
1

EECS 219C: Computer-Aided Verification

Symbolic Model Checking,
Optimizations

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Today’s Lecture

• Symbolic model checking with BDDs
– Fairness
– Counterexample/witness generation for

general CTL

• Optimizations in Model checking
– Abstraction (mostly next week)
– Symmetry Reduction
– Compositional Reasoning

• Simulation/Bisimulation

2

S. A. Seshia 3

Fairness
• A computation path is defined as fair if a

fairness constraint p is true infinitely often
along that path
– Fairness constraint is a state predicate

– Generalized to set of fairness constraints
{p1, p2, …, pk} by requiring each element of
the subset to be true infinitely often

• Example: Every process in an
asynchronous composition must be
scheduled infinitely often

S. A. Seshia 4

Why does Fairness matter?

• We need to model policies that enforce
fairness in the model
– Otherwise, we will get spurious

counterexamples

– Example: A scheduler might use round-robin
scheduling amongst processes

• Instead of verifying the system for a particular fixed
fair scheduling strategy, we can verify it for all fair
schedulers

3

S. A. Seshia 5

Fairness in Symbolic Model
Checking of CTL

• Suppose Fairness means that each
element of {p1, p2, …, pk} must be true
infinitely often

• Fair formulation of EG f is: The largest set
of states Z such that
– All of the states in Z satisfy f

– For all fairness constraints pi, and all states
s ∈ Z, there is a path of length 1 or greater from
s to a state in Z satisfying pi such that all states
along that path satisfy f

S. A. Seshia 6

Fairness in Symbolic Model
Checking of CTL

• Fair formulation of EG f is: The largest set
of states Z such that
– All of the states in Z satisfy f
– For all fairness constraints pi, and all states

s ∈ Z,
• there is a path of length 1 or greater from s to a state

in Z satisfying pi such that all states along that path
satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

– What’s the fixpoint formulation of EG f with
fairness? For EGf:  Z. [f ∧ EX Z]

4

S. A. Seshia 7

Fairness in Symbolic Model
Checking of CTL

• Fair formulation of EG f is: The largest set
of states Z such that
– All of the states in Z satisfy f

– For all fairness constraints pi, and all states
s ∈ Z,

• there is a path of length 1 or greater from s to a state
in Z satisfying pi such that all states along that path
satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

–  Z. f ∧ (∧i EX E[f U (Z ∧ pi)])

S. A. Seshia 8

Counterexample Generation under
Fairness

• Algorithm needs to be adjusted
accordingly
– Need to find a cycle that visits each fairness

constraint pi at least once

– See Clarke et al. textbook for details

5

S. A. Seshia 9

BDD-related Optimizations – Key
Ideas

• Choose a good BDD variable ordering to
start with

• Keep the support of computed BDDs as
small as possible

S. A. Seshia 10

What do we need to represent?

• Set of transitions: R(v, v’)

• Sets of states: S0(v), intermediate results
of fixpoint computations

6

S. A. Seshia 11

Representing R(v, v’)

• How should the v and v’ variables be
ordered in the BDD relative to each other?

• Keep vi close to vi’ (interleave)

S. A. Seshia 12

Relational Product
• Recall that reachability analysis involved

computing
Si+1(v) = Si(v) ∨ (∃ v { Si(v) ∧ R(v,v’) }) [v/v’]

• Relational Product operation is
∃ v { Si(v) ∧ R(v,v’) }

• This is done as one primitive BDD
operation
– Rather than an AND followed by EXISTS

(why?)

7

S. A. Seshia 13

Disjunctive Partitioning

• Suppose we have an asynchronous
system composed of k processes

• Then, R(v, v’) can be decomposed as

∨i Ri(v, v’)

– Plug into expression for relational product
– Does ∃ distribute over ∨? What use is that?

S. A. Seshia 14

Conjunctive Partitioning

• Suppose we have an synchronous system
composed of k processes

• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)

– Can we do the same optimization as on the
previous slide? If not, is a similar optimization
possible?

8

S. A. Seshia 15

Conjunctive Partitioning
• Suppose we have an synchronous system

composed of k processes
• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)
– Can we do the same optimization as on the

previous slide? If not, is a similar optimization
possible?

• We can choose an order in which to quantify out
variables and push the quantifiers as far in as
possible

• What order do we pick?

S. A. Seshia 16

Key Optimizations in (Symbolic)
Model Checking

• Abstraction
– Compute a smaller state graph by “merging

states” s.t. if the property holds on the smaller
system model, it holds on the larger one

• Symmetry Reduction
– Group states into equivalence classes by

exploiting symmetries in the model

• Compositional Reasoning
– Compose proofs of correctness of modules to

prove the overall system correct

9

S. A. Seshia 17

Abstraction

S. A. Seshia 18

Abstraction

• Reduce the size of the system model by
throwing out information / grouping states
– If this information is irrelevant to the property

of interest (i.e., the property is true on the
original model iff it is true on the abstract
model) then it is a precise abstraction

– If the property is true on the original model if it
is true on the abstract model, it is a safe
abstraction

10

S. A. Seshia 19

Example

• Abstractions exhibit more behaviors
• Consider the foll 2 properties on the original

model and abstraction:
G(go X stop) G F go

S. A. Seshia 20

A Simple Form of Abstraction

• Suppose the temporal logic property
mentions only a subset of variable V’ of
the entire set V

• Can I use this information to construct a
precise abstraction of the original model?

11

S. A. Seshia 21

A Simple Form of Abstraction
• Suppose the temporal logic property

mentions only a subset of variable V’ of
the entire set V

• Can I use this information to construct a
precise abstraction of the original model?
– YES. One such method is the “cone of

influence” reduction.
• Transitively propagate syntactic dependences on

variables and “delete” all variables not in the
transitive closure

S. A. Seshia 22

Cone-of-Influence Reduction

• A staple part of all model checkers

• However: often most of the variables
remain in the cone-of-influence
– Need further abstraction

– Will be covered in class next week

