
1

EECS 219C: Computer-Aided Verification

Properties as Automata and
Explicit-State Model Checking

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 16

Finite-State Model Checking

G(p  X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,
gates, etc.)

Model generation

Explicit-State

2

S. A. Seshia 17

Explicit-State Model Checking

• Model checking exhaustively enumerates
the states of the system

• State space can be viewed as a graph

• Explicit-state model checking
– Explicitly enumerates each state and

traverses each edge of the graph

• We will focus on explicit-state techniques
as used in SPIN [G. Holzmann, won ACM Software
Systems Award]

S. A. Seshia 18

Issues with Explicit-State MC

• The graph is usually HUGE (> 106 nodes)
– So can’t compute it a-priori

• But we are given an initial state (s0) and a
way of going from state to state (transition
relation R)
– In particular, we’ll assume that R is specified

as a “set of actions”, each having a “enabling
condition” and a “set of assignments” that
cause a state change

3

S. A. Seshia 19

Model Checking G p

• Consider the simplest property G p
– p is a system invariant to be satisfied by all

states

• Given the state graph, how can we check
this?

S. A. Seshia 20

Model Checking G p

• Consider the simplest property G p
– p is a system invariant to be satisfied by all

states

• Given the state graph, how can we check
this?
– Graph traversal: DFS or BFS

4

S. A. Seshia 21

Depth-First Search (DFS)

Maintain 2 data
structures:

1. Set of visited
states

2. Stack with current
path from the
initial state

Potential problems?

S. A. Seshia 22

Generating counterexamples

If the DFS algorithm finds an “error” state (in
which p is not satisfied), how can we generate
a counterexample trace from the initial state to
that state?

5

S. A. Seshia 23

Generating counterexamples

If the DFS algorithm finds an “error” state (in
which p is not satisfied), how can we generate a
counterexample trace from the initial state to that
state?

err

s0

s1
Stack:

s0

s1

err

Will this be the shortest
counterexample?

S. A. Seshia 24

DFS without State Set

• Only keep track of current stack

• No set of states to maintain
– Each time you visit a state, check whether it’s

on the stack
• If so, don’t explore its edges

• If not, do.

• Q1: Will this terminate?

• Q2: If yes: on state graph with n states,
how long will it take?

6

S. A. Seshia 25

Bounded Model Checking with DFS

• Same as the original DFS, except that you
only allow your stack to grow up to B
elements deep
– Keep track of set of all visited states and

explore a state only if it is not in this set

• If this returns “no error within B steps from
initial state”, can you trust it?

S. A. Seshia 26

Bounded Model Checking with DFS

• Same as the original DFS, except that you
only allow your stack to grow up to B
elements deep
– Keep track of set of all visited states and

explore a state only if it is not in this set

• If this returns “no error within B steps from
initial state”, can you trust it?
– NO! Example on next slide

7

S. A. Seshia 27

Example

err

Bound, B = 3

Solution: For each state, keep
track of the least stack depth
with which it was visited

S. A. Seshia 28

Breadth-First Search

• Visit states in order of distance from initial
state

• Uses queue, No stack: how to generate
counterexamples?

• Are the generated counterexamples the
shortest?

8

S. A. Seshia 29

Comparing DFS and BFS for Gp

• Pros of BFS over DFS
– Shortest counterexample generated

• Cons of BFS
– Need to store back-pointers to predecessor

with each state in the state space
representation (increased memory
requirement)

– Does not efficiently extend to liveness
properties

• Need to do cycle detection

S. A. Seshia 30

What about non-Gp safety
properties?

• Recall: safety properties  finite
counterexample trace

• So we can construct a monitor automaton
with an “error” state that must be avoided
– Construct product of that automaton with

original system

– Error state of product has “error” in the
component corresponding to the monitor

