EECS 219C: Computer-Aided Verification Symmetry Reduction, Simulation/Bisimulation

Sanjit A. Seshia
EECS, UC Berkeley

Today's Lecture

- Optimizations in Model checking
- Symmetry Reduction
- Simulation/Bisimulation

Simulation and Bisimulation

Simulation --- Intuition

- Two finite state machines (Kripke structures) M and M'
- M' simulates M if
- M' can start in a similarly labeled state as M
- For every step that M takes from s to t, M^{\prime} can mimic it by stepping to a state with similar label as t

Simulation

- $M=\left(S, S_{0}, R, L\right)$ and $M^{\prime}=\left(S^{\prime}, S_{0}{ }^{\prime}, R^{\prime}, L^{\prime}\right)$
- A relation $H \subseteq S \times S^{\prime}$ is a simulation relation between M and M^{\prime} means that:
For all (s, s'), if H(s, s') then:
$-L^{\prime}\left(s^{\prime}\right)=L(s) \cap A P^{\prime}$
- For every state t s.t. $R(s, t)$ there is a state t' such that $\mathrm{R}^{\prime}\left(\mathrm{s}^{\prime}, \mathrm{t}^{\prime}\right)$ and $\mathrm{H}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$
- M' simulates M if
- there exists a simulation relation H between them, and
- For each $\mathrm{s}_{0} \in \mathrm{~S}_{0}$, there exists $\mathrm{s}_{0}{ }^{\prime} \in \mathrm{S}_{0}{ }^{\prime} \mathrm{s} . \mathrm{t} . \mathrm{H}\left(\mathrm{s}_{0}, \mathrm{~s}_{0}{ }^{\prime}\right)$

Example

Atomic propositions: go and stop
Which machine simulates which?

Bisimulation

- M and M^{\prime} are bisimulation equivalent (bisimilar) if
- M can match each step of M ' and vice-versa
- Note: this is NOT the same as "M simulates M' and M' simulates M "
- A relation $\mathrm{H} \subseteq \mathrm{S} \times \mathrm{S}^{\prime}$ is a bisimulation relation between M and M^{\prime} means that:
For all (s, s'), if H(s, s') then:
$-L^{\prime}\left(s^{\prime}\right)=L(s) \cap A P^{\prime}$
- For every state t s.t. $R(s, t)$ there is a state t ' such that $R^{\prime}\left(s^{\prime}, t^{\prime}\right)$ and $H\left(t, t^{\prime}\right)$
- For every state t' s.t. R'(s', t') there is a state t such that $\mathrm{R}(\mathrm{s}, \mathrm{t})$ and $\mathrm{H}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$

(Bi)Simulation and (A)CTL*

- If M' simulates M , then any ACTL * property satisfied by M^{\prime} is satisfied by M
- If M' and M are bisimilar, any CTL* property satisfied by one is also satisfied by the other

Symmetry Reduction

Symmetry

- Many systems have inherent symmetry
- Overall system might be composed of k identical modules
- E.g., a multi-processor system with k processors
- E.g., a multi-threaded program with k threads executing the same code with same inputs
- Anything with replicated structure
- Question: How can we detect and exploit the symmetry in the underlying state space for model checking?

Symmetry in Behavior

- Given a system with two identical modules
- Run: $s_{0}, s_{1}, s_{2}, \ldots$
- Trace: L($\left.\mathrm{s}_{0}\right), \mathrm{L}\left(\mathrm{s}_{1}\right), \mathrm{L}\left(\mathrm{s}_{2}\right), \ldots$
- Each $\mathrm{s}_{\mathrm{i}}=\left(\mathrm{s}_{\mathrm{i} 1}, \mathrm{~s}_{\mathrm{i} 2}\right.$, rest) comprises values to variables of both modules 1 and 2
- If we can interchange these without changing the set of traces of the overall system, then there is symmetry in the system behavior

Exploiting Symmetry

- If a state space is symmetric, we can group states into equivalence classes
- Just as in abstraction
- Resulting state graph/space is called "quotient" graph/space
- Model check this quotient graph

Quotient (first attempt)

$\mathrm{M}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
Let \cong be an equivalence relation on S
Assume: $s \cong t$ iff $L(s)=L(t)$ $\& s \in S_{0}$ iff $t \in S_{0}$
Quotient: M' = ($\left.\mathrm{S}^{\prime}, \mathrm{S}_{0}{ }^{\prime}, \mathrm{R}^{\prime}, \mathrm{L}^{\prime}\right)$
$-S^{\prime}=S / \cong, S_{0}{ }^{\prime}=\mathrm{S}_{0} / \cong$ (states are equivalence classes with respect to \cong)

- $\mathrm{R}^{\prime}([\mathrm{s}]$, $[\mathrm{t}])$ whenever $\mathrm{R}(\mathrm{s}, \mathrm{t})$
$-L^{\prime}([s])=L(s)$

Is that definition enough?

Suppose we want to check an invariant:
Does M satisfy φ ?

Instead if we check:
Does quotient M' satisfy φ ?

If M^{\prime} is constructed using the definition of \cong on the previous slide, will the above check generate spurious counterexamples?

Stable Equivalences

Equivalence \cong is called stable if:
$R(x, y) \Rightarrow$
for every s in [x]
there exists some t in $[y]$ such that $R(s, t)$

Claim: Suppose \cong is stable, then:
M satisfies φ iff M' satisfies φ
(Proof idea: show M and M ' are bisimilar)

Detecting Symmetry

- Given symmetry expressed as an equivalence relation between states, we know how to exploit it
- How do we detect/compute this equivalence relation?
- Need to characterize it more formally

Symmetry as Permutation

- Symmetry in the state space can be viewed as "equivalence under permutation"
- Permute the set of states so that the set of traces remains the same
- A subset of states that remains the same under permutation forms the needed equivalence class
- A representation of all possible such permutations represents symmetry in the system

Automorphisms

A permutation function

$$
f: S \rightarrow S
$$

is an automorphism if:

$$
R(\mathrm{~s}, \mathrm{t}) \Leftrightarrow \mathrm{R}(\mathrm{f}(\mathrm{~s}), \mathrm{f}(\mathrm{t}))
$$

What is an example automorphism for this state space?

Automorphisms

f: $f(0,0)=1,1 \quad f(1,1)=0,0$

$$
f(0,1)=0,1 f(1,0)=1,0
$$

$g: g(0,0)=0,0 \quad g(1,1)=1,1$ $g(0,1)=1,0 \quad g(1,0)=0,1$
$A=\left\{f, g, f{ }^{\circ} g, i d\right\}$

The set of all automorphisms forms a group!

Equivalence using Automorphisms

Let $\mathrm{s} \cong \mathrm{t}$
if there is some automorphism f such that $\mathrm{f}(\mathrm{s})=\mathrm{t} \quad\left(\right.$ and $\mathrm{L}(\mathrm{s})=\mathrm{L}(\mathrm{t}) \wedge \mathrm{s} \in \mathrm{S}_{0}$ iff $\left.\mathrm{t} \in \mathrm{S}_{0}\right)$

The equivalence classes of an automorphism (sets mapped to themselves) are called orbits

Claim 1: \cong is an equivalence
Claim $2: \cong$ is stable (why? - HW)

Orbits

Symmetry reduction

Map each state to its representative in the orbit

How Symmetry Reduction works in practice

- A permutation (automorphism) group is manually constructed
- Syntactically specify which modules are identical
- Orbit relation (equivalence relation) automatically generated from this
- Using fixpoint computation (MC, Sec. 14.3)
- An (lexicographically smallest) element of each equivalence class is picked as its representative
- S_{0} ' and R^{\prime} generated from orbit relation
- Model checking explores only representative states

Symmetry reduction

- Implemented in many model checkers
- E.g., SMV, Murp (finite-state systems), Brutus (security protocols)

