
1

EECS 219C: Computer-Aided Verification

Boolean Satisfiability Solving
Part II: DPLL-based (CDCL)

Solvers

Sanjit A. Seshia

EECS, UC Berkeley

With thanks to Lintao Zhang (MSR)

S. A. Seshia 2

A Classification of SAT Algorithms

• Davis-Putnam (DP)
– Based on resolution

• Davis-Logemann-Loveland (DLL/DPLL)
– Search-based
– Basis for current most successful solvers
– Also called “Conflict Driven Clause Learning” (CDCL)

• Stalmarck’s algorithm
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.
– Unable to prove unsatisfiability (incomplete)

2

S. A. Seshia 3

Resolution

• Two CNF clauses that contain a variable x
in opposite phases (polarities) imply a new
CNF clause that contains all literals except
x and x’
(a + b) (a’ + c) ⇒ (b + c)

(a + b) (a’ + c) = (a + b)(a’ + c)(b + c)

• Why is this true?

S. A. Seshia 4

The Davis-Putnam Algorithm

• Iteratively select a variable x to perform
resolution on

• Retain only the newly added clauses and
the ones not containing x

• Termination: You either
– Derive the empty clause (conclude UNSAT)

– Or all variables have been selected

3

S. A. Seshia 5

Resolution Example

How many clauses can you end up with?
(at any iteration)

S. A. Seshia 6

A Classification of SAT Algorithms

• Davis-Putnam (DP)
– Based on resolution

• Davis-Logemann-Loveland (DLL/DPLL)
– Search-based
– Basis for current most successful solvers
– Also called “Conflict Driven Clause Learning” (CDCL)

• Stalmarck’s algorithm
– More of a “breadth first” search, proprietary algorithm

• Stochastic search
– Local search, hill climbing, etc.
– Unable to prove unsatisfiability (incomplete)

4

S. A. Seshia 7

DLL/CDCL Algorithms Today:
Exploration + Generalization

• EXPLORATION: Iteratively set variables
until
– you find a satisfying assignment (done!)
– you reach a conflict (backtrack and try

different value)

• GENERALIZATION
– When a conflict is reached, LEARN a clause

that “remembers” the reason for the conflict

• This paradigm underlies much of the
recent advances in Verification technology

S. A. Seshia 9

Search Tree

Decision
level

5

S. A. Seshia 10

DLL Example 1

S. A. Seshia 11

DLL Algorithm Pseudo-code (Chaff)

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

6

S. A. Seshia 12

Pre-processing: Pure Literal Rule

• If a variable appears in only one phase
throughout the problem, then you can set
the corresponding literal to 1
– E.g. if we only see a’ in the CNF, set a’ to 1

(a to 0)

• Why is this sound?

S. A. Seshia 13

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

7

S. A. Seshia 14

Conflicts & Backtracking

• Chronological Backtracking
– Proposed in original DLL paper

– Backtrack to highest (largest) decision level
that has not been tried with both values

• But does this decision level have to be the reason
for the conflict?

S. A. Seshia 15

Non-Chronological Backtracking

• Jump back to a decision level “higher in
the search tree” than the last one

• Also combined with “conflict-driven
learning”
– Keep track of the reason for the conflict

• Proposed by Marques-Silva and Sakallah
in 1996
– Similar work by Bayardo and Schrag in ‘97

8

S. A. Seshia 16

DLL Example 2

S. A. Seshia 17

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

9

S. A. Seshia 18

Branching

• Which variable (literal) to branch on (set)?

• This is determined by a “decision heuristic”

• What makes a “decision heuristic” good?

S. A. Seshia 19

Decision Heuristic Desiderata

• If the problem is satisfiable
– Find a short partial satisfying assignment
– GREEDY: If setting a literal will satisfy many

clauses, it might be a good choice

• If the problem is unsatisfiable
– Reach conflicts quickly (rules out bigger

chunks of the search space)
– Similar to above: need to find a short partial

falsifying assignment

• Also: Heuristic must be cheap to compute!

10

S. A. Seshia 20

Sample Decision Heuristics

• RAND
– Pick a literal to set at random

– What’s good about this? What’s not?

• Dynamic Largest Individual Sum (DLIS)
– Let cnt(l) = number of occurrences of literal l

in unsatisfied clauses

– Set the l with highest cnt(l)

– What’s good about this heuristic?

– Any shortcomings?

S. A. Seshia 21

DLIS: A Typical Old-Style Heuristic
• Advantages

– Simple to state and intuitive
– Targeted towards satisfying many clauses
– Dynamic: Based on current search state

• Disadvantages
– Very expensive!
– Each time a literal is set, need to update counts for all

other literals that appear in those clauses
– Similar thing during backtracking (unsetting literals)

• Even though it is dynamic, it is “Markovian” –
somewhat static
– Is based on current state, without any knowledge of

the search path to that state

11

S. A. Seshia 22

VSIDS: The Chaff SAT solver
heuristic

• Variable State Independent Decaying Sum
– For each literal l, maintain a VSIDS score
– Initially: set to cnt(l)
– Increment score by 1 each time it appears in an added

(conflict) clause
– Divide all scores by a constant (2) periodically (every N

backtracks)

• Advantages:
– Cheap: Why?
– Dynamic: Based on search history
– Steers search towards variables that are common

reasons for conflicts (and hence need to be set
differently)

S. A. Seshia 23

Current State of Heuristics

• VSIDS has been improved upon, but
mostly minor improvements
– E.g. MiniSat (2006 champion) decays score

after each conflict by a smaller fraction (5%)

12

S. A. Seshia 24

Key Ideas so Far

• Data structures: Implication graph

• Conflict Analysis: Learn (using cuts in implication
graph) and use non-chronological backtracking

• Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

• Principle: Keep #(memory accesses)/step low
– A step a primitive operation for SAT solving, such

as a branch

S. A. Seshia 25

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation
(apply unit rule)

Conflict Analysis
& Backtracking

Main Steps:

13

S. A. Seshia 26

Unit Propagation
• Also called Boolean constraint propagation

(BCP)
• Set a literal and propagate its implications

– Find all clauses that become unit clauses
– Detect conflicts

• Backtracking is the reverse of BCP
– Need to unset a literal and ‘rollback’

• In practice: Most of solver time is spent in
BCP
– Must optimize!

S. A. Seshia 27

BCP

• Suppose literal l is set. How much time will
it take to propagate just that assignment?

• How do we check if a clause has become
a unit clause?

• How do we know if there’s a conflict?

14

S. A. Seshia 28

• Introductory BCP slides

S. A. Seshia 29

Detecting when a clause becomes
unit

• Watch only two literals per clause. Why
does this work?

• If one of the watched literals is assigned 0,
what should we do?

• A clause has become unit if
– Literal assigned 0 must continue to be

watched, other watched literal unassigned

• What if other watched literal is 0?
• What if a watched literal is assigned 1?

15

S. A. Seshia 30

• Lintao’s BCP example

S. A. Seshia 31

2-literal Watching

• In a L-literal clause, L ≥ 3, which 2 literals
should we watch?

16

S. A. Seshia 32

Comparison:
Naïve 2-counters/clause vs 2-literal watching

• When a literal is set to 1,
update counters for all
clauses it appears in

• Same when literal is set
to 0

• If a literal is set, need to
update each clause the
variable appears in

• During backtrack, must
update counters

• No need for update

• Update watched literal

• If a literal is set to 0, need
to update only each
clause it is watched in

• No updates needed
during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit

S. A. Seshia 33

zChaff Relative Cache Performance

17

S. A. Seshia 34

Key Ideas in Modern DLL SAT
Solving

• Data structures: Implication graph
• Conflict Analysis: Learn (using cuts in implication

graph) and use non-chronological backtracking
• Decision heuristic: must be dynamic, low

overhead, quick to conflict/solution
• Unit propagation (BCP): 2-literal watching helps

keep memory accesses down

• Principle: Keep #(memory accesses)/step low
– A step a primitive operation for SAT solving, such

as a branch

S. A. Seshia 35

Other Techniques

• Random Restarts
– Periodically throw away current decision stack and

start from the beginning
• Why will this change the search on restart?

– Used in most modern SAT solvers
• Recently found effective to do this more often [Biere, 2007]

• Clause deletion
– Conflict clauses take up memory

• What’s the worst-case blow-up?

– Delete periodically based on some heuristic (“age”,
length, etc.)

18

S. A. Seshia 36

Next Class

• Finishing up SAT: other techniques,
incremental SAT, proof generation.

• (if time permits) Start BDDs

