 47
Intuition
A A B
R (R R R R R R
/—H
6 T T k
S, Ey

« A'tells us everything the prover deduced
about the image of S, in proving it can't
reach an error in k steps.

 Hence, A'is in some sense an abstraction
of the image relative to the property and
the bound k

The fixed point P is an inductive invariant
S. A. Seshia 48

23

Inductive Invariant P

P is true in the initial state

-Sy=P

R is maintained by the transition relation
—P(s) A R(s,s’) = P(s')

In other words: every reachable state
satisfies P

The system is deemed to be correct if
P A E is UNSAT.

S. A. Seshia

49

Refinement

» The procedure may be inconclusive for a
fixed k

— May add a state that reaches error in k steps
(getting SAT in step 2 with Z 1= S;)

» Refinement is just increasing k
— How big can k get?

S. A. Seshia

50

24

