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DLL Algorithm Pseudo-code

Preprocess

Branch

Propagate 
implications of that 

branch and deal 
with conflicts
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DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation 
(apply unit rule)

Conflict Analysis 
& Backtracking

Main Steps:
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A Classification of SAT Algorithms

• Davis-Putnam (DP)
– Based on resolution

• Davis-Logemann-Loveland (DLL/DPLL)
– Search-based

– Basis for current most successful solvers

• Stalmarck’s algorithm [optional reading]
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.

– Unable to prove unsatisfiability (incomplete)
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Proof Generation

• SAT Solvers are complicated pieces of 
software

• What if there is a bug in the solver?      
How can we check its output?

S. A. Seshia 6

Proof Generation
• If the SAT solver returns “satisfiable”, we can 

check that solution by evaluating the circuit

• If it returns “unsatisfiable”, what then?
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Proof

• Starting from facts (clauses), the SAT 
solver has presumably derived 
“unsatisfiable” (the empty clause)

• So there must be a way of going step-by-
step from input clauses to the empty 
clause using rules
– In fact, there’s only one rule: resolution
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Resolution as a Cut in Implication 
Graph
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Resolution Graph
• Nodes are clauses

• Edges are applications of resolution
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Proof Checker

• Given resolution graph, how to check it?

• Traverse it, checking that each node is 
correctly obtained from its predecessor 
nodes using resolution 
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Unsatisfiable Core
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Incremental SAT Solving

• Suppose you have not just one SAT 
problem to solver, but many “slightly 
differing” problems over the same 
variables

• Can we re-use the search over many 
problems?
– i.e. perform only “incremental” work
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Operations Needed

1. Adding clauses

2. Deleting clauses

• Which is easy and which is hard?
– If previous problem is unsat, how does an 

operation change it?

– If previous is sat?
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Deleting Clauses
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Deleting Clauses

S. A. Seshia 16

Engineering Issues

• Too expensive to traverse graph

• Instead, group original clauses into groups

• Each derived clause belongs to all groups 
that it is resolved from
– Implement with bit-vector
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Binary Decision Diagrams
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Boolean Function Representations

• Syntactic: e.g.: CNF, DNF, Circuit

• Semantic: e.g.: Truth table, Binary 
Decision Tree, BDD
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Reduced Ordered BDDs
• Invented by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper 
is one of the most highly cited papers in EECS 

• Useful data structure to represent Boolean 
functions
– Applications in synthesis, verification, program 

analysis, planning,  …

• Commonly known simply as BDDs

• Many variants of BDDs have proved useful in 
other tasks

• Links to coding theory (trellises), etc.
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Cofactors
• A Boolean function F of n variables x1, x2, …, 

xn

F : {0,1}n  {0,1}

• Suppose we define new Boolean functions of 
n-1 variables as follows:

Fx1
(x2, …, xn)  = F(1, x2, x3, …, xn)

Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

• Fx1
and Fx1’ are called cofactors of F.               

Fx1
is the positive cofactor, and Fx1’ is the 

negative cofactor 
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Shannon Expansion

• F(x1, …, xn) =  xi . Fxi
+  xi’ . Fxi’

• Proof?
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Shannon expansion with many 
variables

• F(x, y, z, w) = 

xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’
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Properties of Cofactors

• Suppose you construct a new function H 
from two existing functions F and G: e.g.,
– H = F’

– H = F.G

– H = F + G

– Etc.

• What is the relation between cofactors of H 
and those of F and G?
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Very Useful Property

• Cofactor of NOT is NOT of cofactors

• Cofactor of AND is AND of cofactors

• …

• Works for any binary operator
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BDDs from Truth Tables
Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram 
(ROBDD, simply called BDD)

S. A. Seshia 26

Example: Odd Parity Function

Binary Decision Tree

a
b
c
d
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Nodes & Edges
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Ordering
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Reduction

• Identify Redundancies

• 3 Rules:

1. Merge equivalent leaves

2. Merge isomorphic nodes

3. Eliminate redundant tests
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Merge Equivalent Leaves
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Merge Isomorphic Nodes
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Eliminate Redundant Tests
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Example
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Example
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Final ROBDD for Odd Parity Function
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Example of Rule 3
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What can BDDs be used for?

• Uniquely representing a Boolean function
– And a Boolean function can represent sets

• Satisfiability solving!
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(RO)BDDs are canonical
• Theorem (R. Bryant): If G, G’ are 

ROBDD’s of a Boolean function f with k 
inputs, using same variable ordering, then 
G and G’ are identical. 
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Sensitivity to Ordering
• Given a function with n inputs, one input ordering 

may require exponential # vertices in ROBDD, while 
other may be linear in size.

• Example: f = x1 x2 + x3 x4 + x5 x6
x1 < x4 < x5 < x2 < x3 < x6x1 < x2 < x3 < x4 < x5 < x6

1

2
3

4
5

0 1

6

1

4

5
4

2

5

6

5

2
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3
2

3

2

0 1
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Creating BDDs

• Idea: Build a few core operators and 
define everything else in terms of those

Advantage:
• Less programming work
• Easier to add new operators later by writing “wrappers”
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Core Operators

• Just two of them!

1. Restrict(Function F, variable v, constant 
k)
• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)
• “if-then-else” operator
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ITE
• Just like:

– “if then else” in a programming language

– A mux in hardware

• ITE(I(x), T(x), E(x))
– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0

ITE(I(x), T(x), E(x))
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The ITE Function

ITE( I(x), T(x), E(x) ) 

=

I(x) . T(x)   +  I’(x). E(x) 
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What good is the ITE?

• How do we express

• NOT?

• OR?

• AND?
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How do we implement ITE?

• Divide and conquer!

• Use Shannon cofactoring…

• Recall: Operator of cofactors is Cofactor of 
operators…
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ITE Algorithm
ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; 
}
else { // general case

Let x be the topmost variable of I, T, E;
PosFactor = ITE(Ix , Tx , Ex) ;
NegFactor = ITE(Ix’ , Tx’ , Ex’);
R = new node labeled by x;
R.low = NegFactor; // set 0-child
R.high = PosFactor; // set 1-child
Reduce(R); // apply reduction rules
return R;

}
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Terminal Cases
• ITE(1, T, E) = 

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) = 

• …
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General Case

• Still need to do cofactor (Restrict)

• Easy operation in the case of ITE
– We are cofactoring w.r.t. the top variable only 

– Cofactoring w.r.t. an internal variable is 
trickier



25

S. A. Seshia 49

Practical Issues

• Previous calls to ITE are cached
– “memoization”

• Every BDD node created goes into a 
“unique table”
– Before creating a new node R, look up this 

table

– Avoids need for reduction
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Sharing: Multi-Rooted DAG

• BDD for 4-bit adder

• Each output bit (of the 
sum & carry) is a 
distinct rooted BDD

• But they share sub-
DAGs
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More on BDDs

• Circuit width and bounds on BDD size

• Dynamically changing variable ordering

• Some BDD variants
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Bounds on BDD Size: Warm-up

• Suppose the number of nodes at any level 
in a BDD is bounded above by B

• Then, what is an upper bound on the total 
number of nodes in the BDD?
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Cross-section of a BDD at level i

• Suppose a BDD represents Boolean 
function F(x1, x2, …, xn) with variable order 
x1 < x2 < … < xn

• Size of cross section of the BDD at level i 
is the number of distinct Boolean functions 
F’ that depend on xi given by
F’(xi, xi+1, …, xn) = F(v1, v2, …, vi-1, xi, …, xn)

for some Boolean constants vi’s (in {0,1})
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Circuit Width
• Consider a circuit representation of a Boolean 

function F

• Impose a linear order on the gates of the circuit
– Primary inputs and outputs are also considered as 

“gates” and primary output is at the end of the ordering

– Forward cross section at a gate g: set of wires going 
from output of g1 to input of g2 where  g1 · g < g2

– Similarly define reverse cross section: set of wires 
going from output of g1 to input of g2 where  g2 · g < g1

– Forward width (wf): maximum forward cross section 
size

– Similarly, reverse width wr
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BDD Upper Bounds from Circuit 
Widths

• Theorem: Let a circuit representing F with 
n variables have forward width wf and 
reverse width wr for some linear order L on 
its gates. Then, there is a BDD 
representing F of size bounded above by 
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BDD Ordering in Practice

• If we can derive a small upper bound using 
circuit width, then that’s fine
– Use the corresponding linear order on the variables

• What if we can’t? 

• There are many BDD variable ordering 
heuristics around, but the most common way to 
deal with variable ordering is to start with 
something “reasonable” and then swap variables 
around to improve BDD size
– DYNAMIC VARIABLE REORDERING  SIFTING
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Sifting

• Dynamic variable re-ordering, proposed by R. 
Rudell

• Based on a primitive “swap” operation that 
interchanges xi and xi+1 in the variable order
– Key point: the swap is a local operation involving only 

levels i and i+1

• Overall idea: pick a variable xi and move it up 
and down the order using swaps until the 
process no longer improves the size
– A “hill climbing” strategy
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Some BDD Variants

• Free BDDs (FBDDs)
– Relax the restriction that variables have to 

appear in the same order along all paths

– How can this help?

– Is it canonical?
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Some BDD Variants

• MTBDD (Multi-Terminal BDD)
– Represents function of Boolean variables with 

non-Boolean value (integer, rational)
• E.g., input-dependent delay in a circuit, transition 

probabilities in a Markov chain

– Similar reduction / construction rules to BDDs
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Some BDD packages

• CUDD – from Colorado University, Fabio 
Somenzi’s group

• BuDDy – from IT Univ. of Copenhagen


