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Today’s Lecture

• Symbolic model checking with BDDs
– Fairness
– Counterexample/witness generation for 

general CTL

• Optimizations in Model checking
– Abstraction (mostly next week)
– Symmetry Reduction
– Compositional Reasoning

• Simulation/Bisimulation
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Fairness
• A computation path is defined as fair if a 

fairness constraint p is true infinitely often 
along that path
– Fairness constraint is a state predicate

– Generalized to set of fairness constraints    
{p1, p2, …, pk} by requiring each element of 
the subset to be true infinitely often

• Example: Every process in an 
asynchronous composition must be 
scheduled infinitely often
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Why does Fairness matter?

• We need to model policies that enforce 
fairness in the model
– Otherwise, we will get spurious 

counterexamples

– Example: A scheduler might use round-robin 
scheduling amongst processes 

• Instead of verifying the system for a particular fixed 
fair scheduling strategy, we can verify it for all fair 
schedulers
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Fairness in Symbolic Model 
Checking of CTL

• Suppose Fairness means that each 
element of {p1, p2, …, pk} must be true 
infinitely often

• Fair formulation of EG f is: The largest set 
of states Z such that
– All of the states in Z satisfy f

– For all fairness constraints pi, and all states      
s ∈ Z, there is a path of length 1 or greater from 
s to a state in Z satisfying pi such that all states 
along that path satisfy f
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Fairness in Symbolic Model 
Checking of CTL

• Fair formulation of EG f is: The largest set 
of states Z such that
– All of the states in Z satisfy f
– For all fairness constraints pi, and all states      

s ∈ Z, 
• there is a path of length 1 or greater from s to a state 

in Z satisfying pi such that all states along that path 
satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

– What’s the fixpoint formulation of EG f with 
fairness?  For EGf:    Z. [f ∧ EX Z] 
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Fairness in Symbolic Model 
Checking of CTL

• Fair formulation of EG f is: The largest set 
of states Z such that
– All of the states in Z satisfy f

– For all fairness constraints pi, and all states      
s ∈ Z, 

• there is a path of length 1 or greater from s to a state 
in Z satisfying pi such that all states along that path 
satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

–  Z. f ∧ ( ∧i EX E[ f U (Z ∧ pi)] )
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Counterexample Generation under 
Fairness

• Algorithm needs to be adjusted 
accordingly
– Need to find a cycle that visits each fairness 

constraint pi at least once 

– See Clarke et al. textbook for details
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BDD-related Optimizations – Key 
Ideas

• Choose a good BDD variable ordering to 
start with

• Keep the support of computed BDDs as 
small as possible
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What do we need to represent?

• Set of transitions: R(v, v’)

• Sets of states: S0(v), intermediate results 
of fixpoint computations
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Representing R(v, v’)

• How should the v and v’ variables be 
ordered in the BDD relative to each other?

• Keep vi close to vi’ (interleave)
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Relational Product
• Recall that reachability analysis involved 

computing
Si+1(v) = Si(v) ∨ (∃ v { Si(v) ∧ R(v,v’) }) [v/v’]

• Relational Product operation is 
∃ v { Si(v) ∧ R(v,v’) }

• This is done as one primitive BDD 
operation
– Rather than an AND followed by EXISTS 

(why?)
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Disjunctive Partitioning

• Suppose we have an asynchronous 
system composed of k processes

• Then, R(v, v’) can be decomposed as

∨i Ri(v, v’)

– Plug into expression for relational product
– Does ∃ distribute over ∨? What use is that?
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Conjunctive Partitioning

• Suppose we have an synchronous system 
composed of k processes

• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)

– Can we do the same optimization as on the 
previous slide? If not, is a similar optimization 
possible?
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Conjunctive Partitioning
• Suppose we have an synchronous system 

composed of k processes
• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)
– Can we do the same optimization as on the 

previous slide? If not, is a similar optimization 
possible?

• We can choose an order in which to quantify out 
variables and push the quantifiers as far in as 
possible

• What order do we pick?
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Key Optimizations in (Symbolic)       
Model Checking

• Abstraction
– Compute a smaller state graph by “merging 

states” s.t. if the property holds on the smaller 
system model, it holds on the larger one

• Symmetry Reduction
– Group states into equivalence classes by 

exploiting symmetries in the model

• Compositional Reasoning
– Compose proofs of correctness of modules to 

prove the overall system correct 
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Abstraction
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Abstraction

• Reduce the size of the system model by 
throwing out information / grouping states
– If this information is irrelevant to the property 

of interest (i.e., the property is true on the 
original model iff it is true on the abstract 
model) then it is a precise abstraction

– If the property is true on the original model if it 
is true on the abstract model, it is a safe
abstraction 
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Example

• Abstractions exhibit more behaviors
• Consider the foll 2 properties on the original 

model and abstraction:
G(go X stop) G F go
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A Simple Form of Abstraction

• Suppose the temporal logic property 
mentions only a subset of variable V’ of 
the entire set V

• Can I use this information to construct a 
precise abstraction of the original model?
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A Simple Form of Abstraction
• Suppose the temporal logic property 

mentions only a subset of variable V’ of 
the entire set V

• Can I use this information to construct a 
precise abstraction of the original model?
– YES. One such method is the “cone of 

influence” reduction.
• Transitively propagate syntactic dependences on 

variables and “delete” all variables not in the 
transitive closure
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Cone-of-Influence Reduction

• A staple part of all model checkers

• However: often most of the variables 
remain in the cone-of-influence
– Need further abstraction

– Will be covered in class next week


