Teaching vs. Learning, and Course Wrap-Up

Sanjit A. Seshia

EECS 219C

EECS Department
UC Berkeley

Teaching vs. Learning

- Learning: Examples \rightarrow Concept
- Teaching: Concept \rightarrow Examples
- Given a concept, give a "good" set of examples such that a learner can uniquely identify that concept
" "good" typically means smallest
- Teaching dimension (TD) of a concept class C: the minimum number of examples a teacher must reveal to uniquely identify any concept in C
- Observation: [Goldman \& Kearns]
\#(membership queries to identify a concept in C) \geq TD(C)

Relevance to Verification and Synthesis

- As discussed earlier, Verification "=" Synthesis
- Learning is Synthesis from Examples
- Teachability of a concept (as measured by TD) can give us guidance on designing a learning algorithm
- Optimal teaching sequence:

Given a concept, what's the smallest sequence of examples to provide so as to uniquely identify the concept?

- Example: Rectangles on a 2D grid; Hyperboxes in n dimensions

Some Examples from Our Work

- "Oracle-Guided Component-Based Program Synthesis", S. Jha et al., ICSE 2010
- "Synthesizing Switching Logic for Safety and Dwell-Time Requirements", S. Jha et al, ICCPS 2010.

Security: The Growth of Malware

Motivating Problem: Deobfuscating Malware

```
Obfuscated code:
Input: y Output: modified value of y
{ a=1; b=0; z=1; c=0;
    while(1) {
    if (a== 0) {
    if (b == 0) { y=z+y; a =~a;
    b=~b; c=~c; if (~c) break; }
    else {
        z=z+y; a=~a; b=~b; c=~c;
        if (~c) break; } }
    else if(b == 0) {z=y << 2; a=~a;}
    else {z=y << 3;a=~a; b=~b;}
}}
```

What it does:
Multiplies y by 45
We solve this using program synthesis.

```
We get:
{ z=y << 2; y=z + y;
    z=y<< 3; y=z + y;
}
```


FROM

CONFICKER WORM

Sciduction for Program Synthesis

Structure Hypothesis:

Programs are Loop-Free Compositions
of Known Components
$+$
Inductive Inference:
Learning from Distinguishing Examples $+$

Deductive Engine:
SMT solving to generate distinguishing inputs

Class of Programs

- Programs implementing functions: I $\rightarrow 0$
$P(I):$
$O_{1}=f_{1}\left(V_{1}\right)$
$O_{2}=f_{2}\left(V_{2}\right)$
\cdots
$O_{n}=f_{n}\left(V_{n}\right)$
where
$f_{1}, f_{2}, \ldots, f_{n}$ are functions from a
given component library

Functions could be if-then-else definitions and hence, the above represents any loop-free code.

Problem

Program Space

Specification Oracle

I/O Oracle

I/O Examples that identify the correct program?

Space of all possible programs obeying our structure hypothesis Each dot represents semantically unique program

Program Learning as Set Cover

Space of all possible programs
Each dot represents
semantically unique program

Program Learning as Set Cover

Space of all possible programs Each dot represents
semantically unique program

Program Learning as Set Cover

Program Learning as Set Cover

$$
\begin{aligned}
& \left(\mathrm{i}_{1}, \mathrm{o}_{1}\right)-\mathrm{E}_{1} \\
& \left(\mathrm{i}_{2}, \mathrm{o}_{2}\right)-\mathrm{E}_{2}
\end{aligned}
$$

Space of all possible programs Each dot represents semantically unique program

Smallest set of I/O examples to learn correct design

IS
Minimum size subset of $\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \ldots, \mathrm{E}_{\mathrm{n}}\right\}$ that cover all the incorrect programs

Program Learning as Set Cover

Program Learning as Set Cover

$$
\begin{aligned}
& \left(\mathrm{i}_{1}, o_{1}\right)-\mathrm{E}_{1} \\
& \left(\mathrm{i}_{2}, o_{2}\right)-\mathrm{E}_{2}
\end{aligned}
$$

Space of all possible programs Each dot represents semantically unique program

ONLI NE set-cover:
In each step,

- choose some ($\mathrm{i}_{\mathrm{j}}, \mathrm{o}_{\mathrm{j}}$) pair
- eliminated incorrect programs E_{j} disclosed

Program Learning as Set Cover

Space of all possible programs Each dot represents semantically unique program

$\left(i_{1}, o_{1}\right)-E_{1}$	$\left\|E_{j}\right\| \geq 1$: atleast one
$\left(i_{2}, o_{2}\right)-E_{2}$	incorrect program
identified	

ONLINE set-cover:
In each step,

- choose some ($\mathrm{i}_{\mathrm{j}}, \mathrm{o}_{\mathrm{j}}$) pair
- eliminated incorrect programs E_{j} disclosed

Our Approach

Space of all possible programs
Each dot represents
semantically unique program

Our Approach

Example I/O set E $:=\left\{\left(\mathrm{i}_{1}, \mathrm{O}_{1}\right)\right\}$

Space of all possible programs

Our Approach

Example I/O set $\mathrm{E}:=\left\{\left(\mathrm{i}_{1}, \mathrm{O}_{1}\right)\right\}$

Space of all possible programs

Our Approach

Example I/O set E $:=\left\{\left(\mathrm{i}_{1}, \mathrm{O}_{1}\right)\right\}$

Space of all possible programs

Our Approach

Example I/O set E:=\{($\left.\left.\mathrm{i}_{1}, \mathrm{o}_{1}\right)\right\}$

Space of all possible programs

Our Approach

Example I / O set $\mathrm{E}:=\mathrm{E} \cup\left\{\left(\mathrm{i}_{2}, \mathrm{O}_{2}\right)\right\}$

Space of all possible programs

Our Approach

Example I / O set $\mathrm{E}:=\mathrm{E} \cup\left\{\left(\mathrm{i}_{\mathrm{j}}, \mathrm{O}_{\mathrm{j}}\right)\right\}$

Space of all possible programs

Our Approach

Example I/O set $\mathrm{E}:=\mathrm{E} \cup\left\{\left(\mathrm{i}_{\mathrm{k}}, \mathrm{o}_{\mathrm{k}}\right)\right\}$

Space of all possible programs

Our Approach

Example I/O set $\mathrm{E}:=\mathrm{E} \cup\left\{\left(\mathrm{i}_{\mathrm{n}}, \mathrm{o}_{\mathrm{n}}\right)\right\}$

Semantically
Unique Program

Correct Program?

Space of all possible programs

Soundness

Other Important Details

■ Representing the space of possible programs using SMT formula

- Obtaining a feasible program for given set of input/output pairs using SMT solving
- Obtained second feasible program and a distinguishing input using SMT solving

Result Highlights

- Malware Deobfuscation
- Conficker worm
- MyDoom and
- survey paper on obfuscations by Collberg et al*
- Synthesized over 35 bit-manipulation programs from Hacker's delight (the "Bible of bit-manipulation").
- Program length: 3-15
- Number of input/output examples: 2 to 13.
- Total runtime: < 1 second to 5 minutes.
*C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations. Technical Report 148, Dept. Comp. Sci., The Univ. of Auckland, July 1997.

Discussion

- Notion of "teaching" can be useful in guiding the design of a learning algorithm, or proving bounds on the sample complexity

Course Topics Review

- SAT Solving
- Complexity, random SAT instances, ...
- CDCL (DPLL) SAT solvers
- BDDs
- SMT Solving
- Commonly used theories, Nelson-Oppen combination
- Lazy SMT solving -- DPLL(T), etc.
- Eager SMT solving - Small-domain encoding, UCLID, ...

Course Topics Review

- Model Checking
- Modeling: things to keep in mind
- Temporal logic
- Explicit-state model checking
- Basic automata-theoretic approach
- DFS, Nested DFS, ...
- Partial-order reduction, state compression, ...
- Symbolic model checking
- QBF, fixpoint theory
- Abstraction: cone-of-influence, CEGAR, proofbased abstraction, interpolation
- Symmetry reduction
- K-induction, IC3
- Simulation/bisimulation, compositional reasoning

Course Topics Review

- Inductive Learning + Deduction
- Verification "=" Synthesis
- Compositional reasoning, L* algorithm
- Survey of learning algorithms: Basics, Batch learning, PAC learning model, online learning model
- Teaching vs learning
- Synthesis from LTL

Things we did not cover

- Verification of Infinite-State Systems
- Software, timed/hybrid systems, etc.
- Quantitative Verification / Synthesis
- Error localization and debugging
- Interactive theorem proving

■ ...

See list of project topics introduced in first lecture for directions for future research

