
Teaching vs. Learning, and
Course Wrap-Up

Teaching vs. Learning, and
Course Wrap-Up

Sanjit A. SeshiaSanjit A. Seshia

EECS 219CEECS 219C

EECS DepartmentEECS Department

UC BerkeleyUC Berkeley

– 2 –

Teaching vs. LearningTeaching vs. Learning

 Learning: Examples Learning: Examples ConceptConcept

 Teaching: Concept Teaching: Concept ExamplesExamples
–– Given a concept, give a Given a concept, give a ““goodgood”” set of examples set of examples

such that a learner can uniquely identify that such that a learner can uniquely identify that
conceptconcept
 ““goodgood”” typically means smallesttypically means smallest

 Teaching dimension (TD) of a concept class C: the Teaching dimension (TD) of a concept class C: the
minimum number of examples a teacher must reveal minimum number of examples a teacher must reveal
to uniquely identify any concept in C to uniquely identify any concept in C

 Observation: [Goldman & Kearns] Observation: [Goldman & Kearns]
#(membership queries to identify a concept in C) #(membership queries to identify a concept in C) ≥≥ TD(C)TD(C)

– 3 –

Relevance to Verification and SynthesisRelevance to Verification and Synthesis

 As discussed earlier, Verification As discussed earlier, Verification ““==”” SynthesisSynthesis

 Learning is Synthesis from ExamplesLearning is Synthesis from Examples

 TeachabilityTeachability of a concept (as measured by TD) of a concept (as measured by TD)
can give us guidance on designing a learning can give us guidance on designing a learning
algorithmalgorithm

 Optimal teaching sequence: Optimal teaching sequence:
Given a concept, whatGiven a concept, what’’s the smallest sequence of s the smallest sequence of
examples to provide so as to uniquely identify the examples to provide so as to uniquely identify the
concept?concept?
–– Example: Rectangles on a 2D grid; Example: Rectangles on a 2D grid; HyperboxesHyperboxes in n in n

dimensionsdimensions

– 4 –

Some Examples from Our WorkSome Examples from Our Work

 ““OracleOracle--Guided ComponentGuided Component--Based Program Based Program
SynthesisSynthesis””, S. , S. JhaJha et al., ICSE 2010et al., ICSE 2010

 ““Synthesizing Switching Logic for Safety and Synthesizing Switching Logic for Safety and
DwellDwell--Time RequirementsTime Requirements””, S. , S. JhaJha et al, ICCPS et al, ICCPS
2010.2010.

– 5 –

Security: The Growth of MalwareSecurity: The Growth of Malware

New signatures by Symantec:
100K in 2005 to 3M in 2009

“malicious code authors are creating unique
threats using techniques such as

packing, obfuscation, and server-side
polymorphism”

– 6 –

Motivating Problem:
Deobfuscating Malware
Motivating Problem:Motivating Problem:
DeobfuscatingDeobfuscating MalwareMalware

Obfuscated code:
Input: y Output: modified value of y

{ a=1; b=0; z=1; c=0;
while(1) {

if (a == 0) {
if (b == 0) { y=z+y; a =~a;
b=~b; c=~c; if (~c) break; }

else {
z=z+y; a=~a; b=~b; c=~c;
if (~c) break; } }

else if(b == 0) {z=y << 2; a=~a;}
else { z=y << 3; a=~a; b=~b;}

} }
FROM
CONFICKER WORM

What it does:
Multiplies y by 45

We solve this using
program synthesis.

We get:
{ z = y << 2; y = z + y;

z = y << 3; y = z + y;
}

Paper: S. Jha et al., “Oracle-Guided Component-
Based Program Synthesis”, ICSE 2010.

– 7 –

Sciduction for Program SynthesisSciduction for Program Synthesis

Structure Hypothesis:
Programs are Loop-Free Compositions
of Known Components

Deductive Engine:
SMT solving to generate distinguishing inputs

Inductive Inference:
Learning from Distinguishing Examples

+

+

– 8 –

Class of ProgramsClass of ProgramsClass of Programs

 Programs implementing functions: Programs implementing functions: II OO

Functions could be Functions could be ifif--thenthen--elseelse definitions and hence, the above definitions and hence, the above
represents any looprepresents any loop--free code.free code.

P(I):
O1 = f1 (V1)
O2 = f2 (V2)
…
On = fn (Vn)

where

f1,f2,…,fn are functions from a
given component library

– 9 –

ProblemProblemProblem

Space of all possible programs obeying our
structure hypothesis
Each dot represents semantically unique
program

I/O OracleProgram Space

Specification Oracle

I/O Examples that
identify the correct
program?

– 10 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

– 11 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

– 12 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1)

Example ↔ Set of programs
ruled out by that example

– 13 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

Smallest set of I/O examples to
learn correct design

IS

Minimum size subset of
{E1, E2, ……, En } that cover all
the incorrect programs

Optimal teaching seq problem = Min set cover problem

– 14 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

Smallest set of I/O examples to
learn correct design

IS

Minimum size subset of
{E1, E2, ……, En } that cover all
the incorrect programs

Bad news: can’t
enumerate all inputs
and find set Ei for each

– 15 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

ONLINE set-cover:

In each step,
• choose some (ij,oj) pair
• eliminated incorrect programs Ej
disclosed

– 16 –

Program Learning as Set CoverProgram Learning as Set CoverProgram Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

(i1, o1) - E1
(i2, o2) - E2

………

(in, on) - En

ONLINE set-cover:

In each step,
• choose some (ij,oj) pair
• eliminated incorrect programs Ej
disclosed

|Ej| ≥ 1: atleast one
incorrect program
identified

– 17 –

Our ApproachOur ApproachOur Approach

Space of all possible programs
Each dot represents
semantically unique program

– 18 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

Our ApproachOur ApproachOur Approach

– 19 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

P1

P2

Our ApproachOur ApproachOur Approach

SMT

SMT

– 20 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

P1

P2

i2

Our ApproachOur ApproachOur Approach

SMT

– 21 –

Space of all possible programs

Example I/O set E := {(i1,o1)}

i2

(i2, o2)

Input/output
Oracle

P1

P2

Our ApproachOur ApproachOur Approach

– 22 –

Space of all possible programs

Example I/O set E := E ∪ {(i2,o2)}

Our ApproachOur ApproachOur Approach

– 23 –

Space of all possible programs

Example I/O set E := E ∪ {(ij,oj)}

Our ApproachOur ApproachOur Approach

– 24 –

Space of all possible programs

Example I/O set E := E ∪ {(ik,ok)}

Our ApproachOur ApproachOur Approach

– 25 –

Space of all possible programs

Example I/O set E := E ∪ {(in,on)}

Semantically
Unique
Program

Correct
Program?

Our ApproachOur ApproachOur Approach

– 26 –

SoundnessSoundnessSoundness

Library of components
is sufficient ?

Correct
design

I/O pairs show
infeasibility ?

YES

Infeasibility
reported

Incorrect
design

YES

NO

NO

– 27 –

Other Important DetailsOther Important DetailsOther Important Details

 Representing the Representing the space of possible programsspace of possible programs
using using SMTSMT formulaformula

 Obtaining Obtaining a feasible program for given set of a feasible program for given set of
input/output pairsinput/output pairs using using SMTSMT solvingsolving

 Obtained Obtained second feasible program and a second feasible program and a
distinguishing inputdistinguishing input using using SMTSMT solvingsolving

[see ICSE ’10, PLDI ’11 papers]

– 28 –

Result HighlightsResult HighlightsResult Highlights

 MalwareMalware DeobfuscationDeobfuscation
–– ConfickerConficker wormworm

–– MyDoomMyDoom and and

–– survey paper on obfuscations by survey paper on obfuscations by CollbergCollberg et alet al**

 Synthesized over Synthesized over 3535 bitbit--manipulation programs from manipulation programs from
HackerHacker’’s delights delight (the (the ““Bible of bitBible of bit--manipulationmanipulation””).).

 Program length: Program length: 33--1515

 Number of input/output examples: Number of input/output examples: 2 to 132 to 13..

 Total runtime: Total runtime: < 1< 1 second tosecond to 55 minutes.minutes.

*C. *C. CollbergCollberg, C. , C. ThomborsonThomborson, and D. Low. A taxonomy of obfuscating transformations. Technic, and D. Low. A taxonomy of obfuscating transformations. Technical Report 148, al Report 148,
Dept. Comp. Dept. Comp. SciSci., The Univ. of Auckland, July 1997.., The Univ. of Auckland, July 1997.

– 29 –

DiscussionDiscussion

 Notion of Notion of ““teachingteaching”” can be useful in guiding the can be useful in guiding the
design of a learning algorithm, or proving design of a learning algorithm, or proving
bounds on the sample complexitybounds on the sample complexity

– 30 –

Course Topics ReviewCourse Topics Review

 SAT SolvingSAT Solving
–– Complexity, random SAT instances, Complexity, random SAT instances, ……
–– CDCL (DPLL) SAT solversCDCL (DPLL) SAT solvers

 BDDsBDDs

 SMT SolvingSMT Solving
–– Commonly used theories, NelsonCommonly used theories, Nelson--OppenOppen

combinationcombination
–– Lazy SMT solving Lazy SMT solving ---- DPLL(T), etc. DPLL(T), etc.
–– Eager SMT solving Eager SMT solving –– SmallSmall--domain encoding, domain encoding,

UCLID, UCLID, ……

– 31 –

Course Topics ReviewCourse Topics Review

 Model CheckingModel Checking
–– Modeling: things to keep in mindModeling: things to keep in mind
–– Temporal logicTemporal logic
–– ExplicitExplicit--state model checkingstate model checking

 Basic automataBasic automata--theoretic approachtheoretic approach
 DFS, Nested DFS, DFS, Nested DFS, ……
 PartialPartial--order reduction, state compression, order reduction, state compression, ……

–– Symbolic model checkingSymbolic model checking
 QBF, QBF, fixpointfixpoint theorytheory
 Abstraction: coneAbstraction: cone--ofof--influence, CEGAR, proofinfluence, CEGAR, proof--

based abstraction, interpolationbased abstraction, interpolation
 Symmetry reductionSymmetry reduction
 KK--induction, IC3induction, IC3

–– Simulation/Simulation/bisimulationbisimulation, compositional reasoning, compositional reasoning

– 32 –

Course Topics ReviewCourse Topics Review

 Inductive Learning + DeductionInductive Learning + Deduction
–– Verification Verification ““==”” SynthesisSynthesis
–– Compositional reasoning, L* algorithmCompositional reasoning, L* algorithm
–– Survey of learning algorithms: Basics, Batch Survey of learning algorithms: Basics, Batch

learning, PAC learning model, online learning learning, PAC learning model, online learning
modelmodel

–– Teaching Teaching vsvs learninglearning

 Synthesis from LTLSynthesis from LTL

– 33 –

Things we did not coverThings we did not cover

 Verification of InfiniteVerification of Infinite--State SystemsState Systems
–– Software, timed/hybrid systems, etc.Software, timed/hybrid systems, etc.

 Quantitative Verification / SynthesisQuantitative Verification / Synthesis

 Error localization and debuggingError localization and debugging

 Interactive theorem provingInteractive theorem proving

 ……

See list of project topics introduced in first lecture See list of project topics introduced in first lecture
for directions for future researchfor directions for future research

