
Teaching vs. Learning, and
Course Wrap-Up

Teaching vs. Learning, and
Course Wrap-Up

Sanjit A. SeshiaSanjit A. Seshia

EECS 219CEECS 219C

EECS DepartmentEECS Department

UC BerkeleyUC Berkeley

– 2 –

Teaching vs. LearningTeaching vs. Learning

 Learning: Examples Learning: Examples  ConceptConcept

 Teaching: Concept Teaching: Concept  ExamplesExamples
–– Given a concept, give a Given a concept, give a ““goodgood”” set of examples set of examples

such that a learner can uniquely identify that such that a learner can uniquely identify that
conceptconcept
 ““goodgood”” typically means smallesttypically means smallest

 Teaching dimension (TD) of a concept class C: the Teaching dimension (TD) of a concept class C: the
minimum number of examples a teacher must reveal minimum number of examples a teacher must reveal
to uniquely identify any concept in C to uniquely identify any concept in C

 Observation: [Goldman & Kearns] Observation: [Goldman & Kearns]
#(membership queries to identify a concept in C) #(membership queries to identify a concept in C) ≥≥ TD(C)TD(C)

– 3 –

Relevance to Verification and SynthesisRelevance to Verification and Synthesis

 As discussed earlier, Verification As discussed earlier, Verification ““==”” SynthesisSynthesis

 Learning is Synthesis from ExamplesLearning is Synthesis from Examples

 TeachabilityTeachability of a concept (as measured by TD) of a concept (as measured by TD)
can give us guidance on designing a learning can give us guidance on designing a learning
algorithmalgorithm

 Optimal teaching sequence: Optimal teaching sequence:
Given a concept, whatGiven a concept, what’’s the smallest sequence of s the smallest sequence of
examples to provide so as to uniquely identify the examples to provide so as to uniquely identify the
concept?concept?
–– Example: Rectangles on a 2D grid; Example: Rectangles on a 2D grid; HyperboxesHyperboxes in n in n

dimensionsdimensions

– 4 –

Some Examples from Our WorkSome Examples from Our Work

 ““OracleOracle--Guided ComponentGuided Component--Based Program Based Program
SynthesisSynthesis””, S. , S. JhaJha et al., ICSE 2010et al., ICSE 2010

 ““Synthesizing Switching Logic for Safety and Synthesizing Switching Logic for Safety and
DwellDwell--Time RequirementsTime Requirements””, S. , S. JhaJha et al, ICCPS et al, ICCPS
2010.2010.

– 5 –

Security: The Growth of MalwareSecurity: The Growth of Malware

New signatures by Symantec:
100K in 2005 to 3M in 2009

“malicious code authors are creating unique
threats using techniques such as

packing, obfuscation, and server-side
polymorphism”

– 6 –

Motivating Problem:
Deobfuscating Malware
Motivating Problem:Motivating Problem:
DeobfuscatingDeobfuscating MalwareMalware

Obfuscated code:
Input: y Output: modified value of y

{ a=1; b=0; z=1; c=0;
while(1) {

if (a == 0) {
if (b == 0) { y=z+y; a =~a;
b=~b; c=~c; if (~c) break; }

else {
z=z+y; a=~a; b=~b; c=~c;
if (~c) break; } }

else if(b == 0) {z=y << 2; a=~a;}
else { z=y << 3; a=~a; b=~b;}

} }
FROM
CONFICKER WORM

What it does:
Multiplies y by 45

We solve this using
program synthesis.

We get:
{ z = y << 2; y = z + y;

z = y << 3; y = z + y;
}

Paper: S. Jha et al., “Oracle-Guided Component-
Based Program Synthesis”, ICSE 2010.

– 7 –

Sciduction for Program SynthesisSciduction for Program Synthesis

Structure Hypothesis:
Programs are Loop-Free Compositions
of Known Components

Deductive Engine:
SMT solving to generate distinguishing inputs

Inductive Inference:
Learning from Distinguishing Examples

+

+

– 8 –

Class of ProgramsClass of ProgramsClass of Programs

 Programs implementing functions: Programs implementing functions: II  OO

Functions could be Functions could be ifif--thenthen--elseelse definitions and hence, the above definitions and hence, the above
represents any looprepresents any loop--free code.free code.

P(I):
O1 = f1 (V1)
O2 = f2 (V2)
…
On = fn (Vn)

where

f1,f2,…,fn are functions from a
given component library

– 9 –

ProblemProblemProblem

Space of all possible programs obeying our
structure hypothesis
Each dot represents semantically unique
program

I/O OracleProgram Space

Specification Oracle

I/O Examples that
identify the correct
program?

– 10 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

– 11 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

– 12 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1)

Example ↔ Set of programs
ruled out by that example

– 13 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

Smallest set of I/O examples to
learn correct design

IS

Minimum size subset of
{E1, E2, ……, En } that cover all
the incorrect programs

Optimal teaching seq problem = Min set cover problem

– 14 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

Smallest set of I/O examples to
learn correct design

IS

Minimum size subset of
{E1, E2, ……, En } that cover all
the incorrect programs

Bad news: can’t
enumerate all inputs
and find set Ei for each

– 15 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

ONLINE set-cover:

In each step,
• choose some (ij,oj) pair
• eliminated incorrect programs Ej
disclosed

– 16 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

ONLINE set-cover:

In each step,
• choose some (ij,oj) pair
• eliminated incorrect programs Ej
disclosed

|Ej| ≥ 1: atleast one
incorrect program
identified

– 17 –

Our ApproachOur ApproachOur Approach

Space of all possible programs
Each dot represents
semantically unique program

– 18 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

Our ApproachOur ApproachOur Approach

– 19 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

P1

P2

Our ApproachOur ApproachOur Approach

SMT

SMT

– 20 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

P1

P2

i2

Our ApproachOur ApproachOur Approach

SMT

– 21 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

i2

(i2, o2)

Input/output
Oracle

P1

P2

Our ApproachOur ApproachOur Approach

– 22 –

Space of all possible programs

Example I/O set E := E ∪ {(i2,o2)}

Our ApproachOur ApproachOur Approach

– 23 –

Space of all possible programs

Example I/O set E := E ∪ {(ij,oj)}

Our ApproachOur ApproachOur Approach

– 24 –

Space of all possible programs

Example I/O set E := E ∪ {(ik,ok)}

Our ApproachOur ApproachOur Approach

– 25 –

Space of all possible programs

Example I/O set E := E ∪ {(in,on)}

Semantically
Unique
Program

Correct
Program?

Our ApproachOur ApproachOur Approach

– 26 –

SoundnessSoundnessSoundness

Library of components
is sufficient ?

Correct
design

I/O pairs show
infeasibility ?

YES

Infeasibility
reported

Incorrect
design

YES

NO

NO

– 27 –

Other Important DetailsOther Important DetailsOther Important Details

 Representing the Representing the space of possible programsspace of possible programs
using using SMTSMT formulaformula

 Obtaining Obtaining a feasible program for given set of a feasible program for given set of
input/output pairsinput/output pairs using using SMTSMT solvingsolving

 Obtained Obtained second feasible program and a second feasible program and a
distinguishing inputdistinguishing input using using SMTSMT solvingsolving

[see ICSE ’10, PLDI ’11 papers]

– 28 –

Result HighlightsResult HighlightsResult Highlights

 MalwareMalware DeobfuscationDeobfuscation
–– ConfickerConficker wormworm

–– MyDoomMyDoom and and

–– survey paper on obfuscations by survey paper on obfuscations by CollbergCollberg et alet al**

 Synthesized over Synthesized over 3535 bitbit--manipulation programs from manipulation programs from
HackerHacker’’s delights delight (the (the ““Bible of bitBible of bit--manipulationmanipulation””).).

 Program length: Program length: 33--1515

 Number of input/output examples: Number of input/output examples: 2 to 132 to 13..

 Total runtime: Total runtime: < 1< 1 second tosecond to 55 minutes.minutes.

*C. *C. CollbergCollberg, C. , C. ThomborsonThomborson, and D. Low. A taxonomy of obfuscating transformations. Technic, and D. Low. A taxonomy of obfuscating transformations. Technical Report 148, al Report 148,
Dept. Comp. Dept. Comp. SciSci., The Univ. of Auckland, July 1997.., The Univ. of Auckland, July 1997.

– 29 –

DiscussionDiscussion

 Notion of Notion of ““teachingteaching”” can be useful in guiding the can be useful in guiding the
design of a learning algorithm, or proving design of a learning algorithm, or proving
bounds on the sample complexitybounds on the sample complexity

– 30 –

Course Topics ReviewCourse Topics Review

 SAT SolvingSAT Solving
–– Complexity, random SAT instances, Complexity, random SAT instances, ……
–– CDCL (DPLL) SAT solversCDCL (DPLL) SAT solvers

 BDDsBDDs

 SMT SolvingSMT Solving
–– Commonly used theories, NelsonCommonly used theories, Nelson--OppenOppen

combinationcombination
–– Lazy SMT solving Lazy SMT solving ---- DPLL(T), etc. DPLL(T), etc.
–– Eager SMT solving Eager SMT solving –– SmallSmall--domain encoding, domain encoding,

UCLID, UCLID, ……

– 31 –

Course Topics ReviewCourse Topics Review

 Model CheckingModel Checking
–– Modeling: things to keep in mindModeling: things to keep in mind
–– Temporal logicTemporal logic
–– ExplicitExplicit--state model checkingstate model checking

 Basic automataBasic automata--theoretic approachtheoretic approach
 DFS, Nested DFS, DFS, Nested DFS, ……
 PartialPartial--order reduction, state compression, order reduction, state compression, ……

–– Symbolic model checkingSymbolic model checking
 QBF, QBF, fixpointfixpoint theorytheory
 Abstraction: coneAbstraction: cone--ofof--influence, CEGAR, proofinfluence, CEGAR, proof--

based abstraction, interpolationbased abstraction, interpolation
 Symmetry reductionSymmetry reduction
 KK--induction, IC3induction, IC3

–– Simulation/Simulation/bisimulationbisimulation, compositional reasoning, compositional reasoning

– 32 –

Course Topics ReviewCourse Topics Review

 Inductive Learning + DeductionInductive Learning + Deduction
–– Verification Verification ““==”” SynthesisSynthesis
–– Compositional reasoning, L* algorithmCompositional reasoning, L* algorithm
–– Survey of learning algorithms: Basics, Batch Survey of learning algorithms: Basics, Batch

learning, PAC learning model, online learning learning, PAC learning model, online learning
modelmodel

–– Teaching Teaching vsvs learninglearning

 Synthesis from LTLSynthesis from LTL

– 33 –

Things we did not coverThings we did not cover

 Verification of InfiniteVerification of Infinite--State SystemsState Systems
–– Software, timed/hybrid systems, etc.Software, timed/hybrid systems, etc.

 Quantitative Verification / SynthesisQuantitative Verification / Synthesis

 Error localization and debuggingError localization and debugging

 Interactive theorem provingInteractive theorem proving

 ……

See list of project topics introduced in first lecture See list of project topics introduced in first lecture
for directions for future researchfor directions for future research

