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Recap: Automata over Finite 
Traces

� (Regular) Finite automaton with accepting 
states
� All finite traces (words) that take the 

automaton into the accepting state are �in its 
language� 

� But behaviors (and traces) are infinite 
length
� So we need a new notion of acceptance

S. A. Seshia 4

Automata over Infinite Traces

� What does �Accept� mean?
� Certain states of the automaton are called 

�accepting states�
� The trace must visit an (any) accepting state  

infinitely often
� Such automata are called Büchi automata

� Also Omega-automata (written �-automata)
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Example from Class

1
0 0

1
Language of the automaton = all finite-length binary 
strings with an odd number of 1s

Reg. expr.:  0*1 (0 + 10*1)*

If you interpret it as a Büchi automaton over infinite 
words: all infinite-length binary strings with an odd 
parity of 1s or infinitely many 1s
          w-regular expr: 0*1 (0 + 10*1)w

Infinitely many repetitions
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From Temporal Logic to 
Monitors

� A monitor for a temporal logic formula 
� is a finite automaton
� Accepts exactly those behaviors that satisfy 

the temporal logic formula
� �Accepts� means that an accepting state is visited 

infinitely often

� Properties are often specified as automata
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Summary

� A (Büchi) automaton corresponding to a 
temporal logic formula φ accepts exactly 
those traces that satisfy φ 
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Automaton for G p, p a Boolean 
formula
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From LTL to Automata (1)

� Any LTL formula can be translated to a 
corresponding automaton

� There are many translation algorithms
� We discus the classical tableaux-based one
� Reference: Rob Gerth, Doron Peled, Moshe 

Y. Vardi, Pierre Wolper: Simple on-the-fly 
automatic verification of linear temporal logic. 
PSTV 1995: 3-18
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From LTL to Automata (2)

� The tableaux-based algorithm has three 
steps:
� Translating the LTL formula into negation 

normal form (NNF)
� Translating NNF to a generalized Büchi 

automaton
� Degeneralizing the gen. Büchi automaton
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LTL Negation normal form

� Idea: all negations can be pushed inwards
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Generalized Büchi acceptance

� Idea: We have multiple sets of accepting 
states, and all sets have to be visited 
infinitely often for the automata to accept a 
word.
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Tableaux construction

� Main Idea:

� Complexity?
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From Automata to LTL

� Any LTL formula can be translated to a 
corresponding automaton

� How about the other way around?
� Can an arbitrary Büchi automaton be 

translated into an LTL formula?
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Automaton without LTL counterpart
Automata are more expressive than LTL

What traces does the automaton below accept?

Claim: This cannot be expressed in LTL.

(How about  a ∧ G (a ⇒ X X a)  ?)

a

true: a
true


