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Abstract

We study the computational complexity of several natural problems arising in statistical physics and com-
binatorics. In particular, we consider the following problems: the mean magnetization and mean energy of the
Ising model (both the ferromagnetic and the anti-ferromagnetic settings), the average size of an independent set
in the hard core model, and the average size of a matching in the monomer-dimer model. We prove that for all
non-trivial values of the underlying model parameters, exactly computing these averages is #P-hard.

In contrast to previous results of Sinclair and Srivastava [1] for the mean magnetization of the ferromagnetic
Ising model, our approach does not use any Lee-Yang type theorems about the complex zeros of partition functions.
Indeed, it was due to the lack of suitable Lee-Yang theorems for models such as the anti-ferromagnetic Ising model
that some of the problems we study here were left open in [1]. In this paper, we instead use some relatively simple
and well-known ideas from the theory of automatic symbolic integration to complete our hardness reductions.
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I . I N T R O D U C T I O N

A. Background

Let G = (V,E) be graph and Ω a set of combinatorial structures defined on the graph. We assume that
these configurations have positive rational weights w : Ω→ Q, along with a positive integer valued observable
f : Ω→ Z defined on the configurations. Our goal in this paper is to study the computational complexity of the
mean value 〈f〉 of such observables, which is defined as:

〈f〉 ··=
1

Z

∑
σ∈Ω

w(σ)f(σ).

Here Z ··=
∑

σ∈Ωw(σ) is the partition function. Two of the simplest examples of such problems include computing
the average size of independent sets and matchings in graphs: in this case Ω is the set of all independent sets (or
matchings) of G, w(σ) = 1 for all σ ∈ Ω, and f(σ) is the size of the independent set σ (or the matching σ).
Note that in both cases, for all σ ∈ Ω, it is easy to compute both the weight w(σ) as well as the observable f(σ),
but the partition function Z is #P-hard to compute.

Although both of these examples are naturally motivated combinatorial problems, we will find it fruitful
to study them in the more general context of spin systems. These originated in the early twentieth century in
statistical physics as a tool for studying phase transitions in magnetism, but have since been studied extensively
in combinatorics and computer science as well, and have been applied to the modeling of large systems in a
variety of settings. Computational problems of the form outlined above appear naturally in the study of these



systems (starting with the original applications in statistical physics, as we shall see below), and spin systems
provide a general framework for modeling and studying them. We now proceed to briefly describe the general
properties of spin systems followed by three well-studied classical examples. We will see that all the problems
that we study in this paper, including the computation of average sizes of matchings and independent sets, find a
natural expression in the language of spin systems.

In a spin system, the configurations σ : V → {+,−} are assignments of {+,−} spins to the vertices of G
(in general the number of allowed spins can be larger, but all the systems we consider in this paper require
only two spins). Further, there is a small number of observables f1, f2, . . . , fk and positive rational parameters
c1, c2, . . . , ck such that the weight w(σ) can be written as

w(σ) =

k∏
i=1

c
fi(σ)
i .

Viewing the partition function Z as a function of the parameters ci, we then see that there is a simple analytical
relationship between Z(c1, c2, . . . , ck) and the mean values 〈fi〉. Formally, we have

〈fi〉 ··=
1

Z

∑
σ∈Ω

w(σ)fi(σ) = ci
∂

∂ci
logZ(c1, c2, . . . , ck) = ci

Z ′(c1, c2, . . . , ck)

Z(c1, c2, . . . , ck)
,

where Z ′ denotes the derivative with respect to ci (the parameter with respect to which the derivative is being
taken will always be clear from the context). Thus, we see that the definition of spin systems encodes mean
values of various observables as derivatives of the logarithm of the partition function: this correspondence between
derivatives and mean values of observables is standard in the study of spin systems in statistical physics, and
also turns out to be very important for our goal of understanding the computational complexity of these mean
quantities.

We now give examples of some well studied spin systems, all of which will be relevant to this paper.

Example I.1 (The hard core model). This is a distribution over the independent sets of G. Formally, the
configurations are assignments of {+,−} spins to the vertices of G, with any configuration that assigns spin +
to any pair of adjacent vertices having weight zero. (The vertices with + spin correspond to the elements of the
independent set.) The natural observable f(I) here is the size |I| of the independent set (i.e., the number of +
spins). The weight wH(I) and the partition function ZH are then given by

wH(I) = λ|I| and ZH(G,λ) =
∑
I∈Ω

λ|I|,

where the subscript H denotes the name of the model. Here λ > 0 is a model parameter that is known as the
vertex activity or fugacity. The natural mean observable is the average size MH(G,λ) of the independent sets,
and is given by

MH(G,λ) = λ
d

dλ
logZH(G,λ). (1)

Example I.2 (Ising model). Historically, this was the first spin system to be studied, and was proposed by Lenz
as a model for magnetism in bulk matter (the model first appeared, however, in a paper of Ising [2]). Here,
unlike the case of the hard core model, all configurations σ : V → {+,−} are permissible, and we have two
observables, the energy d(σ), which is defined as the number of edges {u, v} in G such that σ(u) 6= σ(v), and
the magnetization m(σ) which is defined as the number of vertices v such that σ(v) = +. The weight wI(σ) and
the partition function ZI(G, β, λ) are then given by

wI(σ) = βd(σ)λm(σ) and ZI(G, β, λ) =
∑

σ:V→{+,−}

wI(σ),



where β is a model parameter called the edge activity and λ is a model parameter called the vertex activity.
(Note that in the statistical physics literature, it is customary to parametrize the models in terms of an inverse
temperature proportional to log β and an external field proportional to log λ, but we will not use this terminology
in this paper.) There are two natural and well studied mean quantities in this setting: the mean magnetization
MIM (G, β, λ) and the mean energy MIE(G, β, λ), where

MIM (G, β, λ) = λ
∂

∂λ
logZI(G, β, λ) and MIE(G, β, λ) = β

∂

∂β
logZI(G, β, λ). (2)

Note that the energy d(σ) is exactly the size of the cut induced by the labeling σ. Thus, when λ = 1, the mean
energy is just the average size of the cut induced by the Ising model. Of course, this is trivial to compute when
β = 1. Similarly, the mean magnetization is |V |/2 when λ = 1, but as we show later, both these quantities are
#P-hard to compute at all other values of the parameters.

The Ising model has very different qualitative behavior in the two settings 0 < β < 1 and β > 1. In the
first case, known as the ferromagnetic Ising model, configurations with smaller cuts get larger weight, so that
neighboring vertices tend to have similar spins in a configuration sampled from the model. On the other hand, in
the anti-ferromagnetic Ising model, which corresponds to the setting β > 1, disagreements between neighboring
vertices are favored. The contrast is most visible if we consider the case λ = 1: the maximum weight configurations
in the ferromagnetic case then are those in which all vertices have the same spin, while the maximum weight
configurations in the latter case are the max-cuts of the graph.

Example I.3 (Monomer-dimer model [3]). In this model, the configurations in Ω are matchings of the graph G.
(Thus, strictly speaking, this is a spin system not on the graph G, but on the line graph of G. However, this
distinction will not be important for our purposes.) The natural observable is the size |M | of a matching, but for
technical reasons, we consider instead the equivalent observable u(M) which counts the number of vertices left
unmatched by the matching M . The weight wD(M) and the partition function ZM (D,λ) are then given by

wD(M) = λu(M) and ZD(G,λ) =
∑
M∈Ω

wD(M),

where λ is a model parameter known as the vertex activity or monomer activity. The mean number of monomers
MD(G,λ) is then given by

MD(G,λ) = λ
d

dλ
logZD(G,λ).

Note that the average size of matchings can be written as 1
2 (|V | −MD(G,λ)). It is also possible to add edge

activities to the model, but for notational simplicity we do not do so here. (However, our hardness result,
Theorem I.4 stated later, continues to hold for the more general model as well.)

In applications of spin systems, the average quantities mentioned above have important operational meanings.
For example, the “mean magnetization” in the classical Ising model of magnetism is so named because its behavior
indeed models the (physical) magnetization. Similarly, when the Ising model is used to model binary preferences
in social networks, the mean magnetization models the popularity of one of the preferences. For these reasons,
the question of algorithmically computing such averages is of great importance. As a result, and in the absence
of efficient algorithms for exact computation, the approximation problem for such mean quantities is quite well
studied. A large body of work addresses the problem of approximately sampling configurations from the probability
distribution (called the Gibbs distribution) induced by the weights of a given system. Since the mean quantities
mentioned above all have variances (with respect to the Gibbs distribution) which are polynomially bounded in
the size of the graph, such a sampling procedure, when available, can then be used to give efficient randomized
additive approximation procedures for the mean quantities. This approach has been shown to work, e.g., for the
ferromagnetic Ising model and the monomer-dimer model (see, e.g., the papers by Jerrum and Sinclair [4] and
Randall and Wilson [5] for the Ising model, and by Jerrum and Sinclair [6] for the monomer-dimer model).



However, in spite of the significant progress made in designing approximation algorithms for these mean
quantities, it was not known until recently if any of these quantities are actually hard to compute exactly. Although
this is an interesting natural problem, the first work directly addressing it appears to be a relatively recent paper
of two of the present authors [1], where the #P-hardness of computing the mean magnetization of the Ising model
and mean monomer count in the monomer-dimer model on multigraphs is proved. In the next section, we begin
by briefly outlining the approach taken in that paper, and the problems it faces in handling other spin systems
such as the anti-ferromagnetic Ising and hard core models, and then give a brief outline of our approach which
surmounts these problems. We use the mean magnetization of the Ising model with a fixed edge activity β 6= 1 as
a running example in this discussion. Finally, at the end of the section, we state our complexity results.

B. Techniques and results

The starting point of [1] is eq. (2), which shows that MIM (β, λ) =
λ
∂ZI (G,β,λ)

∂λ

ZI(G,β,λ) is a rational function of λ. Now,
suppose we have a hypothetical algorithm that for a fixed β, efficiently computes the values MIM (G, β, x) for
any inputs G and x. The time-honored way to proceed then would be to use these evaluations as an input to an
interpolation procedure which would determine the coefficients of the unreduced form of the rational function
MIM (G, β, λ). These coefficients include, in particular, the coefficients of the partition function ZI(G, β, λ).
Since the partition function itself is known to be #P-hard to compute, guaranteed success of this process would
ensure that the problem of computing MIM (G, β, λ) is #P-hard as well.

Unfortunately, we are not done yet since one cannot a priori guarantee that the rational interpolation succeeds
in retrieving the coefficients of ZI , as ZI and ∂ZI

∂λ may have common factors, and in that case any interpolation
procedure will only be able to recover a reduced form of MIM (G, β, λ) whose coefficients can be quite different
from those of ZI . To get around this, Sinclair and Srivastava [1] showed that such cancellations cannot occur when
one is considering the ferromagnetic Ising model on connected graphs at non-trivial values of the parameters. This
required them to prove an extension of the Lee-Yang theorem [7] on the complex zeros of the partition function
ZI of the ferromagnetic Ising model, which showed that ZI , when viewed as a polynomial in λ, cannot have
repeated complex zeros under this setting (which in turn implies that it cannot share factors with its derivative).
Their companion result in [1] for the monomer-dimer model uses a similar strategy, appealing to a classical result
of Heilmann and Lieb [3] on the non-degeneracy of zeros of the partition function ZD on Hamiltonian graphs.

While their results on zeros of the partition function remain of independent interest, as pointed out in [1], their
approach necessarily fails for models such as the anti-ferromagnetic Ising model and the hard core model because
similar strong results for the non-degeneracy of zeros of the partition function are not true for these models.
Indeed, it is not hard to construct simple examples of connected graphs where the partition functions of these
models indeed have degenerate zeros.

In this paper, we follow a different approach where we do not try to guarantee that the interpolation will
succeed in determining ZI , but instead view eq. (2) as a differential equation for ZI . We then attempt to use the
hypothetical algorithm for computing the mean magnetization MIM to integrate this differential equation. Again,
one might attempt to do this numerically, by trying to argue that if evaluations of MIM (G, β, x) at sufficiently
many distinct values of x were available, then one could determine logZI(G, β, λ) (for some appropriate λ where
the partition function is known to hard to compute) to sufficient accuracy via a suitable numerical quadrature
rule. However, since we are trying to prove #P-hardness and hence need to evaluate ZI(G, β, λ) exactly, the
required accuracy is likely to be too high for any numerical quadrature rule to be efficient. (This problem is
further exacerbated by the fact that the differential equation is for the transcendental function logZI and not for
ZI .)

Instead, we attempt to integrate the differential equation symbolically. Our first step is to use rational interpolation
to compute the coefficients of MIM (G, β, λ). However, unlike in [1], we admit the possibility that this may not
yield the coefficients of ZI(G, β, λ) due to cancellations of common factors between ZI and its derivative. To
get around this problem, we instead use classical ideas from the theory of automatic symbolic integration (going
back at least to the work of Horowitz [8] and Tobey [9], but likely to be even older) to symbolically integrate



the reduced form of MIM (G, β, λ) in order to obtain logZI(G, β, λ) symbolically. The symbolic nature of the
computation means that the transcendental nature of this function is no longer a problem. We now proceed to
state our complexity results.

Remark I.1. Note that in all the results below, #P-hardness continues to hold even when the model parameters
(such as the edge activity β or the vertex activity λ) are not part of the input but fixed in advance. However, in
the technical discussion at the beginning of this section, we discussed proving hardness for the case where at
least one of the model parameters was actually part of the input. (For example, in the outline of the reduction, we
assumed that we have a hypothetical algorithm that computes MIM (G, β, x) for a fixed β and G, x as inputs.)
However, as is also done in [1], it is easy to simulate different values of the model parameters by modifying the
input graph, and such simulations can be used to prove hardness even for the restricted problem where the model
parameters are not input to the algorithm but fixed in advance. These simulations are identical in spirit to those
used in [1] and we therefore defer their discussion to Sections IV and V.

Our first result extends the main complexity result of Sinclair and Srivastava [1] for the ferromagnetic Ising
model to the anti-ferromagnetic setting. As discussed above, the methods used in [1] face a fundamental obstacle
when confronted with this model, since the analog of the extended Lee-Yang theorem proved in [1] is actually
false for the anti-ferromagnetic Ising model.

Theorem I.1. Fix positive rational β > 1 and λ 6= 1. Then, the problem of computing the magnetization of the
Ising model with edge activity β and vertex activity λ is #P-hard. Further, the problem remains #P-hard even
when the input is restricted to graphs of degree at most 4.

Note that the problem is in P when λ = 1: the magnetization is then |V |/2 by symmetry.
Sinclair and Srivastava [1] left open the computational complexity of the mean energy of the Ising model.

Using our methods, we are able to resolve this problem.

Theorem I.2. Fix a positive rational β 6= 1. Then, the problem of computing the mean energy of the Ising model
with edge activity β (and vertex activity λ = 1) is #P-hard. Further, the problem remains hard even when the
input is restricted to graphs of degree at most 3.

Note that the above result holds for both the ferromagnetic and anti-ferromagnetic Ising models, and also that
the problem is trivial when β = 1 (the graph is effectively completely disconnected in this case). Our next result
concerns the hard core model, which was also left open in [1].

Theorem I.3. Fix rational λ > 0. Then, the problem of computing the average size of an independent set in the
hard core model with vertex activity λ is #P-hard. Further, the problem remains #P-hard even when the input is
restricted to graphs of degree at most 4.

By taking λ = 1 in the above result, we see that computing the average size of independent sets in a graph is
#P-hard. Note that a weaker version of this result, where λ is restricted to be the square of a rational number and
where the input graph has degree at most 10, can be obtained as a corollary of Theorem I.4 below by using the
equivalence between the monomer-dimer model on a graph G and the hard core model on the line graph of G.
However, since our direct reduction given in Section IV does not require these restrictions, we omit the (easy)
details of this fact.

Finally, we use our methods to improve upon and simplify the main complexity results of Sinclair and
Srivastava [1] for the monomer-dimer model. In particular, we prove the following.

Theorem I.4. Fix a positive rational λ. Then, the problem of computing the average number of matchings
(equivalently, the mean number of monomers) in the monomer-dimer model with vertex activity λ is #P-hard.
Further, the problem remains #P-hard even when the input is restricted to graphs of degree at most 5.

By taking λ = 1 in the above result we see that computing the average number of matchings in a graph is #P-hard.



In contrast, the hardness result proved in [1] could only achieve this for multigraphs.

Remark I.2. We observe that our results in this paper are obtained without appealing to deep facts about the
location of zeros of partition functions (such as the Lee-Yang or Heilmann-Lieb theorems or their extensions).
On the other hand, we should also note that our results do not have any consequences for the study of zeros
of partition functions, which is also of interest for reasons beyond computational complexity theory, and has
connections, for example, with the theory of stable polynomials (see, e.g., [10], [11]). In particular, our techniques
here cannot prove results on non-degeneracy of zeros of partition functions, as was done in the main technical
result of [1].

I I . P R E L I M I N A R I E S

In this section we review some standard facts and observations about polynomials with rational coefficients.

A. Polynomials in Q[x]

We start by recalling some standard terms for future reference. The description length of a polynomial
p(x) ∈ Q[x] is the number of bits required to write down all its coefficients, where each coefficient is written as
a quotient of two integers written in binary. We will often shorten this to length if the meaning is clear from the
context. We denote the degree of a polynomial p(x) ∈ Q[x] as deg (p(x)) and the g.c.d. of polynomials p(x) and
q(x) as gcd(p(x), q(x)). We assume that the g.c.d. of two polynomials is normalized to be primitive as defined
below. The polynomials p(x) and q(x) are co-prime if their g.c.d. is 1.

We call a polynomial p(x) ∈ Q[x] of positive degree primitive if all its coefficients are integers (i.e., p(x) ∈ Z[x]),
its leading coefficient is positive, and the g.c.d. of its coefficients is 1. Note that given a polynomial q(x) ∈ Q[x],
there is a unique primitive polynomial p(x) and a unique c ∈ Q such that p(x) = c · q(x). Further, given q(x),
both c and p(x) can be determined efficiently (in time polynomial in the description length of q(x)). We will
need the following standard fact about primitive polynomials.

Lemma II.1 (Gauss, [12, Lemma 3.10.1]). If p(x), q(x) ∈ Q[x] are primitive then so is their product p(x)q(x).

We call p(x) ∈ Q[x] irreducible if p(x) cannot be written as a product of two polynomials in Q[x] both of
which are of positive degree. If p(x) ∈ Q[x] is irreducible, it is also prime, i.e., if p(x) divides g(x)h(x) (where
g(x), h(x) ∈ Q[x]), then it must divide at least one of g(x) or h(x). The following well known result of Lenstra,
Lenstra and Lovász [13] is used to establish the algorithmic efficiency of a part of our main technical lemma in
Section III.

Theorem II.2 (Efficient polynomial factoring [13]). There exists an algorithm which, given a polynomial
p(x) ∈ Q[x], outputs in time polynomial in the description length of p its unique primitive irreducible factorization,
i.e., a rational number c, distinct primitive irreducible polynomials pi(x), and positive integers di such that

f(x) = c ·
k∏
i=1

pi(x)di ,

where k is the number of distinct irreducible factors of p(x).

B. Rational functions

We will also need to consider rational functions of the form p(x)
q(x) where p(x), q(x) ∈ Q[x]. We will view these

both as elements of the field of fractions over Q[x], and as functions from Q to Q. However, we define equality of
rational functions by viewing them as elements of the field of fractions over Q[x] and not as functions. Formally,
we say that p(x)

q(x) = r(x)
s(x) if and only if

p(x)s(x)− r(x)q(x) is the zero polynomial.



Note that this definition is slightly weaker than that obtained by considering p(x)
q(x) and r(x)

s(x) as functions: for
example, 1

x and x−1
x(x−1) are equal under the above definition, but as functions one of them is not defined at x = 1

while the other is. However, equality of two rational functions in the field of fractions over Q[x] does imply
equality of their evaluations at all points where both are well defined as functions (i.e., at points where both have
a non-zero denominator). We will therefore be careful to ensure this when using the above notion of equality to
argue about evaluations of rational functions.

We also note here the standard fact that the reduced form of a rational function is essentially unique.

Fact II.3. Let a(x), b(x), c(x), d(x) ∈ Q[x] such that gcd(a(x), b(x)) = 1 = gcd(c(x), d(x)). Then, a(x)
b(x) = c(x)

d(x)

implies that there exists a non-zero s ∈ Q such that a(x) = s · c(x) and b(x) = s · d(x).

The following theorem is folklore.

Theorem II.4 (Uniqueness of partial fraction expansions). Let a(x) and b(x) be polynomials in Q[x], where
b(x) is square-free and primitive. Let pi(x), i = 1, . . . , k be the distinct primitive irreducible factors of b(x),
so that b(x) =

∏k
i=1 pi(x). Then, there exists at most one sequence of polynomials qi(x) ∈ Q[x] satisfying

deg (qi(x)) < deg (pi(x)) for i = 1, . . . , k and

a(x)

b(x)
=

k∑
i=1

qi(x)

pi(x)
. (3)

In fact, when deg (a(x)) < deg (b(x)), it can also be shown that such a sequence qi always exists, but we will
not need to invoke this fact. We defer the proof of this standard result to the appendix.

C. Rational interpolation

We will need the following standard fact about interpolation of rational functions.

Theorem II.5 (Rational Interpolation [14]). Let R(x) ··= p(x)
q(x) be a rational function with rational coefficients

such that deg (p(x)) = n, deg (q(x)) = m > n are known. Suppose we have evaluations R(yi) of R at
m+ n+ 2 distinct points y1, y2, . . . , ym+n+2 ∈ Q at which the q(yi) are non-zero. Then, the evaluation pairs
(yi, R(yi))

m+n+2
i=1 uniquely determine polynomials a(x), b(x) ∈ Q[x] satisfying the following conditions:

1) gcd(a(x), b(x)) = 1, deg (a(x)) ≤ n, deg (b(x)) ≤ m, and b(x) is a primitive polynomial.
2) R(x) = a(x)

b(x) .

Remark II.1. Note that given the evaluation pairs (yi, R(yi))
m+n+2
i=1 , the polynomials a(x) and b(x) can be

determined in time polynomial in the description length of the pairs. To see why this is true, observe that
R(x) = a(x)/b(x) implies that we must have p(x) = s(x)a(x) and q(x) = s(x)b(x) for some polynomial
s(x) ∈ Q[x] (and indeed s(x) = c gcd(p(x), q(x)) for some rational c). Now, suppose that the degree k ≤ m of
s(x) is known. Then, the degrees of a and b are n− k and m− k respectively, and we can write down a system
of linear equations for the coefficients of a(x) and b(x) by using the evaluations. This system can be solved in
polynomial time using Gaussian elimination to yield a(x) and b(x) up to a constant factor. This factor can then
be determined using the condition that b(x) must be primitive.

The above argument assumes that we know k, the degree of gcd(p(x), q(x)). However, this is not a problem,
since we can try all values of k from m to 0 in decreasing order, and the first value for which Gaussian elimination
actually finds a solution gives the right answer.

I I I . S Y M B O L I C I N T E G R AT I O N O F R AT I O N A L F U N C T I O N S

In this section we prove the following lemma, which is the main tool used in our reductions.



Lemma III.1. Let p(x) be an (unknown) polynomial with rational coefficients, and let a(x) and b(x) be co-prime
polynomials in Q[x] such that b(x) is primitive, and such that

d
dx

log p(x) =
p′(x)

p(x)
=
a(x)

b(x)
. (4)

Then, given the polynomials a(x) and b(x), and one non-zero coefficient of p(x), the polynomial p(x) can be
determined in time polynomial in the length of a(x) and b(x).

The ideas behind the proof of this theorem go back at least to Horowitz [8], who in turn cites earlier work of
Tobey [9], and are likely to be folklore. Note that the algorithm promised by the lemma essentially outputs an
anti-derivative of the function a(x)

b(x) .
Proof: As a warm-up, we first consider the simple case where p is square-free so that gcd(p(x), p′(x)) = 1.1

In this case, by Fact II.3, we must have a(x) = cp′(x) and b(x) = cp(x), for some non-zero rational number
c, and c itself can be determined in polynomial time by comparing the one known coefficient of p(x) with the
corresponding coefficient of b(x).

We now consider the general case. Thinking of p(x) as a polynomial in Q[x], we consider its unique factorization

p(x) = c

k∏
i=1

pi(x)di ,

where c ∈ Q, and pi(x) ∈ Z[x] are distinct irreducible primitive polynomials with positive leading terms. We
then have

p′(x) = c

k∑
i=1

dip
′
i(x)pi(x)di−1

∏
1≤j≤k
j 6=i

pj(x)dj .

Using these expansions (and the fact that the pi are distinct irreducible polynomials), we get that

gcd(p(x), p′(x)) =

k∏
i=1

pi(x)di−1 and
p′(x)

p(x)
=
g(x)

h(x)
,

where

g(x) :=

k∑
i=1

dip
′
i(x)

∏
1≤j≤k
j 6=i

pj(x) and h(x) ··=
k∏
i=1

pi(x), (5)

with gcd(g(x), h(x)) = 1. (To see this, note that since the pi(x) are distinct irreducible polynomials, none of
them can divide g(x).)

Using the hypothesis of the lemma, we therefore get

g(x)

h(x)
=
a(x)

b(x)
.

Now, since g(x), h(x) and a(x), b(x) are co-prime in pairs, Fact II.3 implies that there is a rational number
c1 6= 0 such that a(x) = c1g(x) and b(x) = c1h(x).

Using the fact that h(x) is a primitive polynomial (by Lemma II.1, since it is a product of primitive polynomials),
and the assumption that b(x) is primitive, we then get that c1 = 1. We can then factor b(x) = h(x) in deterministic
polynomial time, using the algorithm of Lenstra, Lenstra and Lovász (Theorem II.2), to obtain the factors pi(x)
of h(x). Thus, from a(x) and b(x), we can obtain the polynomials g(x) = a(x) and h(x) = b(x) as well as
the distinct irreducible factors pi(x) of p(x) in time polynomial in the description length of the input. It only

1For readers familiar with [1], we point out that the main results in that paper sought to isolate instances where this case applies.



remains to determine the exponents di, which we now do using the uniqueness of the partial fraction expansion
of g(x)/h(x) with pi(x) as the denominators.

We note first that the representation in eq. (5) implies the existence of such an expansion:

a(x)

b(x)
=
g(x)

h(x)
=

k∑
i=1

dip
′
i(x)

pi(x)
. (6)

Let n ≥ k − 1 be the degree of g(x).2 Since we already know g(x) and the pi(x), we can match coefficients of
powers of x in the definition of g(x) in eq. (5) to set up n+ 1 ≥ k equations to determine the di. Note that all the
coefficients in this system of equations have description lengths polynomial in the description length of the pi(x),
which themselves have length polynomial in the description length of a(x) and b(x). Since Gaussian elimination
can be carried out in time polynomial in the length of the input (see, e.g., [15]), this system of equations can be
solved in polynomial time. Further, the definition of g(x) implies the existence of at least one solution to this
system, while the expansion in eq. (6) and Theorem II.4 on the uniqueness of partial fraction expansions implies
that this solution is unique. Thus, the unique solution of the system yields the di, and we can then determine the
product

∏k
i=1 pi(x)di = p(x)/c. The constant c can then be determined by comparing the known coefficient of

p(x) with the corresponding coefficient of the product.

Remark III.1. As observed by an anonymous referee, it is in fact possible to avoid the use of the Lenstra, Lenstra
and Lovász algorithm in the procedure for determining p(x) from a(x) and b(x), as we now explain. Let t(x) be
the unique polynomial such that

p′(x) = a(x)t(x) and p(x) = b(x)t(x). (7)

Note that the conditions in eq. (7) yield a system of linear equations for the coefficients of t(x) (namely,
that obtained by equating the coefficients of the polynomials a(x)t(x) and (b(x)t(x))′). Now, the proof of the
lemma, in particular the discussion in the two paragraphs following eq. (5), shows that such a t(x) must satisfy
t(x) ··= c

∏k
i=1 pi(x)di−1, where the pi are the distinct primitive irreducible factors of p(x) with exponents di, so

that p(x) = c
∏k
i=1 pi(x)di . Note also that the rest of the proof establishes that the pi(x) and the di are uniquely

determined given a(x) and b(x). Together with the one known coefficient of p(x), this implies that t(x) itself is
uniquely determined given a(x) and b(x), and hence is the unique solution of the system of linear equations
given by eq. (7). Thus solving this system allows us to efficiently determine t(x), and hence also p(x).

Combining the above lemma with Theorem II.5, we get the following corollary.

Corollary III.2. Let p(x) ∈ Q[x] be an unknown polynomial of degree n. Then given 2n+ 1 distinct evaluation
points y1, y2, . . . , y2n+1 ∈ Q, the corresponding values p′(yi)

p(yi)
, and one non-zero coefficient of p(x), we can

uniquely determine p(x) in time polynomial in the description length of the input.

Proof: We first use Theorem II.5 (and the algorithm outlined in the Remark following it) to obtain polynomials
a(x) and b(x) in Q[x] such that p′(x)

p(x) = a(x)
b(x) , a(x) and b(x) are co-prime, and b(x) is primitive. Note then that

these a(x) and b(x) satisfy the hypotheses of Lemma III.1, so we can now apply the algorithm in the lemma to
obtain p(x).

I V. P R O O F S O F H A R D N E S S R E S U LT S : T H E H A R D C O R E M O D E L

We now show how Corollary III.2 can be used to prove the hardness results listed in Section I-B. All of these
proofs follow a similar template, in which the first step is to use a direct application of the Corollary to prove a
somewhat weaker hardness result for the problem in which the corresponding model parameters are allowed to
be part of the input. Proving the results when the parameters are fixed then requires some more combinatorial

2This follows from the facts that deg (h(x)) ≥ k, and deg (h(x))− deg (g(x)) = deg (p(x))− deg (p′(x)) = 1.



work which is mostly independent of the first step. This template is similar to the strategy used by Sinclair and
Srivastava [1], and the main difference between that paper and this appears in the implementation of the first
step. As in [1], the first step starts with an attempt to use a rational interpolation procedure to compute the
corresponding partition function using a hypothetical algorithm for computing the mean observable in question.
The hardness of computing the mean observable would then follow if the partition function itself is known to be
#P-hard (as it is in all the cases we consider). In [1], Lee-Yang type theorems were used to guarantee that the
rational interpolation indeed succeeds in recovering the partition function. In contrast, in this paper we accept the
possibility that cancellations may not allow the rational interpolation procedure to recover the partition function.
However, we then invoke Corollary III.2 to ensure that the partition function can nevertheless be obtained after
some further processing of the results of the rational interpolation.

In this section, we demonstrate the template by instantiating it for the hard core model (Theorem I.3). The
details for the other models are similar and are deferred to the next section. For the hard core model, our proof
involves a reduction from the well-known #P-hard problem of counting independent sets in bounded degree
graphs. Concretely, we use the following hardness result due to Greenhill [16].

Theorem IV.1 ([16, Theorem 3.1]). The problem of counting independent sets in graphs of degree at most 3 is
#P-hard.

Proof of Theorem I.3: Let G be any graph with maximum degree at most 3. We assume that we have an
algorithm A that, given a graph K on n vertices of maximum degree at most 4, computes in time polynomial in n
the average size MH(K,λ) of an independent set in the hard core model with vertex activity λ on K (recall that
λ is a fixed parameter, and not an input to A). We then use this algorithm to compute the number of independent
sets in G, thus completing the proof via Theorem IV.1.

Our starting point is the earlier observation that the average size of an independent set MH(G, x) can be
written in terms of the derivative of the logarithm of the partition function:

MH(G, x) = x
d

dx
logZH(G, x) = x

Z ′H(G, x)

ZH(G, x)
. (8)

Let n be the number of vertices in G. Suppose for the moment that we have the values MH(G,λi) for 2n+ 1
distinct, positive rational λi, 1 ≤ i ≤ 2n+ 1. Note that eq. (8) implies that if the λi have bit length polynomial
in n, then so do the values MH(G,λi)/λi = Z′(G,λi)

Z(G,λ) . Since all these λi are positive, the latter function is well
defined (i.e., has non-zero denominator) at all these points, and hence we can use Corollary III.2 to compute
the polynomial ZH(G, x), and hence also the value ZG(x, 1). This shows that if we could somehow use the
hypothetical algorithm A to evaluate MH(G, ·) at multiple efficiently computable values of λ, we would be done.

To do this, we modify the input graph G in a manner almost identical to that used in [1], whose notation we
closely follow. Specifically, let P (k) denote the path on k nodes. Let p+

k denote the partition function ZH(P (k), λ)
restricted to those independent sets which occupy the “leftmost” node of P (k). Similarly, let p−k denote the
partition function ZH(P (k), λ) restricted to those independent sets which do not occupy the “leftmost” node of
P (k). Define rk =

p+k
p−k

. As we shall see later, the pk are polynomials in λ which can be computed efficiently as
long as k = poly (n).

Now, consider the graph G(k) obtained from G by attaching to each node of G a separate copy of P (k) so
that any node v in G is connected by an edge to the left-most vertex of its corresponding copy of P (k). Consider
now an independent set I in G(k), and denote by I ′ its projection on the vertices of G. It is easy to see that the
total contribution to the partition function ZH(G(k), λ) of all independent sets in G(k) with a fixed projection I ′

on G is given by
(
p+
k+1

)|I′| (
p−k+1

)n−|I′|. This in turn implies that

ZH(G(k), λ) =
(
p−k+1

)n
ZH(G, rk+1).

Viewing rk, p+
k and p−k as formal functions of λ and denoting their formal derivatives with respect to λ by the



fluxion notation ṙk, ˙p+
k and ˙p−k , we then have

MH(G(k), λ) =
nλ ˙p−k+1

p−k+1

+ λ
d

dλ
logZH(G, rk+1)

=
nλ ˙p−k+1

p−k+1

+ λ ˙rk+1
∂

∂rk+1
logZH(G, rk+1)

=
nλ ˙p−k+1

p−k+1

+
λ ˙rk+1

rk+1
MH(G, rk+1), (9)

where in the last line we use the definition of MH . Thus, all we need to show is that for 2 ≤ i ≤ 2n+ 2, the ri
are distinct, ṙi 6= 0, and all the values p+

i , p
−
i and r+

i are efficiently computable. This is sufficient because we
can then consider the graphs G(k) for k = 1, 2, . . . , 2n+ 1 and then use eq. (9) and the numbers MH(G(k), λ)
output by the algorithm A to compute MH(G, x) at 2n+ 1 distinct positive rational values of x given by the
rk+1. As discussed above, this is sufficient to complete the reduction.

To establish the requisite properties of the pi and the ri, we now consider their computation in detail. In
particular, we have p+

1 = r1 = λ, p−1 = 1, while ˙p+
1 = ṙ1 = 1, and ˙p−1 = 0. We then have the following

recurrences:

p+
k+1 = λp−k , (10)

p−k+1 = p−k + p+
k , (11)

rk+1 =
λ

1 + rk
, (12)

˙p+
k+1 = λ ˙p−k + p−k , (13)
˙p−k+1 = ˙p−k + ˙p+

k , and (14)

˙rk+1 =
˙p+
k+1p

−
k+1 − p

+
k+1

˙p−k+1(
p−k+1

)2 .

Note that eqs. (10), (11), (13) and (14) show that the pk, rk and their derivatives can be computed in time
polynomial in k, so that if k = poly (n), they are all efficiently computable. The fact that ṙk 6= 0 follows from
eq. (12) and a simple induction. It remains to prove that the rk are distinct. To see this, note that we have
rk+1 = f(rk) ··= λ

1+rk
. When λ > 0, f has the following two properties, which can be verified by a direct

computation:
1) f is strictly decreasing on the positive real line, and has a unique positive fixed point x? which is smaller

than λ.
2) f ◦ f is strictly increasing and has the unique positive fixed point x?. Further f(f(x)) > x when x < x?

and f(f(x)) < x when x > x?.
The above two properties imply that r1, r3, r5, . . . form a strictly decreasing sequence all of whose elements
are strictly larger than x?, while r2, r4, r6 form a strictly increasing sequence all of whose elements are strictly
smaller than x?. This implies that all the rk are distinct, and completes the proof. (Note that since G was of
maximum degree at most 3, the maximum degree of the G(k) is at most 4.)

V. P R O O F S O F H A R D N E S S R E S U LT S : T H E I S I N G A N D M O N O M E R - D I M E R M O D E L S

In this section, we instantiate the template described in Section IV to prove Theorems I.1, I.2 and I.4. The
combinatorial simulations required in the proofs of Theorems I.1 and I.4 are essentially identical to those in [1],
so we only point out the minor differences. However, the proof of Theorem I.2 on the hardness of mean energy
of the Ising model requires a different construction due to Dyer and Greenhill [17]. We proceed to describe that
reduction first.



A. Proof of Theorem I.2

We reduce from the problem of computing the Ising partition function ZI(G, β, 1), which is known to be
#P-hard via the following theorem.

Theorem V.1 ([17, Theorem 5.1]). Fix any positive rational β 6= 1. Then the problem of computing the partition
function ZI(G, β, 1) of the Ising model on graphs of maximum degree at least 3 is #P-hard.

We are now ready to prove Theorem I.2.
Proof of Theorem I.2: We follow the same template as that used in the proof of Theorem I.3. Let G be

any graph with maximum degree at most 3. We assume that we have an algorithm A that, given a graph K
with n vertices, m edges and maximum degree at most 4, computes in time polynomial in n and m the mean
energy MIE(K,β, 1) =: MIE(K,β) of the Ising model with edge activity β and vertex activity 1 on K (recall
that β is a fixed parameter, and not an input to A). We then use this algorithm to compute the partition function
ZI(G, β, 1), thus completing the proof via Theorem V.1.

Our starting point again is the observation that the mean energy MIE(G, β) can be written in terms of the
derivative of the logarithm of the partition function:

MIE(G, x) = x
d

dx
logZI(G, x, 1) = x

Z ′I(G, x, 1)

ZI(G, x, 1)
. (15)

Let n be the number of vertices in G. Suppose for the moment that we have the values MIE(G, βi) for 2m+ 1
distinct, positive rational βi, 1 ≤ i ≤ 2m+ 1. Note that eq. (15) implies that if the βi have bit length polynomial
in n, then so do the values MIE(G, βi)/βi = Z′I(G,βi,1)

ZI(G,βi,1) . Since all these βi are positive, the latter function is well
defined (i.e., has non-zero denominator) at all these points, and hence we can use Corollary III.2 to compute the
polynomial ZI(G, x, 1), and thus also the value ZI(G, β, 1) (since the degree of the latter as a polynomial in β
is at most m). This shows that if we could somehow use the hypothetical algorithm A to evaluate MIE(G, ·) at
multiple efficiently computable values of β, we would be done.

To do this, we use the stretching operation defined by Dyer and Greenhill [17]. Formally, given a graph G
and a non-negative integer k, the k-stretch SkG of G is defined as the graph obtained by replacing each edge of
G with a path on k + 1 nodes with the end points of the path at the endpoints of the original edge. Thus, for
example, S1G = G, and S2G is the graph where each edge of G is replaced by a path of length two. Specializing
Corollary 2.1 of Dyer and Greenhill [17] to our case, we get that

ZI(SkG, β, 1) = αmk ZI(G, rk, 1), (16)

where m is the number of edges in G, α1 = 1, γ1 = β, rk ··= γk
αk

and for larger k these quantities satisfy the
recurrences

αk+1 = αk + βγk,

γk+1 = βαk + γk, and

rk+1 =
β + rk
1 + βrk

. (17)

Viewing the αk, γk and rk as functions of β, we can also write recurrences for their derivatives (denoted using
the fluxion notation) with respect to β:

˙αk+1 = α̇k + βγ̇k + γk,

˙γk+1 = βα̇k + αk + γ̇k, and

˙rk+1 =
˙γk+1αk+1 − γk+1 ˙αk+1

α2
k+1

.



These recurrences show that as long as k is polynomial in m, the description length of all these quantities is also
polynomially bounded in the input size.

As before, we can now use eq. (16) to obtain an expression for MIE(SkG, β) in terms of the above quantities:

MIE(SkG, β) =
mβα̇k
αk

+
βṙk
rk

MIE(G, rk).

Thus, again as before, if the rk are distinct for k = 1, 2, . . . , 2m+ 1, and the ṙk are non-zero, we would be done
(since we could use the values of MIE(SkG, β) obtained from the algorithm to obtain the values of MIE(G, βk)).

The fact that ṙk 6= 0 again follows by an easy induction using eq. (17). To show that rk are distinct, we use
somewhat different strategies for the ferromagnetic case (β < 1) and the anti-ferromagnetic case (β > 1). In the
former case, an induction proves that the rk form an strictly increasing sequence, which guarantees distinctness.
In the anti-ferromagnetic case, the argument is very similar to that made in the case of the hard core model: it
again turns out that r1, r3, r5, . . . form a strictly decreasing sequence that always remains larger than 1, while
r2, r4, r6, . . . form a strictly increasing sequence that always remains smaller than 1. As before, this guarantees
distinctness of the rk and completes the proof. (Note that since G was of maximum degree at most 3, so are the
SkG for all k.)

B. Proofs of Theorems I.1 and I.4

We now proceed to sketch the proofs of Theorems I.1 and I.4. Since the combinatorial parts of these proofs are
virtually identical to some calculations that appeared in [1], we merely describe the places where the arguments
differ.

Proof of Theorem I.1: We again reduce from the problem of computing ZI(G, β, 1) described in Theorem V.1.
Let G be any graph with maximum degree at most 3 and n vertices. We assume that we have an algorithm A
that, given a graph K with n vertices and maximum degree at most 4, computes in time polynomial in n the
mean magnetization MIM (K,β, λ) of the anti-ferromagnetic Ising model with edge activity β > 1 and vertex
activity λ on K (recall that β and λ are fixed parameters, and not inputs to A). We then use this algorithm to
compute the partition function ZI(G, β, 1), thus completing the proof via Theorem V.1.

Proceeding exactly as in the proof of Theorem I.3 for the hard core model (except for the use of eq. (2) in place
of eq. (1)), we then conclude using Corollary III.2 that we only need to show how to evaluate MIM (G, β, x) for
some 2n+ 1 distinct, efficiently computable values of x. To do this we again consider the graphs G(k), and refer
to the analysis of the Ising model on these graphs in Appendix C of [1], in particular eqs. (21)–(23), (25)–(27)
and (30) of that paper, which show that for k > 1 (using our notation)

MIM (G(k), β, λ) =
nλ ˙pk+1

pk+1
+
λ ˙rk+1

rk+1
MIM (G(k), β, rk+1),

where the quantities pk+1, rk+1 and their derivatives with respect to λ (denoted in the fluxion notation) are
efficiently computable as long as k is polynomially bounded. Using the same notation as in that paper, it only
remains to show that the ṙk remain non-zero and the rk remain distinct even in the case β > 1 (the rest of the
analysis in that paper is for β < 1, i.e., the ferromagnetic case). The fact that the ṙk are non-zero follows from
an induction using eq. (23) of that paper, while the distinctness follows by an argument exactly analogous to that
used in the case of the hard core model, except that the cases λ > 1 and λ < 1 need to be considered separately.
Note also that, as expected, the distinctness argument does not work when λ = 1 (in this case all the rk are 1),
since the problem is trivially solvable in polynomial time in this special case. Note also that since the maximum
degree of G is at most 3, the maximum degree of the G(k) is at most 4, which completes the proof.

We now prove the hardness result for the monomer-dimer model. For this model, no changes from the treatment
in [1] are required in the combinatorial part of the argument, so we only describe the steps leading to it. We use
the following hardness result for counting matchings to do the reduction.



Theorem V.2 ([18, Table 1.1]). The problem of counting matchings (equivalently, computing ZD(G, 1)) in graphs
of maximum degree at most 4 is #P-hard.

Proof of Theorem I.4: Let G be any graph with maximum degree at most 4 and n vertices. We assume
that we have an algorithm A that, given a graph K on n vertices of maximum degree at most 5, computes in
time polynomial in n the average number of monomers MD(K,λ) of the monomer-dimer model with vertex
activity λ on K (recall that λ is fixed parameter, and not an input to A). We then use this algorithm to compute
the partition function ZD(G, 1), thus completing the proof via Theorem V.2.

Again, we proceed in a manner analogous to that in the case of the hard core model, and conclude using
Corollary III.2 that it is sufficient to be able to evaluate MD(G, x) for 2n+ 1 distinct, efficiently computable
values of x using the algorithm A. However, the proof of Theorem 4 in Appendix C of [1] gives a method for
doing exactly this, by running the algorithm A on the graphs G(k) constructed above. This allows us to complete
the reduction, once we observe that since G was of maximum degree at most 4, the G(k) are of maximum degree
at most 5.

A C K N O W L E D G M E N T S

We thank an anonymous referee for observing that an appeal to the polynomial factoring algorithm of Lenstra,
Lenstra and Lovász is not necessary in the proof of our main technical lemma.

LJS and PS were supported in part by NSF grant CCF-1319745. AS was supported by in part by NSF grant
CCF-1420934 and the Simons Institute for the Theory of Computing.

R E F E R E N C E S

[1] A. Sinclair and P. Srivastava, “Lee–Yang theorems and the complexity of computing averages,” Comm. Math. Phys.,
vol. 329, no. 3, pp. 827–858, 2014. A preliminary version appeared in Proc. 45th ACM Symp. Theory Comput. (STOC),
2013. [Online]. Available: https://dx.doi.org/10.1007/s00220-014-2036-7

[2] E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Z. Phys., vol. 31, pp. 253–258, Feb. 1925.

[3] O. J. Heilmann and E. H. Lieb, “Theory of monomer-dimer systems,” Comm. Math. Phys., vol. 25, no. 3, pp. 190–232,
1972. [Online]. Available: https://dx.doi.org/10.1007/BF01877590

[4] M. Jerrum and A. Sinclair, “Polynomial-time approximation algorithms for the Ising model,” SIAM J. Comput., vol. 22,
no. 5, pp. 1087–1116, 1993.

[5] D. Randall and D. Wilson, “Sampling spin configurations of an Ising system,” in Proc. 10th ACM-SIAM Symp.
Discret. Algorithms (SODA), ser. SODA ’99. Philadelphia, PA, USA: SIAM, 1999, pp. 959–960. [Online]. Available:
http://dl.acm.org/citation.cfm?id=314500.314945

[6] M. Jerrum and A. Sinclair, “Approximating the permanent,” SIAM J. Comput., vol. 18, no. 6, pp. 1149–1178, Dec.
1989. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/0218077

[7] T. D. Lee and C. N. Yang, “Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model,”
Phys. Rev., vol. 87, no. 3, pp. 410–419, Aug. 1952.

[8] E. Horowitz, “Algorithms for partial fraction decomposition and rational function integration,” in Proc. 2nd ACM Symp.
Symbolic and Algebraic Manipulation, ser. SYMSAC ’71. New York, NY, USA: ACM, 1971, pp. 441–457. [Online].
Available: http://doi.acm.org/10.1145/800204.806314

[9] R. G. Tobey, “Algorithms for anti-differentiation of rational functions,” Ph.D. dissertation, Harvard University, 1967.

[10] J. Borcea and P. Brändén, “Pólya-Schur master theorems for circular domains and their boundaries,” Ann. Math., vol.
170, no. 1, pp. 465–492, Jul. 2009. [Online]. Available: https://dx.doi.org/10.4007/annals.2009.170.465



[11] ——, “The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability,” Invent. Math., vol. 177,
no. 3, pp. 541–569, 2009. [Online]. Available: https://dx.doi.org/10.1007/s00222-009-0189-3

[12] I. N. Herstein, Topics in Algebra, 2nd ed. John Wiley and Sons, 1999.

[13] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring polynomials with rational coefficients,” Math. Ann., vol.
261, no. 4, pp. 515–534, Dec. 1982.

[14] N. Macon and D. E. Dupree, “Existence and uniqueness of interpolating rational functions,” Am. Math. Mon., vol. 69,
no. 8, pp. 751–759, Oct. 1962. [Online]. Available: http://www.jstor.org/stable/2310771

[15] J. Edmonds, “Systems of distinct representatitives and linear algebra,” J. Res. Natl. Bur. Stand. B Math. & Math. Phys.,
vol. 71B, no. 4, pp. 241–245, 1967.

[16] C. Greenhill, “The complexity of counting colourings and independent sets in sparse graphs and hypergraphs,” Comput.
Complexity, vol. 9, no. 1, pp. 52–72, 2000. [Online]. Available: https://dx.doi.org/10.1007/PL00001601

[17] M. E. Dyer and C. S. Greenhill, “The complexity of counting graph homomorphisms.” Random Struct. Algorithms,
vol. 17, no. 3-4, pp. 260–289, 2000.

[18] S. P. Vadhan, “The complexity of counting in sparse, regular, and planar graphs,” SIAM J. Comput., vol. 31, no. 2, pp.
398–427, Jan. 2001. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/S0097539797321602

A P P E N D I X

A. Uniqueness of partial fraction expansions

Proof of Theorem II.4: Suppose for contradiction that there are two sequences of polynomials (qi(x))ki=1

and (ri(x))ki=1 satisfying the conclusions of the theorem. Then, by permuting indices if necessary, we can assume
that q1(x) 6= r1(x). We now show that this leads to a contradiction.

By using the expansion in eq. (3) for ri(x) and qi(x) and clearing fractions, we get that

a(x) = q1(x)S1(x) +

k∑
i=2

qi(x)Si(x), and

a(x) = r1(x)S1(x) +

k∑
i=2

ri(x)Si(x),

where Si(x) ··=
∏
j 6=i pj(x). Note that p1 divides Sj for j 6= 1, but does not divide S1 since the pi are distinct

irreducible polynomials.
Subtracting one equation from the other and reducing the resulting equation modulo p1(x), we therefore get

that p1(x) must divide r1(x)− q1(x) (since it cannot divide S1(x)). However, this is impossible since p1(x) is
irreducible and r1(x)− q1(x) is a non-zero polynomial of degree less than that of p1(x).


