
1

EECS 219C: Computer-Aided Verification

Boolean Satisfiability Solving III
& Binary Decision Diagrams

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments: Lintao Zhang

S. A. Seshia 2

DLL Algorithm Pseudo-code

Preprocess

Branch

Propagate
implications of that

branch and deal
with conflicts

2

S. A. Seshia 3

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

S. A. Seshia 4

A Classification of SAT Algorithms

• Davis-Putnam (DP)
– Based on resolution

• Davis-Logemann-Loveland (DLL/DPLL)
– Search-based

– Basis for current most successful solvers

• Stalmarck’s algorithm [optional reading]
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.

– Unable to prove unsatisfiability (incomplete)

3

S. A. Seshia 5

Proof Generation

• SAT Solvers are complicated pieces of
software

• What if there is a bug in the solver?
How can we check its output?

S. A. Seshia 6

Proof Generation
• If the SAT solver returns “satisfiable”, we can

check that solution by evaluating the circuit

• If it returns “unsatisfiable”, what then?

4

S. A. Seshia 7

Proof

• Starting from facts (clauses), the SAT
solver has presumably derived
“unsatisfiable” (the empty clause)

• So there must be a way of going step-by-
step from input clauses to the empty
clause using rules
– In fact, there’s only one rule: resolution

S. A. Seshia 8

Resolution as a Cut in Implication
Graph

5

S. A. Seshia 9

Resolution Graph
• Nodes are clauses

• Edges are applications of resolution

S. A. Seshia 10

Proof Checker

• Given resolution graph, how to check it?

• Traverse it, checking that each node is
correctly obtained from its predecessor
nodes using resolution

6

S. A. Seshia 11

Unsatisfiable Core

S. A. Seshia 12

Incremental SAT Solving

• Suppose you have not just one SAT
problem to solver, but many “slightly
differing” problems over the same
variables

• Can we re-use the search over many
problems?
– i.e. perform only “incremental” work

7

S. A. Seshia 13

Operations Needed

1. Adding clauses

2. Deleting clauses

• Which is easy and which is hard?
– If previous problem is unsat, how does an

operation change it?

– If previous is sat?

S. A. Seshia 14

Deleting Clauses

8

S. A. Seshia 15

Deleting Clauses

S. A. Seshia 16

Engineering Issues

• Too expensive to traverse graph

• Instead, group original clauses into groups

• Each derived clause belongs to all groups
that it is resolved from
– Implement with bit-vector

9

S. A. Seshia 17

Binary Decision Diagrams

S. A. Seshia 18

Boolean Function Representations

• Syntactic: e.g.: CNF, DNF, Circuit

• Semantic: e.g.: Truth table, Binary
Decision Tree, BDD

10

S. A. Seshia 19

Reduced Ordered BDDs
• Invented by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper
is one of the most highly cited papers in EECS

• Useful data structure to represent Boolean
functions
– Applications in synthesis, verification, program

analysis, planning, …

• Commonly known simply as BDDs

• Many variants of BDDs have proved useful in
other tasks

• Links to coding theory (trellises), etc.

S. A. Seshia 20

Cofactors
• A Boolean function F of n variables x1, x2, …,

xn

F : {0,1}n {0,1}

• Suppose we define new Boolean functions of
n-1 variables as follows:

Fx1
(x2, …, xn) = F(1, x2, x3, …, xn)

Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

• Fx1
and Fx1’ are called cofactors of F.

Fx1
is the positive cofactor, and Fx1’ is the

negative cofactor

11

S. A. Seshia 21

Shannon Expansion

• F(x1, …, xn) = xi . Fxi
+ xi’ . Fxi’

• Proof?

S. A. Seshia 22

Shannon expansion with many
variables

• F(x, y, z, w) =

xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’

12

S. A. Seshia 23

Properties of Cofactors

• Suppose you construct a new function H
from two existing functions F and G: e.g.,
– H = F’

– H = F.G

– H = F + G

– Etc.

• What is the relation between cofactors of H
and those of F and G?

S. A. Seshia 24

Very Useful Property

• Cofactor of NOT is NOT of cofactors

• Cofactor of AND is AND of cofactors

• …

• Works for any binary operator

13

S. A. Seshia 25

BDDs from Truth Tables
Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram
(ROBDD, simply called BDD)

S. A. Seshia 26

Example: Odd Parity Function

Binary Decision Tree

a
b
c
d

14

S. A. Seshia 27

Nodes & Edges

S. A. Seshia 28

Ordering

15

S. A. Seshia 29

Reduction

• Identify Redundancies

• 3 Rules:

1. Merge equivalent leaves

2. Merge isomorphic nodes

3. Eliminate redundant tests

S. A. Seshia 30

Merge Equivalent Leaves

16

S. A. Seshia 31

Merge Isomorphic Nodes

S. A. Seshia 32

Eliminate Redundant Tests

17

S. A. Seshia 33

Example

S. A. Seshia 34

Example

18

S. A. Seshia 35

Final ROBDD for Odd Parity Function

S. A. Seshia 36

Example of Rule 3

19

S. A. Seshia 37

What can BDDs be used for?

• Uniquely representing a Boolean function
– And a Boolean function can represent sets

• Satisfiability solving!

S. A. Seshia 38

(RO)BDDs are canonical
• Theorem (R. Bryant): If G, G’ are

ROBDD’s of a Boolean function f with k
inputs, using same variable ordering, then
G and G’ are identical.

20

S. A. Seshia 39

Sensitivity to Ordering
• Given a function with n inputs, one input ordering

may require exponential # vertices in ROBDD, while
other may be linear in size.

• Example: f = x1 x2 + x3 x4 + x5 x6
x1 < x4 < x5 < x2 < x3 < x6x1 < x2 < x3 < x4 < x5 < x6

1

2
3

4
5

0 1

6

1

4

5
4

2

5

6

5

2

5

3
2

3

2

0 1

S. A. Seshia 40

Creating BDDs

• Idea: Build a few core operators and
define everything else in terms of those

Advantage:
• Less programming work
• Easier to add new operators later by writing “wrappers”

21

S. A. Seshia 41

Core Operators

• Just two of them!

1. Restrict(Function F, variable v, constant
k)
• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)
• “if-then-else” operator

S. A. Seshia 42

ITE
• Just like:

– “if then else” in a programming language

– A mux in hardware

• ITE(I(x), T(x), E(x))
– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0

ITE(I(x), T(x), E(x))

22

S. A. Seshia 43

The ITE Function

ITE(I(x), T(x), E(x))

=

I(x) . T(x) + I’(x). E(x)

S. A. Seshia 44

What good is the ITE?

• How do we express

• NOT?

• OR?

• AND?

23

S. A. Seshia 45

How do we implement ITE?

• Divide and conquer!

• Use Shannon cofactoring…

• Recall: Operator of cofactors is Cofactor of
operators…

S. A. Seshia 46

ITE Algorithm
ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result;
}
else { // general case

Let x be the topmost variable of I, T, E;
PosFactor = ITE(Ix , Tx , Ex) ;
NegFactor = ITE(Ix’ , Tx’ , Ex’);
R = new node labeled by x;
R.low = NegFactor; // set 0-child
R.high = PosFactor; // set 1-child
Reduce(R); // apply reduction rules
return R;

}

24

S. A. Seshia 47

Terminal Cases
• ITE(1, T, E) =

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) =

• …

S. A. Seshia 48

General Case

• Still need to do cofactor (Restrict)

• Easy operation in the case of ITE
– We are cofactoring w.r.t. the top variable only

– Cofactoring w.r.t. an internal variable is
trickier

25

S. A. Seshia 49

Practical Issues

• Previous calls to ITE are cached
– “memoization”

• Every BDD node created goes into a
“unique table”
– Before creating a new node R, look up this

table

– Avoids need for reduction

S. A. Seshia 50

Sharing: Multi-Rooted DAG

• BDD for 4-bit adder

• Each output bit (of the
sum & carry) is a
distinct rooted BDD

• But they share sub-
DAGs

26

S. A. Seshia 51

More on BDDs

• Circuit width and bounds on BDD size

• Dynamically changing variable ordering

• Some BDD variants

S. A. Seshia 52

Bounds on BDD Size: Warm-up

• Suppose the number of nodes at any level
in a BDD is bounded above by B

• Then, what is an upper bound on the total
number of nodes in the BDD?

27

S. A. Seshia 53

Cross-section of a BDD at level i

• Suppose a BDD represents Boolean
function F(x1, x2, …, xn) with variable order
x1 < x2 < … < xn

• Size of cross section of the BDD at level i
is the number of distinct Boolean functions
F’ that depend on xi given by
F’(xi, xi+1, …, xn) = F(v1, v2, …, vi-1, xi, …, xn)

for some Boolean constants vi’s (in {0,1})

S. A. Seshia 54

Circuit Width
• Consider a circuit representation of a Boolean

function F

• Impose a linear order on the gates of the circuit
– Primary inputs and outputs are also considered as

“gates” and primary output is at the end of the ordering

– Forward cross section at a gate g: set of wires going
from output of g1 to input of g2 where g1 · g < g2

– Similarly define reverse cross section: set of wires
going from output of g1 to input of g2 where g2 · g < g1

– Forward width (wf): maximum forward cross section
size

– Similarly, reverse width wr

28

S. A. Seshia 55

BDD Upper Bounds from Circuit
Widths

• Theorem: Let a circuit representing F with
n variables have forward width wf and
reverse width wr for some linear order L on
its gates. Then, there is a BDD
representing F of size bounded above by

S. A. Seshia 56

BDD Ordering in Practice

• If we can derive a small upper bound using
circuit width, then that’s fine
– Use the corresponding linear order on the variables

• What if we can’t?

• There are many BDD variable ordering
heuristics around, but the most common way to
deal with variable ordering is to start with
something “reasonable” and then swap variables
around to improve BDD size
– DYNAMIC VARIABLE REORDERING SIFTING

29

S. A. Seshia 57

Sifting

• Dynamic variable re-ordering, proposed by R.
Rudell

• Based on a primitive “swap” operation that
interchanges xi and xi+1 in the variable order
– Key point: the swap is a local operation involving only

levels i and i+1

• Overall idea: pick a variable xi and move it up
and down the order using swaps until the
process no longer improves the size
– A “hill climbing” strategy

S. A. Seshia 58

Some BDD Variants

• Free BDDs (FBDDs)
– Relax the restriction that variables have to

appear in the same order along all paths

– How can this help?

– Is it canonical?

30

S. A. Seshia 59

Some BDD Variants

• MTBDD (Multi-Terminal BDD)
– Represents function of Boolean variables with

non-Boolean value (integer, rational)
• E.g., input-dependent delay in a circuit, transition

probabilities in a Markov chain

– Similar reduction / construction rules to BDDs

S. A. Seshia 60

Some BDD packages

• CUDD – from Colorado University, Fabio
Somenzi’s group

• BuDDy – from IT Univ. of Copenhagen

