
1

EECS 219C: Computer-Aided Verification

Intro. to Model Checking:
Models and Properties

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Finite-State Model Checking

G(p  X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,
gates, etc.)

Model generation

2

S. A. Seshia 3

Today’s Lecture

G(p  X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,
gates, etc.)

Model generation

S. A. Seshia 4

2 Kinds of Systems

1. Open

2. Closed

• What’s the difference between the two?

3

S. A. Seshia 5

Verifying Closed Systems

• Assumes we have models of
– System

– Environment (a “good enough” one)

• Overall model is the composition of the
system with its environment

• This will be the topic for most of this
course

S. A. Seshia 6

Questions addressed in this lecture

• What is a model?

• How to compose two models together?

• How to express properties of a model?

4

S. A. Seshia 7

Modeling Finite-State Machines

• Remember, it’s a closed system – i.e., no inputs

• Common representation:
– (S, S0, R)

• Why do we need a transition relation and not just
a transition function?

• Representation in practice:
– (V, S0, R)

S. A. Seshia 8

Kripke Structure

• Alternative way of representing closed
finite-state models
(S, S0, R, L)

– S  set of states

– S0  set of initial states

– R  transition relation
• must be total: for every state s, there exists state s’,

s.t. R(s,s’)

– L  labeling function
• labels a state with a set of “atomic propositions”

(think of these as “colors”)

5

S. A. Seshia 9

Example of Kripke Structure

S0

S1

S2 S3

Why should we use Kripke structures?

S. A. Seshia 10

Why Kripke Structures?

• Representation is independent of state-
encoding

• Captures notion of “observability” to relate
to actual executions
– an observer might not be able to read all state

variables

6

S. A. Seshia 11

Composition

• Typically the overall system is specified as
a set of modules, and the environment
– Assume we have a Kripke structure for each

• There are two basic ways of constructing
the overall Kripke structure
– Synchronous composition

– Asynchronous composition

S. A. Seshia 12

How to Compose?

• Synchronous Composition
– All components in the system change their

state variables simultaneously

• Asynchronous Composition
– At each time point, one component changes

its state

• Which form of composition exhibits more
behaviors?

7

S. A. Seshia 13

Synchronous Product

• Given two Kripke structures
– M1 = (S1, s10, R1, L1)

– M2 = (S2, s20, R2, L2)

• Sync. Product is M = (S, s0, R, L)
– S ⊆ S1 x S2

– s0 = (s10, s20)
– R = R1 ∧ R2

– L(s1, s2) = (L1(s1), L2(s2))

S. A. Seshia 14

Asynchronous Product
(interleaving semantics)

• Given two Kripke structures
– M1 = (S1, s10, R1, L1)

– M2 = (S2, s20, R2, L2)

• Async. Product is M = (S, s0, R, L)
– S ⊆ S1 x S2

– s0 = (s10, s20)
– R(s, s’) = (R1(s1,s1’) ∧ s2’ = s2)

∨ (R2(s2,s2’) ∧ s1’ = s1)

– L(s1, s2) = (L1(s1), L2(s2))

8

S. A. Seshia 15

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

… whatever comes next
}

Example: Interrupt-Driven S/W

A
B

C

D
E A key question: Assuming interrupt

can occur infinitely often, is position
C always reached?

S. A. Seshia 16

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

… whatever comes next
}

State machine model

A
B

C

D
E

Which form of composition is the
right thing to do here?

9

S. A. Seshia 17

Recap

• We’re verifying closed systems

• Modeled as Kripke structures (S, S0, R, L)
– Represents the product of the “system” with

its “environment”

S. A. Seshia 18

Specifying Properties
• Ideally, want a complete specification

– Implementation must be equivalent to the
specification w.r.t. observable state

• In practice, only have partial specifications
– Specify some “good” behaviors and some

“bad” behaviors

10

S. A. Seshia 19

What’s a Behavior?

• Define in terms of states and transitions

• A sequence of states, starting with an initial state
– s0 s1 s2 … such that R(si, si+1) is true

• Also called “run”, or “(computation) path”

• Trace: sequence of observable parts of states
– Sequence of state labels

S. A. Seshia 20

Safety vs. Liveness
• Safety property

– “something bad must not happen”
– E.g.: system should not crash
– finite-length error trace

• Liveness property
– “something good must happen”
– E.g.: every packet sent must be received at its

destination
– infinite-length error trace

11

S. A. Seshia 21

Examples: Safety or Liveness?
1. “No more than one processor (in a multi-processor

system) should have a cache line in write mode”

2. “The grant signal must be asserted at some time
after the request signal is asserted”

3. “Every request signal must receive an
acknowledge and the request should stay asserted
until the acknowledge signal is received”

S. A. Seshia 23

Temporal Logic

• A logic for specifying properties over time
– E.g., Behavior of a finite-state system

• We will study propositional temporal logic
– Other temporal logics exist:

• e.g., real-time temporal logic

12

S. A. Seshia 24

Atomic State Property (Label)
A Boolean formula over state variables

We will denote each unique Boolean formula by
• a distinct color
• a name such as p, q, …

req req & !ack

S. A. Seshia 25

Globally (Always) p: G p
G p is true for a computation path if p holds at all

states (points of time) along the path

. . .

p =

Suppose G p holds along the path below starting at s0

0 1 2

13

S. A. Seshia 26

Eventually p: F p
• F p is true for a path if p holds at some

state along that path

. . .

p =

. . .

Does F p holds for the following examples?

0 1 2

S. A. Seshia 27

Next p: X p
• X p is true along a path starting in state si (suffix of

the main path) if p holds in the next state si+1

. . .

p =

Suppose X p holds along the path starting at state s2

0 1 2

14

S. A. Seshia 28

Nesting of Formulas
• p need not be just a Boolean formula.

• It can be a temporal logic formula itself!

p =

“X p holds for all suffixes of a path”

How do we draw this?

How can we write this in temporal logic?

Write down formal definitions of Gp, Fp, Xp

S. A. Seshia 29

Notation

• Sometimes you’ll see alternative notation
in the literature:
G ¤
F ¦

X ◦

15

S. A. Seshia 30

Examples: What do they mean?

• G F p

• F G p

• G(p  F q)

• F(p  (X X q))

S. A. Seshia 31

p Until q: p U q

. . .

p =

Suppose p U q holds for the path below

0 1 2

• p U q is true along a path starting at s if
– q is true in some state reachable from s

– p is true in all states from s until q holds

q =

16

S. A. Seshia 32

Temporal Operators &
Relationships

• G, F, X, U: All express properties along paths

• Can you express G p purely in terms of F, p,
and Boolean operators ?

• How about G and F in terms of U and Boolean
operators?

• What about X in terms of G, F, U, and Boolean
operators?

S. A. Seshia 33

Examples in Temporal Logic
1. “No more than one processor (in a 2-processor

system) should have a cache line in write mode”
• wr1 / wr2 are respectively true if processor 1 / 2 has the

line in write mode

2. “The grant signal must be asserted at some time
after the request signal is asserted”
• Signals: grant, req

3. “Every request signal must receive an acknowledge
and the request should stay asserted until the
acknowledge signal is received”
• Signals: req, ack

17

S. A. Seshia 35

Linear Temporal Logic

• What we’ve seen so far are properties
expressed over a single computation path
or run
– LTL

S. A. Seshia 36

Temporal Logic Flavors

• Linear Temporal Logic

• Computation Tree Logic
– Properties expressed over a tree of all

possible executions

– Where does this “tree” come from?

18

S. A. Seshia 37

Labelled State Transition Graph
p q

q r r

“Kripke structure”

p q

p q

q r r

rr

. . .

Infinite Computation Tree

S. A. Seshia 38

Temporal Logic Flavors

• Linear Temporal Logic (LTL)

• Computation Tree Logic (CTL, CTL*)
– Properties expressed over a tree of all

possible executions

– CTL* gives more expressiveness than LTL

– CTL is a subset of CTL* that is easier to verify
than arbitrary CTL*

19

S. A. Seshia 39

Computation Tree Logic (CTL*)
• Introduce two new operators A and E called “Path

quantifiers”
– Corresponding properties hold in states (not paths)
– A p : Property p holds along all computation paths

starting from the state where A p holds
– E p : Property p holds along at least one path starting

from the state where E p holds

• Example:
“The grant signal must always be asserted some
time after the request signal is asserted”

• Notation: A sometimes written as ∀, E as ∃

A G (req A F grant)

S. A. Seshia 40

CTL

• Every F, G, X, U must be immediately
preceded by either an A or a E
– E.g., Can’t write A (FG p)

• LTL is just like having an “A” on the outside

20

S. A. Seshia 41

Why CTL?

• Verifying LTL properties turns out to be
computationally harder than CTL

• But LTL is more intuitive to write

• Complexity of model checking
– Exponential in the size of the LTL expression

– linear for CTL

• For both, model checking is linear in the
size of the state graph

S. A. Seshia 42

CTL as a way to approximate
LTL

– AG EF p is weaker than G F p

p

Useful for finding bugs...

Useful for verifying
correctness...

p p

– AF AG p is stronger than F G p

Why? And what good is this approximation?

21

S. A. Seshia 43

More CTL

• “From any state, it is possible to get to the
reset state along some path”

A G (E F reset)

S. A. Seshia 44

CTL vs. LTL Summary

• Have different expressive powers

• Overall: LTL is easier for people to
understand, hence more commonly used
in property specification languages

22

S. A. Seshia 45

Some Remarks on Temporal Logic

• The vast majority of properties are safety
properties

• Liveness properties are useful
abstractions of more complicated safety
properties (such as real-time response
constraints)

S. A. Seshia 46

(Absence of) Deadlock

• An oft-cited property, especially people
building distributed / concurrent systems

• Can you express it in terms of
– a property of the state graph (graph of all

reachable states)?

– a CTL property?

– a LTL property?

23

S. A. Seshia 47

Summary

• What we’ve done so far:
– Modeling with Kripke structures

– Sync/Async Composition

– Properties in Temporal Logic, LTL, CTL, CTL*

