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EECS 219C:  Computer-Aided Verification

Symmetry Reduction, 
Simulation/Bisimulation

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Today’s Lecture

• Optimizations in Model checking
– Symmetry Reduction

• Simulation/Bisimulation
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Simulation and Bisimulation
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Simulation --- Intuition 

• Two finite state machines (Kripke
structures) M and M’

• M’ simulates M if 
– M’ can start in a similarly labeled state as M

– For every step that M takes from s to t, M’ can 
mimic it by stepping to a state with similar 
label as t
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Simulation
• M = (S, S0, R, L) and M’ = (S’, S0’, R’, L’)
• A relation H ⊆ S x S’ is a simulation relation 

between M and M’ means that:                         
For all (s, s’), if H(s, s’) then:
– L’(s’) = L(s) ∩ AP’

– For every state t s.t. R(s, t) there is a state t’ such that 
R’(s’, t’) and H(t, t’)

• M’ simulates M if 
– there exists a simulation relation H between them, 

and 
– For each s0 ∈ S0, there exists s0’ ∈ S0’ s.t. H(s0, s0’)
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Example

Atomic propositions: go and stop

Which machine simulates which?
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Bisimulation
• M and M’ are bisimulation equivalent (bisimilar) 

if
– M can match each step of M’ and vice-versa
– Note: this is NOT the same as “M simulates M’ and M’

simulates M”

• A relation H ⊆ S x S’ is a bisimulation relation 
between M and M’ means that:                         
For all (s, s’), if H(s, s’) then:
– L’(s’) = L(s) ∩ AP’
– For every state t s.t. R(s, t) there is a state t’ such that 

R’(s’, t’) and H(t, t’)
– For every state t’ s.t. R’(s’, t’) there is a state t such 

that R(s, t) and H(t, t’)
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(Bi)Simulation and (A)CTL*

• If M’ simulates M, then any ACTL* 
property satisfied by M’ is satisfied by M

• If M’ and M are bisimilar, any CTL* 
property satisfied by one is also satisfied 
by the other
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Symmetry Reduction
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Symmetry
• Many systems have inherent symmetry

– Overall system might be composed of k identical 
modules

– E.g., a multi-processor system with k processors

– E.g., a multi-threaded program with k threads 
executing the same code with same inputs

– Anything with replicated structure

• Question: How can we detect and exploit the 
symmetry in the underlying state space for 
model checking?
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Symmetry in Behavior
• Given a system with two identical modules

– Run: s0, s1, s2, …

– Trace: L(s0), L(s1), L(s2), …

– Each si = (si1, si2, rest) comprises values to 
variables of both modules 1 and 2

– If we can interchange these without changing 
the set of traces of the overall system, then 
there is symmetry in the system behavior
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Exploiting Symmetry

• If a state space is symmetric, we can 
group states into equivalence classes 
– Just as in abstraction

• Resulting state graph/space is called 
“quotient” graph/space
– Model check this quotient graph
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Quotient (first attempt)

M  =  (S, S0, R, L)

Let   be an equivalence relation on S

Assume:     s   t   iff L(s)  =  L(t)

& s  S0 iff t  S0

Quotient: M’ = ( S’, S0’, R’, L’ )
– S’ = S/ ,  S0’ = S0/ (states are equivalence 

classes with respect to )

– R’([s], [t])  whenever  R(s,t)

– L’([s]) = L(s)
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Is that definition enough?
Suppose  we want to check an invariant:

Does M satisfy  ?

Instead if we check:

Does quotient M’ satisfy  ?

If M’ is constructed using the definition of  on 
the previous slide, will the above check 
generate spurious counterexamples? 
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Stable Equivalences
Equivalence  is called stable if:

R (x, y) 
for every s in [x]

there exists some t in [y] such that R (s,t)

Claim:  Suppose  is stable, then:

M satisfies  iff M’ satisfies 
(Proof idea:  show M and M’ are bisimilar)
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Detecting Symmetry

• Given symmetry expressed as an 
equivalence relation between states, we 
know how to exploit it

• How do we detect/compute this 
equivalence relation?
– Need to characterize it more formally
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Symmetry as Permutation
• Symmetry in the state space can be 

viewed as “equivalence under 
permutation”

• Permute the set of states so that the set of 
traces remains the same
– A subset of states that remains the same 

under permutation forms the needed 
equivalence class

• A representation of all possible such 
permutations represents symmetry in the 
system 
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Automorphisms

0,0

1,1

0,1 1,0

A permutation function 

f : S  S                 
is an automorphism if:

R(s, t)  R(f(s), f(t))

What is an example automorphism for this state space?
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Automorphisms

0,0

1,1

0,1 1,0

f:  f(0,0)  = 1,1  f(1,1)   = 0,0

f(0,1)  = 0,1  f(1,0)  = 1,0

g:  g(0,0) = 0,0   g(1,1)  = 1,1

g(0,1) = 1,0   g(1,0) = 0,1

A = { f,  g,  f  g,  id}

The set of all automorphisms forms a group!
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Equivalence using Automorphisms

Let   s  t 

if there is some automorphism f such that    
f(s) = t   (and L(s) = L(t) ∧ s ∈ S0 iff t ∈ S0)

The equivalence classes of an automorphism
(sets mapped to themselves) are called orbits

Claim 1:  is an equivalence

Claim 2:  is stable        (why? - HW)
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Orbits

0,0

1,1

0,1 1,0

[ (0,0), (1,1) ]

[ (0,1), (1,0) ]
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Symmetry reduction

[ (0,0),(1,1) ]

[ (0,1), (1,0) ]

Map each state to its representative in the 
orbit
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How Symmetry Reduction works 
in practice

• A permutation (automorphism) group is manually
constructed
– Syntactically specify which modules are identical 

• Orbit relation (equivalence relation) automatically 
generated from this
– Using fixpoint computation (MC, Sec. 14.3)

• An (lexicographically smallest) element of each 
equivalence class is picked as its representative

• S0’ and R’ generated from orbit relation

• Model checking explores only representative states
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Symmetry reduction

• Implemented in many model checkers
• E.g., SMV, Mur (finite-state systems), 

Brutus (security protocols)


