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Teaching vs. Learning

m Learning: Examples - Concept

m Teaching: Concept - Examples

— Given a concept, give a “good” set of examples
such that a learner can uniquely identify that
concept

= “good” typically means smallest

Teaching dimension (TD) of a concept class C: the
minimum number of examples a teacher must reveal
to uniquely identify any concept in C

m Observation: [Goldman & Kearns]
#(membership queries to identify a concept in C) > TD(C)
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Relevance to Verification and Synthesis

m As discussed earlier, Verification “=" Synthesis
m Learning is Synthesis from Examples

Teachability of a concept (as measured by TD)
can give us guidance on designing a learning
algorithm

Optimal teaching sequence:

Given a concept, what's the smallest sequence of

examples to provide so as to uniguely identify the

concept?

— Example: Rectangles on a 2D grid; Hyperboxes in n
dimensions

Some Examples from Our Work

m “Oracle-Guided Component-Based Program
Synthesis”, S. Jha et al., ICSE 2010

m “Synthesizing Switching Logic for Safety and
Dwell-Time Requirements”, S. Jha et al, ICCPS
2010.




Security: The Growth of Malware

soo0 |- New signatures by Symantec:
100K in 2005 to 3M in 2009
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Figure 10, New malicious code signatures
Source: Symantec.

Motivating Problem:
Deobfuscating Malware

Obfuscated code:
Input: y  Output: modified value of y What it does:
Multiplies y by 45
{a=1; b=0; z=1; c=0;
while(1) { We solve this using
if (@a==0){ program synthesis.
if (b ==0) { y=z+y; a =~a;
b=~b; c=~c; if (~c) break; } We get:
else { {z=y<<2;y=2z+Yy;
z=z+y; a=~a; b=~b; c=~c; Z=y<<3;y=z+y;
if (~c) break; } } }
else if(b == 0) {z=y << 2; a=~a;}
else { z=y << 3; a=~a; b=~b;} EROM
1} CONFICKER WORM

Paper: S. Jha et al., “Oracle-Guided Component-
Based Program Synthesis”, ICSE 2010.




Sciduction for Program Synthesis

Structure Hypothesis:
Programs are Loop-Free Compositions
of Known Components

+

Inductive Inference:
Learning from Distinguishing Examples

+

Deductive Engine:
SMT solving to generate distinguishing inputs

Class of Programs

m Programs implementing functions: 1 > O

where

f,.f,,...,f, are functions from a
given component library

Functions could be if-then-else definitions and hence, the above
represents any loop-free code.




Problem

Specification Oracle

Program Space 1/0 Oracle

l

1/0 Examples that
identify the correct
program?

Space of all possible programs obeying our
structure hypothesis

Each dot represents semantically unique
program

Program Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program




Program Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

Program Learning as Set Cover

Example «» Set of programs
ruled out by that example

Space of all possible programs
Each dot represents
semantically unique program




Program Learning as Set Cover

(i, 0)) - E;
(i, 00) - E;

Smallest set of 1/0 examples to
learn correct design

Space of all possible programs =

Each dot represents

. L Minimum size subset of
semantically unique program

, E, J that cover all
the incorrect programs

Optimal teaching seq problem = Min set cover problem -13-

Program Learning as Set Cover

(,,0,)-E Bad news: can’t
(i 0 - E, enumerate all inputs
o 2 and find set E, for each

Smallest set of 1/0 examples to
learn correct design

Space of all possible programs =

Each dot represents

. ) Minimum size subset of
semantically unique program

, E, J that cover all
the incorrect programs




Program Learning as Set Cover

(i, 0)) - E;
(i, 00) - E;

ONLINE set-cover:

In each step,

¢ choose some (i;,0;) pair

+ eliminated incorrect programs E;
disclosed

Space of all possible programs
Each dot represents
semantically unique program

Program Learning as Set Cover

(i,, 00) - E; IE;| > 1: atleast one
(i,, 0,) - E, incorrect program
identified

ONLINE set-cover:

In each step,

* choose some (i;,0;) pair

+ eliminated incorrect programs E;
disclosed

Space of all possible programs
Each dot represents
semantically unique program




Our Approach

Space of all possible programs
Each dot represents
semantically unique program

Our Approach

Example 1/0 set E := {(i,,0,)}

Space of all possible programs
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Our Approach

Example 1/0 set E := {(i,,0,)}

P1
Input/output

Oracle
(i, 05)

Space of all possible programs

Our Approach

Example 1/0 set E := E U {(i,,0,)}

Space of all possible programs




Our Approach

Example 1/0 set E := E U {(i;,0)}
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Our Approach

Example 1/0 set E := E U {(i,,0)}

Space of all possible programs




Our Approach

Example 1/0 set E := E U {(i,,,0,)}

/.

Semantically Correct

Unique Program?
Program

Space of all possible programs

Soundness

Library of components
is sufficient ?

1/0 pairs show
infeasibility ?

Correct Infeasibility Incorrect

design reported design




Other Important Details
[see ICSE '10, PLDI '11 papers]

m Representing the space of possible programs
using SMT formula

m Obtaining a feasible program for given set of
input/output pairs using SMT solving

m Obtained second feasible program and a
distinguishing input using SMT solving

Result Highlights

= Malware Deobfuscation
— Conficker worm
— MyDoom and
— survey paper on obfuscations by Collberg et al*

Synthesized over 35 bit-manipulation programs from
Hacker’s delight (the “Bible of bit-manipulation™).

Program length: 3-15
Number of input/output examples: 2 to 13.
Total runtime: < 1 second to 5 minutes.

*C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations. Technical Report 148,
Dept. Comp. Sci., The Univ. of Auckland, July 1997.




Discussion

= Notion of “teaching” can be useful in guiding the
design of a learning algorithm, or proving
bounds on the sample complexity

Course Topics Review

m SAT Solving
— Complexity, random SAT instances, ...
— CDCL (DPLL) SAT solvers

m BDDs

= SMT Solving

— Commonly used theories, Nelson-Oppen
combination

— Lazy SMT solving -- DPLL(T), etc.

— Eager SMT solving — Small-domain encoding,
UCLID, ...




Course Topics Review

m Model Checking
— Modeling: things to keep in mind
— Temporal logic
— Explicit-state model checking
m Basic automata-theoretic approach
m DFS, Nested DFS, ...
m Partial-order reduction, state compression, ...
— Symbolic model checking
= QBF, fixpoint theory

m Abstraction: cone-of-influence, CEGAR, proof-
based abstraction, interpolation

m Symmetry reduction
m K-induction, IC3

— Simulation/bisimulation, compositional reasoning
N

Course Topics Review

= Inductive Learning + Deduction
— Verification “=" Synthesis
— Compositional reasoning, L* algorithm

— Survey of learning algorithms: Basics, Batch
learning, PAC learning model, online learning
model

— Teaching vs learning
m Synthesis from LTL




Things we did not cover

m Verification of Infinite-State Systems
— Software, timed/hybrid systems, etc.

Quantitative Verification / Synthesis
Error localization and debugging
Interactive theorem proving

See list of project topics introduced in first lecture
for directions for future research




