
1

EECS 219C: Computer-Aided Verification

Symmetry Reduction,
Simulation/Bisimulation

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Today’s Lecture

• Optimizations in Model checking
– Symmetry Reduction

• Simulation/Bisimulation

2

S. A. Seshia 3

Simulation and Bisimulation

S. A. Seshia 4

Simulation --- Intuition

• Two finite state machines (Kripke
structures) M and M’

• M’ simulates M if
– M’ can start in a similarly labeled state as M

– For every step that M takes from s to t, M’ can
mimic it by stepping to a state with similar
label as t

3

S. A. Seshia 5

Simulation
• M = (S, S0, R, L) and M’ = (S’, S0’, R’, L’)
• A relation H ⊆ S x S’ is a simulation relation

between M and M’ means that:
For all (s, s’), if H(s, s’) then:
– L’(s’) = L(s) ∩ AP’

– For every state t s.t. R(s, t) there is a state t’ such that
R’(s’, t’) and H(t, t’)

• M’ simulates M if
– there exists a simulation relation H between them,

and
– For each s0 ∈ S0, there exists s0’ ∈ S0’ s.t. H(s0, s0’)

S. A. Seshia 6

Example

Atomic propositions: go and stop

Which machine simulates which?

4

S. A. Seshia 7

Bisimulation
• M and M’ are bisimulation equivalent (bisimilar)

if
– M can match each step of M’ and vice-versa
– Note: this is NOT the same as “M simulates M’ and M’

simulates M”

• A relation H ⊆ S x S’ is a bisimulation relation
between M and M’ means that:
For all (s, s’), if H(s, s’) then:
– L’(s’) = L(s) ∩ AP’
– For every state t s.t. R(s, t) there is a state t’ such that

R’(s’, t’) and H(t, t’)
– For every state t’ s.t. R’(s’, t’) there is a state t such

that R(s, t) and H(t, t’)

S. A. Seshia 8

(Bi)Simulation and (A)CTL*

• If M’ simulates M, then any ACTL*
property satisfied by M’ is satisfied by M

• If M’ and M are bisimilar, any CTL*
property satisfied by one is also satisfied
by the other

5

S. A. Seshia 9

Symmetry Reduction

S. A. Seshia 10

Symmetry
• Many systems have inherent symmetry

– Overall system might be composed of k identical
modules

– E.g., a multi-processor system with k processors

– E.g., a multi-threaded program with k threads
executing the same code with same inputs

– Anything with replicated structure

• Question: How can we detect and exploit the
symmetry in the underlying state space for
model checking?

6

S. A. Seshia 11

Symmetry in Behavior
• Given a system with two identical modules

– Run: s0, s1, s2, …

– Trace: L(s0), L(s1), L(s2), …

– Each si = (si1, si2, rest) comprises values to
variables of both modules 1 and 2

– If we can interchange these without changing
the set of traces of the overall system, then
there is symmetry in the system behavior

S. A. Seshia 12

Exploiting Symmetry

• If a state space is symmetric, we can
group states into equivalence classes
– Just as in abstraction

• Resulting state graph/space is called
“quotient” graph/space
– Model check this quotient graph

7

S. A. Seshia 13

Quotient (first attempt)

M = (S, S0, R, L)

Let  be an equivalence relation on S

Assume: s  t iff L(s) = L(t)

& s  S0 iff t  S0

Quotient: M’ = (S’, S0’, R’, L’)
– S’ = S/ , S0’ = S0/ (states are equivalence

classes with respect to )

– R’([s], [t]) whenever R(s,t)

– L’([s]) = L(s)

S. A. Seshia 14

Is that definition enough?
Suppose we want to check an invariant:

Does M satisfy  ?

Instead if we check:

Does quotient M’ satisfy  ?

If M’ is constructed using the definition of  on
the previous slide, will the above check
generate spurious counterexamples?

8

S. A. Seshia 15

Stable Equivalences
Equivalence  is called stable if:

R (x, y) 
for every s in [x]

there exists some t in [y] such that R (s,t)

Claim: Suppose  is stable, then:

M satisfies  iff M’ satisfies 
(Proof idea: show M and M’ are bisimilar)

S. A. Seshia 16

Detecting Symmetry

• Given symmetry expressed as an
equivalence relation between states, we
know how to exploit it

• How do we detect/compute this
equivalence relation?
– Need to characterize it more formally

9

S. A. Seshia 17

Symmetry as Permutation
• Symmetry in the state space can be

viewed as “equivalence under
permutation”

• Permute the set of states so that the set of
traces remains the same
– A subset of states that remains the same

under permutation forms the needed
equivalence class

• A representation of all possible such
permutations represents symmetry in the
system

S. A. Seshia 18

Automorphisms

0,0

1,1

0,1 1,0

A permutation function

f : S  S
is an automorphism if:

R(s, t)  R(f(s), f(t))

What is an example automorphism for this state space?

10

S. A. Seshia 19

Automorphisms

0,0

1,1

0,1 1,0

f: f(0,0) = 1,1 f(1,1) = 0,0

f(0,1) = 0,1 f(1,0) = 1,0

g: g(0,0) = 0,0 g(1,1) = 1,1

g(0,1) = 1,0 g(1,0) = 0,1

A = { f, g, f  g, id}

The set of all automorphisms forms a group!

S. A. Seshia 20

Equivalence using Automorphisms

Let s  t

if there is some automorphism f such that
f(s) = t (and L(s) = L(t) ∧ s ∈ S0 iff t ∈ S0)

The equivalence classes of an automorphism
(sets mapped to themselves) are called orbits

Claim 1:  is an equivalence

Claim 2:  is stable (why? - HW)

11

S. A. Seshia 21

Orbits

0,0

1,1

0,1 1,0

[(0,0), (1,1)]

[(0,1), (1,0)]

S. A. Seshia 22

Symmetry reduction

[(0,0),(1,1)]

[(0,1), (1,0)]

Map each state to its representative in the
orbit

12

S. A. Seshia 23

How Symmetry Reduction works
in practice

• A permutation (automorphism) group is manually
constructed
– Syntactically specify which modules are identical

• Orbit relation (equivalence relation) automatically
generated from this
– Using fixpoint computation (MC, Sec. 14.3)

• An (lexicographically smallest) element of each
equivalence class is picked as its representative

• S0’ and R’ generated from orbit relation

• Model checking explores only representative states

S. A. Seshia 24

Symmetry reduction

• Implemented in many model checkers
• E.g., SMV, Mur (finite-state systems),

Brutus (security protocols)

