EECS 219C: Computer-Aided Verification Introduction & Overview

Sanjit A. Seshia EECS, UC Berkeley

Computer-Aided Verification (informally)

Does **the system** do what it is supposed to do?

The End User's Perspective

Does **the system** do what it is supposed to do?

The Engineer's Perspective

Does the implemented system meet its specifications?

S. A. Seshia

The Mathematician's Perspective

Prove or disprove (verify) that the mathematical model of the system satisfies a mathematical specification

What we'll do today

- Introductions: to Sanjit and others
- Brief Intro. to the main course topics
 - Temporal Logic, Model Checking, SAT, and Satisfiability Modulo Theories (SMT)
 - History, Opportunities, Challenges
- Course Logistics

About Me

S. A. Seshia

My Research

"Formal Methods: Algorithms & Modeling for **Dependable Computing**"

Theory

Computational Logic, Algorithms, Learning Theory, Optimization

Practice

CAD for VLSI, Computer Security, Embedded Systems, Software Engineering

Example: Game-theoretic online learning used to estimate worst-case execution time of a program

Class Introductions

Please introduce yourselves -- state name and research interests/areas (Programming Systems, Computer Security, CAD, Embedded Systems, Synthetic Biology, Control Theory, etc.)

Computer-Aided Verification

 Automatically verifying the correctness of systems

- Questions for today:
 - Is it relevant?
 - Is it feasible?
 - What will we study?

Ariane disaster, 1996 \$500 million software failure

<msblast.exe> (the primary executable of the exploit)
I just want to say LOVE YOU SAN!!
billy gates why do you make this possible ? Stop
making money and fix your software!!
windowsupdate.com
start %s
tftp -i %s GET %s
%d.%d.%d.%d

Estimated worst-case worm cost: > \$50 billion

An Example from Embedded/Cyber-Physical Systems

Medical devices run on software too... software defects can have lifethreatening consequences.

[Journal of Pacing and Clinical Electrophysiology, 2004]

[different device]

"the patient collapsed while walking towards the cashier after refueling his car [...] A week later the patient complained to his physician about an increasing feeling of unwell-being since the fall."

"In 1 of every 12,000 settings, the software can cause an error in the programming resulting in the possibility of producing paced rates up to 185 beats/min." S. A. Seshia

Bugs cost Time and Money

- Cost of buggy software estimated to range \$22 Billion - \$60 B / year [NIST, 2002]
- Verification takes up 70% of hardware design cycle
- Post-silicon validation & debugging accounts for ~ 1/3rd of design cost

"It's an Area with a Pessimistic View!" No, not really.

- The theory underlying algorithmic verification is beautiful
- It's interdisciplinary
- The implementations are often non-trivial
 Scaling up needs careful hacking
- It's fun to work on!
- Analogy: coding theory is also about dealing with errors in data transmisson, storage, etc., but it's really interesting theory!

Is Verification Feasible?

- "Easiest" non-trivial verification problem is NP-hard (SAT)
- But the outlook for practice is less gloomy than for theory...
 - More hardware resources
 - Better algorithms

My Experience with SAT Solving

Speed-up of 2007 solver over other solvers

Experience with SPIN Model Checker

[G. Holzmann]

Topics in this Course

- Fundamental Algorithmic Techniques
 - Boolean satisfiability (SAT)
 - Satisfiability modulo theories (SMT)
 - Model checking
- Advanced Topics ("Research Frontiers")
 - Quantitative verification
 - Deduction + Inductive Learning
 - Synthesis from specifications
 - Human-Computer Interaction & Verification
 - -... (more later in this lecture)

Topics of this Course (another view)

Application Domains Circuits, Software, Hybrid Systems, Biological Systems, etc.

Verification Strategies Automata-theoretic, Symbolic, Abstraction, Learning, etc.

Computational Engines

SAT, BDDs, SMT

S. A. Seshia

Boolean Satisfiability (SAT)

Is there an assignment to the p_i variables s.t. ϕ evaluates to 1?

Two Applications of SAT

- Equivalence checking of circuits
 - Given an initial (unoptimized) Boolean circuit and its optimized version, are the two circuits equivalent?
 - Standard industry CAD problem
- Malware detection (security)
 - Given a known malicious program and a potentially malicious program, are these "equivalent"?
- Many other applications:
 - Cryptanalysis, test generation, model checking, synthesis,

Satisfiability Modulo Theories (SMT)

Is there an assignment to the x, y, z, w variables s.t. ϕ evaluates to 1?

Applications of SMT

- Pretty much everywhere SAT is used
 - The original problem usually has richer types than just Booleans!
- To date: especially effective in
 - software model checking
 - test generation
 - finding security vulnerabilities
 - high-level (RTL and above) hardware verification
- A course goal: find new applications!

Model Checking

• Broad Defn:

A collection of algorithmic methods based on state space exploration used to verify if a system satisfies a formal specification.

• Original Defn:

A technique to check if a finite-state system is a model of (satisfies) a temporal logic property.

Visualizing Model Checking

S. A. Seshia

[Moritz Hammer, Uni. Muenchen]

Model Checking, (Over)Simplified

- Model checking "is" graph traversal ?
- What makes it interesting:
 - The graph can be HUGE (possibly infinite)
 - Nodes can represent many states (possibly infinitely many)
 - How do we generate this graph from a system description (like source code)?
 - Behaviors/Properties can be complicated (e.g. temporal logic)

— . . .

- 1977: Pnueli introduces use of (linear) temporal logic for specifying program properties over time [1996 Turing Award]
- 1981: Model checking introduced by Clarke & Emerson and Quielle & Sifakis
 - Based on explicitly traversing the graph
 - capacity limited by "state explosion"
- 1986: Vardi & Wolper introduce "automata-theoretic" framework for model checking
 - Late 80s: Kurshan develops automata-theoretic verifier
- Early mid 80s: Gerard Holzmann starts work on the SPIN model checker

- 1986: Bryant publishes paper on BDDs
- 1987: McMillan comes up with idea for "Symbolic Model Checking" (using BDDs) – SMV system

- First step towards tackling state explosion

- 1987-1999: Flurry of activity on finite-state model checking with BDDs, lots of progress using: abstraction, compositional reasoning, ...
 - More techniques to tackle state explosion
- 1990-95: Timed Automata introduced by Alur & Dill, model checking algorithms introduced; generalized to Hybrid Automata by Alur, Henzinger and others

- 1999: Clarke et al. introduce "Bounded Model Checking" using SAT
 - SAT solvers start getting much faster
 - BMC found very useful for debugging hardware systems
- 1999: Model checking hardware systems (at Boolean level) enters industrial use
 - IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper JasperGold
- 1999-2004: Model checking software and high-level hardware designs comes of age
 - SLAM project at MSR, SAL at SRI, UCLID at CMU
 - Decision procedures (SMT solvers) get much faster
 - Software verifiers: Blast, CMC, Bandera, MOPS, ...
 - SLAM becomes a Microsoft product "Static Driver Verifier"

- 2005-date: Model Checking is part of the standard industrial flow. Some new techniques and applications arise:
 - Combination with simulation (hardware) and static analysis/testing (software) [Many univ/industry groups]
 - Checking for termination in software [Microsoft]
 - Evaluating fault-tolerance of circuits & software to device faults (soft errors) [Berkeley, UIUC]
 - Lots of progress in verification of concurrent software [Microsoft CHESS project]
- Clarke, Emerson, Sifakis get 2008 ACM Turing Award; Designers of Grasp/Chaff solvers get 2009 CAV Award

WHAT'S NEXT?!

Research Frontiers in Formal Verification

- Three Themes:
 - New Demands on Computational Engines
 - New Applications
 - The "Human Aspect"
 - Steps that require significant human input
 - Systems with humans in the loop

→ suggested project topics in separate slide set

Related Classes

- Program Synthesis [294 Bodik]
- Classic Program Verification (e.g., Hoare logic, abstract interpretation) [263 – Necula]
- Embedded Systems [249 Sangiovanni-Vincentelli]
- Numerical Simulation [219A Roychowdhury]
- Computer Security [261 Wagner]

JOINT PROJECTS ARE ENCOURAGED

Course Logistics

- Check out the webpage: <u>www.eecs.berkeley.edu/~sseshia/219c</u>
- Tentative class schedule is up
 - 2007 Turing Award lecture screening this
 Friday
 - Next class will be Sep 7
 - IMP: Think about project topics in the interim

Course Outline

- 2 parts
- Part I: Model Checking, Boolean reasoning (SAT, BDDs), SMT
 - Basics, how to use these techniques, and how to extend them further
- Part II: Advanced Topics
 - The challenging problems that remain to be addressed
 - Special focus on synthesis from specifications

Reference Books

- See list on the website
- Copies will be on reserve at Engg Liby
- e-Handouts for most material

Grading

- 2-3 Homeworks (30%)
 - On the first half of the course
- Paper discussions / class participation (20%)
 - Second half of the course
- **Project (50%)**
 - Do original research, theoretical or applied
 - Sample topics will be announced by end of this week
 - Project proposal due mid Feb.
 - Culminates in final presentation + written paper
 - ~50% of past projects led to conference papers!

Misc.

- Office hours: MF 11 12, and by appointment
- Pre-requisites: check webpage; come talk to me if unsure about taking the course
 - Undergraduates need special permission to take this class