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Abstra
t

The paper 
onsiders spin systems on the d-dimensional integer latti
e Z

d

with nearest-

neighbor intera
tions. A sharp equivalen
e is proved between exponential de
ay with distan
e

of spin 
orrelations (a spatial property of the equilibrium state) and \super-fast" mixing time

of the Glauber dynami
s (a temporal property of a Markov 
hain Monte Carlo algorithm).

While su
h an equivalen
e is already known in various forms, we give proofs that are purely


ombinatorial and avoid the fun
tional analysis ma
hinery employed in previous proofs.
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1 Introdu
tion

Latti
e spin systems are a 
lass of models that originated in Statisti
al Physi
s, though interest in

them has sin
e expanded to many other areas, in
luding Probability Theory, Statisti
s, Arti�
ial

Intelligen
e, and Theoreti
al Computer S
ien
e. A (latti
e) spin system 
onsists of a 
olle
tion

of sites whi
h are the verti
es of a regular latti
e graph. A 
on�guration of the spin system is

an assignment of one of a �nite set of spins to ea
h site. The sites intera
t lo
ally, a

ording

to potentials spe
i�ed by the system, su
h that di�erent 
ombinations of spins on neighboring

sites have di�erent relative likelihoods. This intera
tion gives rise to a well-de�ned probability

distribution over 
on�gurations of any �nite subset (volume) of the sites, 
onditional on a �xed


on�guration of the sites on the boundary of this subset. Su
h a distribution is referred to as a �nite

volume Gibbs distribution, and is regarded as the equilibrium state of the given subset 
onditional

on the given boundary 
on�guration.

A Glauber dynami
s is a Markov 
hain Monte Carlo algorithm used to sample from the Gibbs

distribution. A step in this Markov 
hain is a random update of the spin of a single site (or of a

�nite set of sites), 
onditional on its neighboring spins and in a manner whi
h is reversible with

respe
t to the Gibbs distribution. As a result, su
h a Markov 
hain 
onverges to the 
orresponding

Gibbs distribution. The Glauber dynami
s plays a 
entral role not just as an algorithm for sampling

from the Gibbs distribution but also as a model for the physi
al pro
ess of rea
hing equilibrium.

A striking phenomenon in the �eld of spin systems, at least for latti
es with \sub-exponential

growth" su
h as the integer latti
e Z

d

, is the equivalen
e of (a priori unrelated) notions of temporal

and spatial mixing. By temporal mixing we mean that the Glauber dynami
s 
onverges \very fast"

to its stationary Gibbs distribution, while by spatial mixing we mean that in the Gibbs distribution,


orrelations between the spins of di�erent sites de
ay \very fast" with the (latti
e) distan
e between

them. This equivalen
e is interesting be
ause it pre
isely relates the running time of an algorithm

to purely spatial properties of the underlying model. In addition, a 
ommon heuristi
 in 
omputer

s
ien
e is that lo
al algorithms should work well (run fast) for lo
al problems. The equivalen
e

between temporal and spatial mixing is an example of the above heuristi
 in a restri
ted setting,

where the relationship is formally proven and where there are pre
ise interpretations for the terms

\lo
al algorithm", \lo
al problem", and \run fast".

The above equivalen
e has been explored by a number of previous authors, using various notions

of spatial and temporal mixing. This line of work was initiated by Holley [10℄ and Aizenman and

Holley [1℄, followed by Zegarlinski [17℄ and 
ulminating in the work of Stroo
k and Zegarlinski [16℄,

who were the �rst to establish the above equivalen
e in full. We further mention Martinelli and

Olivieri [13, 14℄, who later obtained sharper results by working with a weaker spatial mixing as-

sumption, and Cesi [4℄, who re
ently simpli�ed some of the proofs. See also [12℄ for a review of

results in the �eld.

The referen
es mentioned above make 
ru
ial use of fun
tional analysis in their proofs, and

usually dis
uss quantities su
h as the spe
tral gap and the logarithmi
 Sobolev 
onstant of the

dynami
s as a measure of its temporal mixing (these quantities measure the 
ontra
tion of the

semi-group asso
iated with the dynami
s). In this paper, we give purely 
ombinatorial proofs of

this equivalen
e, based on the elementary te
hnique of 
oupling probability distributions. Although

some of the ideas we use have appeared before, our main 
ontribution lies in presenting a 
omplete

argument whi
h is purely 
ombinatorial, where the reader does not need to resort to 
on
epts from

fun
tional analysis.
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We note that the result we present in the dire
tion going from spatial mixing to temporal mixing

(of the single site Glauber dynami
s) is limited in the sense that it only applies tomonotone systems.

For general systems, however, we show that spatial mixing implies temporal mixing of a \�nite-

blo
k" Glauber dynami
s, in whi
h a suÆ
iently large blo
k of spins is updated at ea
h step. The


orresponding impli
ation for the single site dynami
s in the general 
ase is known [4, 12, 14, 16℄,

but 
urrently we do not have a 
ombinatorial proof of it.

The remainder of the paper is organized as follows. Se
tion 2 in
ludes exa
t de�nitions and

statements of results. In Se
t. 3 we list a few basi
 tools we use in the proofs. In Se
t. 4 we prove

that temporal mixing implies spatial mixing while in Se
ts. 5 and 6 we prove that spatial mixing

implies temporal mixing for monotone and general systems respe
tively.

2 De�nitions and statements of results

2.1 Spin systems

Consider the d-dimensional integer latti
e

1

as a graph with vertex set V = Z

d

and edge set E,

where (v; u) 2 E, denoted v � u, if and only if

P

d

i=1

jv

i

� u

i

j = 1. We use the statisti
al physi
s

terminology and refer to the verti
es as sites. For a �nite subset 	 � V , we de�ne its boundary as

�	 = fv =2 	 : there exists u 2 	 s.t. v � ug :

Ea
h site is assigned a spin from the spin spa
e S = f1; : : : ; qg, and the 
on�guration spa
e is

denoted by 
 = 


	

= S

	

. Given a 
on�guration � 2 
, we write �[v℄ for the spin that � assigns

to v and abuse this notation with �[�℄ standing for the 
on�guration of the subset � under �.

We 
onsider spin systems with nearest neighbor intera
tions (although everything we do 
an

be generalized to �nite range intera
tions). Namely, we have a (symmetri
) pair potential

2

U :

S � S ! R, and a self potential W : S ! R. Then, for a �nite subset 	 and a boundary


on�guration � 2 


�	

, the Hamiltonian H

�

	

: 


	

! R is de�ned as

H

�

	

(�) =

X

v2�	;u2	;v�u

U(� [v℄; �[u℄) +

X

v;u2	;v�u

U(�[v℄; �[u℄) +

X

v2	

W (�[v℄):

The value this Hamiltonian assigns 
an be 
onsidered as the \energy" of � when � is the boundary


on�guration. The �nite volume Gibbs distribution asso
iated with the subset 	 and the boundary


on�guration � assigns probability to � whi
h is proportional to the inverse exponential of its

energy. Formally,

�

�

	

(�) =

1

Z

�

	

exp(�H

�

	

(�)); (1)

where Z

�

	

is the appropriate normalizing fa
tor.

Example: Probably the best known spin system is the ferromagneti
 Ising model. In this 
ase,

the spin spa
e is S = f�1;+1g, while U(s

1

; s

2

) = �� �s

1

�s

2

and W (s) = �� �h �s, where � 2 R

+

is

1

Most of our results hold | with suitable modi�
ations | for any latti
e with \sub-exponential growth" (i.e., the

volume of in
reasing balls around any site in
reases sub-exponentially with the radius). For simpli
ity, in this paper

we fo
us just on Z

d

.

2

The given de�nition of the pair potential does not 
over systems with hard 
onstraints, where U may be in�nite.

Systems with hard 
onstraints are dis
ussed in se
tion 2.5 below.
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the inverse temperature and h 2 R is an external �eld. Thus, the energy of a 
on�guration is linear

in the number of edges with disagreeing spins, as well as the number of spins with sign opposite

to that of h. For example, if h = 0 and if we ignore the e�e
t of the boundary 
on�guration (the

so-
alled \free-boundary 
ondition") then the minimum energy (highest probability) 
on�gurations

are the two 
onstant 
on�gurations where all the spins have the same value (either +1 or �1).

2.2 The Glauber dynami
s

We study the following simple Markov 
hain (X

t

), known as the (heat-bath) Glauber dynami
s,

whi
h is used to sample from �

�

	

. Given the 
urrent 
on�guration X

t

2 


	

, the transition X

t

!

X

t+1

is de�ned as follows:

� Choose a vertex v uniformly at random from 	.

� Let X

t+1

[u℄ = X

t

[u℄ for all u 6= v.

� Choose X

t+1

[v℄ from �

X

0

t

fvg

, where X

0

t

is the 
on�guration of �fvg de�ned by X

0

t

[u℄ = X

t

[u℄

for u 2 	 and X

0

t

[u℄ = � [u℄ for u 2 �	.

It is not too diÆ
ult to verify that this Markov 
hain is reversible with respe
t to the Gibbs

distribution �

�

	

and, in parti
ular, that �

�

	

is the unique stationary distribution.

Remark: In the literature, a Glauber dynami
s is usually any Markov 
hain that makes single site

updates that are reversible with respe
t to the single site Gibbs measure. Indeed, all the results

below apply to any 
hoi
e of Glauber dynami
s. However, for de�niteness we will assume the above

de�nition throughout this paper.

We also dis
uss a generalization of the Glauber dynami
s to a Markov 
hain where at ea
h step

a blo
k of sites is updated rather than a single site. Let Q

L

= [1; : : : ; L℄

d

be the d-dimensional

regular box of side length L. Consider all the translations of Q

L

that interse
t the subset 	 and

let B(	; L) =

�

� 6= ; j � = (z +Q

L

) \	 for some z 2 Z

d

	

. We think of ea
h � 2 B(	; L) as a

blo
k. We then denote by HB(L) the heat-bath blo
k dynami
s that makes updates to blo
ks

from B(	; L). Given the 
urrent 
on�guration X

t

, the transition X

t

! X

t+1

is de�ned as follows:

� Choose a blo
k � uniformly at random from B(	; L).

� Let X

t+1

[u℄ = X

t

[u℄ for all u =2 �.

� Choose X

t+1

[�℄ from �

X

0

t

�

, where X

0

t

is the 
on�guration of �� de�ned by X

0

t

[u℄ = X

t

[u℄

for u 2 	 and X

0

t

[u℄ = � [u℄ for u 2 �	.

2.3 Temporal and Spatial Mixing

The statements in this paper relate an appropriate notion of temporal mixing (
onvergen
e in time

of the Glauber dynami
s) with an appropriate notion of spatial mixing (de
ay of 
orrelation with

distan
e in the Gibbs distribution). The exa
t de�nitions are given below.

Let �

1

and �

2

be two distributions on 


	

. We write k�

1

��

2

k = max

A�


	

j�

1

(A)��

2

(A)j for the

total variation distan
e between the two distributions, and k�

1

��

2

k

�

= max

A�


�

j�

1

(A)��

2

(A)j

for the distan
e when proje
ting the two distributions on 


�

for � � 	.
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De�nition 2.1. We say that the Glauber dynami
s has optimal temporal mixing if there exist


onstants b and 
 > 0 su
h that for any subset 	 with any boundary 
on�guration, the dynami
s

on 	 has the following property. For any two instan
es (X

t

) and (Y

t

) of the 
hain and for any

positive integer k, kX

kn

� Y

kn

k � bn exp(�
k), where n = j	j is the volume of 	.

In parti
ular, optimal temporal mixing means that the distan
e from the stationary measure

kX

kn

��

�

�

k � bn exp(�
k) for any instan
e (X

t

). Before we move on to the de�nition of the spatial

mixing notion, we pause to 
ompare optimal temporal mixing as de�ned here with some of the

other notions of temporal mixing found in the literature. The mixing time of a Markov 
hain (as

a fun
tion of �) is the time it takes to get within a variation distan
e of � from the stationary

measure. Noti
e that optimal temporal mixing is equivalent to a mixing time of O(n log(

n

�

)).

Optimal temporal mixing also implies that the spe
tral gap of the dynami
s is at least




n

. While

a spe
tral gap of 
(

1

n

) does not immediately imply optimal temporal mixing, it is not too diÆ
ult

to see that if the log Sobolev 
onstant asso
iated with the dynami
s is 
(

1

n

) then the dynami
s

has optimal temporal mixing. We noti
e that in fa
t, in the 
ontext of spin systems, all the above

notions of temporal mixing are known to be equivalent when 
onsidered to hold uniformly in the

subset 	 and in the boundary 
on�guration (sin
e they are all equivalent to an appropriate notion

of spatial mixing as below).

The 
orresponding spatial notion we 
onsider states that 
hanging the spin of a site on the

boundary has an exponentially small e�e
t on the 
on�guration of sites far away from the 
hanged

site. The distan
e between two sites v and u is de�ned as the graph distan
e between them, or

equivalently, dist(v; u) =

P

d

i=1

jv

i

�u

i

j. The distan
e between subsets is the natural extension, i.e.,

the minimal distan
e between two sites, one in ea
h subset.

De�nition 2.2. We say the system has strong spatial mixing if there exist 
onstants � and � > 0

su
h that for any two subsets �;	 where � � 	, any site u 2 �	, and any pair of boundary


on�gurations � and �

u

that di�er only at u, k�

�

	

� �

�

u

	

k

�

� �j�j exp(�� � dist(u;�)):

Remark: In the literature, the de�nition of strong spatial mixing may vary, where the di�eren
e

lies in whi
h 
lass of subsets 	 the assumption applies to (for example, 	 may be restri
ted to be

a regular box). We work with the strongest version by requiring it to apply to all subsets in order

to simplify our arguments.

In order to illustrate the above de�nitions

3

, let us 
on
lude this se
tion with a brief dis
ussion of

how they apply to the Ising model (as de�ned in Example 2.1) on the square latti
e Z

2

. Re
all that

in the de�nition of the Ising model, � stands for the inverse temperature and h for an external �eld.

The following fa
t is an example of the equivalen
e between temporal and spatial mixing: There

exists a 
riti
al

^

�




su
h that, when h = 0 (no external �eld), for � <

^

�




both optimal temporal

mixing (De�nition 2.1) and strong spatial mixing (De�nition 2.2) hold for the Ising model on Z

2

,

while for � >

^

�




both fail.

It is worth mentioning here that in the spe
ial 
ase of the Ising model on Z

2

, the 
riti
al

^

�




mentioned above 
oin
ides [15℄ with the 
riti
al inverse temperature �




where a phase transition

o

urs in the in�nite volume limit, namely, for � < �




there exists a unique in�nite volume Gibbs

3

Stri
tly speaking, the dis
ussion in the three paragraphs starting here applies to slightly modi�ed de�nitions of

spatial and temporal mixing where the subset 	 is restri
ted to have a \ni
e" shape (see remark following De�ni-

tion 2.2).
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measure while for � > �




there are multiple su
h measures. Though we do not dis
uss in�nite

volume Gibbs measures in this paper (see for example [8, 9℄ for more on this topi
), one 
an

interpret the uniqueness of the in�nite volume Gibbs measure as an alternative notion of spatial

mixing (whi
h is weaker than strong spatial mixing provided the underlying latti
e is of sub-

exponential growth). Noti
e that in general it is not true that the two 
riti
al inverse temperatures

^

�




and �





oin
ide, and there are examples where the in�nite volume Gibbs measure is unique while

strong spatial mixing does not hold (see [12℄ for a dis
ussion on the matter).

Finally, again in the spe
ial 
ase of the Ising model on Z

2

, the 
orresponding phase transition

in the mixing time is known to be very sharp [5℄. Spe
i�
ally, for � >

^

�




= �




, not only does

optimal temporal mixing not hold, but in fa
t the mixing time is super-polynomial (spe
i�
ally,

exp(
(

p

n))).

2.4 Monotone systems

Some of the statements in this paper apply only to monotone systems. In a monotone system, ea
h

site v is asso
iated with a linear ordering of the spin spa
e, denoted by �

v

. Sin
e the spin spa
e

is �nite, ea
h of the linear orderings has unique maximal and minimal elements, whi
h we 
all the

plus and minus elements respe
tively. The single site orderings give rise to a partial ordering �

	

of the 
on�guration spa
e. Spe
i�
ally, �

1

�

	

�

2

if and only if �

1

[v℄ �

v

�

2

[v℄ for every v 2 	.

The system is monotone with respe
t to the above partial ordering if, for every subset 	 and any

two boundary 
on�gurations �

1

and �

2

su
h that �

1

�

�	

�

2

, the Gibbs measure �

�

1

	

statisti
ally

dominates the Gibbs measure �

�

2

	

with respe
t to �

	

. Equivalently, the two distributions 
an be


oupled su
h that with probability 1, �

1

�

	

�

2

, where �

1

and �

2

are a pair of 
oupled 
on�gurations


hosen from �

�

1

	

and �

�

2

	

respe
tively. Noti
e that it is enough that the above property holds for

all single sites to ensure that it holds for all subsets 	. Also, sin
e the single site orderings are

linear, the system is \realizably" monotone [7℄. This means that, given a 
olle
tion of boundary


on�gurations �

1

; �

2

; : : : ; �

k

, we 
an simultaneously 
ouple the k 
orresponding Gibbs distributions

su
h that if �

i

�

�	

�

j

, the 
orresponding 
oupled 
on�gurations satisfy �

i

�

	

�

j

with probability 1

(simultaneously for ea
h su
h pair i; j).

Many well known spin systems are monotone, in
luding the Ising model and the hard-
ore

model (independent sets).

2.5 Systems with hard 
onstraints

Re
all that a

ording to our de�nition above, the edge potential U may only take on �nite real

values. However, there are interesting models where U is in�nite for some 
ombinations of spin

values, i.e., there is a hard 
onstraint forbidding 
ertain 
ombinations of spins along an edge. Ex-

amples of su
h systems are the hard-
ore model (whose 
on�gurations are independent sets) and

the anti-ferromagneti
 Potts model at zero temperature (whose 
on�gurations are proper 
olor-

ings) - see e.g. [9℄ for de�nitions of these models. In general, the results of this paper apply to these

kinds of systems as well. However, some of the notions we de�ned above are not ne
essarily well

de�ned for systems with hard 
onstraints. In order to avoid 
umbersome details but still 
onsider

systems with hard 
onstraints, we make the 
ompromise of allowing U to be in�nite but restri
ting

our results to permissive systems. A permissive system is one where, for any �nite subset 	 and

any boundary 
on�guration � , there is at least one 
on�guration � 2 


	

su
h that H

�

	

(�) < 1,

and in parti
ular, �

�

	

(�) > 0. We also require that the spa
e of \legal" 
on�gurations (those in

5



the support of the stationary distribution) is 
onne
ted under the Glauber dynami
s. Noti
e that

by de�nition, systems without hard 
onstraints are always permissive. It is easy to verify that the

hard-
ore model is permissive, as is the model of proper 
olorings when the number of 
olors is

stri
tly larger than the degree of the latti
e, i.e., q > 2d.

The main importan
e of assuming the system is permissive is that �

�

�

is well de�ned for any

value of � . An alternative to this assumption is to extend the de�nition of �

�

�

, but this requires

additional details whi
h we wish to avoid. On
e the �nite Gibbs distributions are well de�ned for

any value of the boundary 
on�guration, strong spatial mixing is also well de�ned. In addition, the

transitions of the Markov 
hains above are well de�ned for any 
urrent 
on�guration, even if it is

not in the support of the stationary distribution. In permissive systems, the 
hain is guaranteed to

rea
h a legal 
on�guration at some �nite time, and thus 
onverge to the stationary Gibbs measure.

Hen
e, without loss of generality, we may think of the 
hains as running on the whole 
on�guration

spa
e 


	

. In parti
ular, when we say the dynami
s has optimal temporal mixing, the error bound

is good for 
hains that start from illegal 
on�gurations as well. Noti
e, however, that this has a

negligible quantitative e�e
t sin
e on
e every site is updated at least on
e (whi
h takes O(n logn)

time with high probability) the 
on�guration is guaranteed to be a legal one.

2.6 Results

Several notions of temporal and spatial mixing for models on integer latti
es are known to be

equivalent to one another [4, 12, 13, 14, 16℄, though the proofs are often rather 
omplex and 
ast in

the language of fun
tional analysis. In this paper we present 
ombinatorial proofs of the following

impli
ations.

Theorem 2.3. If the single site dynami
s has optimal temporal mixing then the system has strong

spatial mixing.

For monotone systems we show the 
onverse as well:

Theorem 2.4. If a monotone system has strong spatial mixing then the single site dynami
s has

optimal temporal mixing.

In the general 
ase (without assuming monotoni
ity), we show that

Theorem 2.5. If a system has strong spatial mixing then there exists a �nite integer L for whi
h

the heat-bath blo
k dynami
s HB(L) has optimal temporal mixing.

The 
onverse of Theorem 2.5 (that optimal temporal mixing of HB(L) implies strong spatial mixing)


an be proved using the same ideas as in the proof of Theorem 2.3 (with the addition of a few minor

te
hni
al details), so we skip it here.

Noti
e that strong spatial mixing implies optimal temporal mixing of the single site Glauber

dynami
s in the general 
ase as well [4, 12, 14, 16℄, but we have not yet been able to �nd a purely


ombinatorial proof of this impli
ation.

3 Preliminaries

In this se
tion we identify some of the 
ommon tools we use in our proofs.
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3.1 Coupling and Mixing Time

A 
ommon tool for bounding the total variation distan
e between two distributions, and in parti
-

ular for bounding the mixing time of Markov 
hains, is 
oupling. A 
oupling of �

1

and �

2

is any

joint distribution whose marginals are �

1

and �

2

respe
tively. If �

1

and �

2

are a pair of random


on�gurations 
hosen from a given 
oupling of �

1

and �

2

then Pr(�

1

6= �

2

) is an upper bound on

the total variation distan
e between �

1

and �

2

. Also, there is always an optimal 
oupling, i.e., a


oupling su
h that Pr(�

1

6= �

2

) = k�

1

� �

2

k.

In the proofs we give in this paper we use the following 
oupling of the Glauber dynami
s,

whi
h we 
all an identity 
oupling. This 
oupling allows us to simultaneously 
ouple any num-

ber of instan
es of the 
hain. An identity 
oupling is determined by spe
ifying, for ea
h site v,

a 
oupling of all the single site Gibbs distributions (ranging over all possible values for the 
on-

�guration of the neighbors of v). Namely, we have a joint distribution 


v

whose marginals are

�

�

1

fvg

; : : : ; �

�

k

fvg

, where the set f�

1

; : : : ; �

k

g = 


�fvg

. Given 


v

, we 
ouple a 
olle
tion of instan
es of

the Glauber dynami
s (X

1

t

); (X

2

t

); : : : ; (X

l

t

) using a Markovian 
oupling (i.e., the joint distribution

of X

1

t+1

; : : : ;X

l

t+1

is a fun
tion only of the 
oupled 
on�gurations X

1

t

; : : : ;X

l

t

) where the 
oupled

transition (X

1

t

; : : : ;X

l

t

)! (X

1

t+1

; : : : ;X

l

t+1

) is as follows:

� Choose a site v u.a.r. from 	 (the same one for all 
hains).

� Choose a 
olle
tion of spins (s

1

; : : : ; s

k

) from the joint distribution 


v

.

� For every 1 � i � l set X

i

t+1

[v℄ = s

j

if and only if X

i

t

[�fvg℄ = �

j

.

An important property of this 
oupling is that if X

i

t

[�fvg℄ = X

j

t

[�fvg℄ then X

i

t+1

[v℄ = X

j

t+1

[v℄ with

probability 1. Noti
e that in a monotone system there exists a monotone identity 
oupling, i.e., a

joint distribution 


v

su
h that whenever �

i

�

�fvg

�

j

, s

i

�

v

s

j

with probability 1.

We say that an identity 
oupling has optimal mixing if for any two instan
es of the 
hain (X

t

)

and (Y

t

), we have Pr(X

kn

6= Y

kn

) � bn exp(�
k), where the probability spa
e is the 
oupling of X

kn

and Y

kn

resulting from the identity 
oupling of the two pro
esses. Noti
e that optimal mixing of an

identity 
oupling implies optimal temporal mixing of the dynami
s. Finally, the 
oupling time of an

identity 
oupling is the minimum T su
h that Pr(X

T

6= Y

T

) �

1

e

. As a result, Pr(X

kT

6= Y

kT

) � e

�k

for any positive integer k.

3.2 Bounding the Speed of Propagation of Information

A 
entral idea in the analysis of the mixing time of the Glauber dynami
s, in parti
ular when using

spatial mixing assumptions, is to bound the speed at whi
h information propagates during the

dynami
al pro
ess. In this se
tion we give a lemma of this sort following Van den Berg [2℄, where

the bound 
omes from a paths of disagreement (also known as disagreement per
olation) argument.

Similar bounds 
an be found in [11, 12℄. The version we give here applies to running the Glauber

dynami
s on any graph of bounded degree (as in [11℄), rather than just for �nite subsets of Z

d

.

Lemma 3.1. Let G = (V;E) be a graph of maximum degree � > 1, and let n = jV j. Let (X

t

)

and (Y

t

) be two 
opies of a Glauber dynami
s on G su
h that the two initial 
on�gurations agree

everywhere ex
ept on A � V . Let B � V be another subset and let r = dist(A;B). Then, for

any positive integer k �

r

(��1)e

2

, if we run the dynami
s for T = kn steps, Pr(X

T

[B℄ 6= Y

T

[B℄) �

7



4min fjAj; jBjg (

(��1)ek

r

)

r

, where the probability spa
e is the 
oupling of X

T

and Y

T

resulting from

any identity 
oupling of (X

t

) and (Y

t

). In parti
ular, if T = kn and dist(A;B) � (�� 1)e

2

k, then

Pr(X

T

[B℄ 6= Y

T

[B℄) � 4min fjAj; jBjg e

�dist(A;B)

.

In words, Lemma 3.1 states that in kn steps, with high probability, information per
olates a

distan
e of at most (�� 1)e

2

k.

Proof: Sin
e we 
ouple X

t

and Y

t

using an identity 
oupling, if at time zero v had the same spin

in both 
hains and at time T the spins at v di�er then it must be the 
ase that at some time t

0

� T

the site 
hosen to be updated was v and immediately before the update of v at time t

0

the two


hains had di�erent spins at one of the neighbors of v. Carrying this argument indu
tively, if we

assume that at time zero the only sites whose spins may di�er are in
luded in A then in order for

a site v to have di�erent spins at time T there must be a path of disagreement going from A to v.

Spe
i�
ally, there must be v

0

; v

1

; : : : ; v

l

= v and 0 < t

1

< t

2

< : : : < t

l

� T su
h that v

0

2 �

and for 1 � i � l, v

i

� v

i�1

and at time t

i

the site 
hosen to be updated was v

i

. Noti
e that for

a given path v

0

; : : : ; v

l

the probability of this event o

urring is at most

�

T

l

�

(

1

n

)

l

. Now, if the two


on�gurations at time T di�er at some site in B, there must be a path of disagreement of length at

least r = dist(A;B) going from A to B. Sin
e the number of (simple) paths of length l going from A

to B is bounded from above by min fjAj; jBjg�(�� 1)

l�1

we 
an 
on
lude that the probability of

a disagreement in B at time T = kn is at most

min fjAj; jBjg �

�

�� 1

�

1

X

l=r

(�� 1)

l

�

kn

l

��

1

n

�

l

� minfjAj; jBjg �

�

�� 1

�

1

X

l=r

�

(�� 1)ek

l

�

l

�

4min fjAj; jBjg

�

(�� 1)ek

r

�

r

;

where in the last inequality we used the fa
t that r � (�� 1)e

2

k.

Remark: We will often use Lemma 3.1 in a setting where only a subset of the sites may be updated

in the Markov 
hain (i.e., the spins on some sites - typi
ally those on the boundary - are held �xed

throughout the pro
ess). Noti
e that the proof above is still valid in this setting (regardless of

whether or not the �xed spins disagree - i.e., are of sites in A). In fa
t, it is valid even if the two


ompared 
hains have di�erent sets of �xed sites as long as the sites whi
h are �xed in only one

of the 
hains are all in
luded in the subset A, i.e., we just assume that the spins of these sites

disagree in the two 
hains. An important point to keep in mind in these s
enarios is the meaning of

the parameter n. Rather than the volume of the graph, n stands for the inverse of the probability

that a given site is 
hosen to be updated (and it must be the same in both 
hains). Indeed, this is

the only use we made of this parameter in the proof. The s
enarios mentioned in this remark will

be
ome 
learer when they arise in the proofs below.

4 From Temporal to Spatial Mixing

In this se
tion we prove Theorem 2.3, whi
h states that if the Glauber dynami
s has optimal tem-

poral mixing then strong spatial mixing holds. The �rst step in the proof is to derive a stronger

8



notion of temporal mixing, given in Lemma 4.1 below. Temporal mixing as de�ned earlier (Def-

inition 2.1) guarantees that if we run the dynami
s on a re
tangle 	 for suÆ
ient time then the

distan
e between any two 
hains will be small enough as a fun
tion of the time we run the 
hains.

The distan
e 
onsidered is the total variation distan
e between the two distributions on 


	

. How-

ever, if we proje
t the distributions on 


�

, where � � 	, it may very well be that after the same

amount of time the distan
e between the two proje
ted distributions is smaller than the distan
e

between the original distributions. Ideally, we look for a bound whi
h is of the same form as the one

we get from running the dynami
s on �, i.e., b

0

j�j exp(�


0

k). We use the sub-exponential growth

of Z

d

to argue that if the Glauber dynami
s has optimal temporal mixing then indeed this stronger

notion, whi
h we 
all proje
ted optimal mixing, holds as well.

Lemma 4.1. If the Glauber dynami
s has optimal mixing then there exist 
onstants b

0

and 


0

> 0

su
h that, for any subset 	 of volume n, any boundary 
on�guration, any two instan
es (X

t

)

and (Y

t

) of the 
hain on 	 and any subset � � 	, we have that kX

kn

� Y

kn

k

�

� b

0

j�j exp(�


0

k)

for any positive integer k.

Proof: The idea of the proof is one we use throughout this paper, whi
h involves using Lemma 3.1

in order to lo
alize the dynami
s we 
onsider. Namely, when we run the dynami
s for kn steps,

with high probability information from sites whi
h are at distan
e at least (2d� 1)e

2

k from � does

not per
olate into �. Therefore, if we take a subset �

k

surrounding � and whose boundaries are

at distan
e at least (2d � 1)e

2

k from �, we 
an assume that the sites on the boundary of �

k

are

�xed throughout the pro
ess. Thus, we 
an use the optimal temporal mixing bound for a dynami
s

on the lo
al subset �

k

, whose volume is smaller than that of 	. As shown below, the fa
t that

the volume of �

k

grows only sub-exponentially in k (this is the �rst pla
e where we use the sub-

exponential growth of Z

d

) gives the required bound. An additional point we need to make in order

to 
arry out the above argument is that when running the dynami
s on 	, with high probability,

an appropriate portion of the time is spent in the subset �

k

. This, however, is an easy 
onsequen
e

of the Cherno� bound.

We pro
eed with the formal proof. Consider the subset of all sites within distan
e (2d � 1)e

2

k

from �, and let �

k

be the interse
tion of this subset with 	. Noti
e that dist(�;	n�

k

) � (2d�1)e

2

k

and that j�

k

j � [2(2d � 1)e

2

k℄

d

j�j.

In addition to the 
hains (X

t

) and (Y

t

), we 
onsider two additional 
hains, denoted by (X

�

k

t

)

and (Y

�

k

t

), whose initial 
on�gurations inside �

k

are the same as (X

t

) and (Y

t

) respe
tively. The


on�guration of 	 n �

k

is �xed to the same arbitrary 
on�guration in both (X

�

k

t

) and (Y

�

k

t

) and

remains �xed throughout the pro
ess, i.e., (X

�

k

t

) and (Y

�

k

t

) represent modi�ed pro
esses where,

in a given step, if the 
hosen site to be updated is outside �

k

then the spin of that site remains

un
hanged, while if it is in �

k

then it is updated as usual. Noti
e that this modi�ed pro
ess is the

same as running the dynami
s on �

k

ex
ept that the probability of a site being 
hosen at a given

step is

1

j	j

instead of

1

j�

k

j

.

Using the triangle inequality, we have kX

kn

�Y

kn

k

�

� kX

kn

�X

�

k

kn

k

�

+kX

�

k

kn

�Y

�

k

kn

k

�

+kY

�

k

kn

�

Y

kn

k

�

. Lemma 3.1 (together with the remark following it) gives a bound on the �rst and third terms

in the r.h.s. of the last inequality. To see this, 
ouple (X

t

) and (X

�

k

t

) using a modi�ed identity


oupling, where an update of a site outside �

k

in (X

t

) is 
oupled with doing nothing in (X

�

k

t

).

Noti
e that at time zero the two 
hains agree on �

k

. Disagreement may per
olate from 	 n�

k

into

the bulk of �

k

as we run the 
hains, but sin
e dist(�;	 n�

k

) � (2d� 1)e

2

k, we 
an use Lemma 3.1

to dedu
e that kX

kn

�X

�

k

kn

k

�

� 4j�je

�(2d�1)e

2

k

.
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It remains to bound kX

�

k

kn

� Y

�

k

kn

k

�

. Re
all that both these 
hains have the same �xed 
on-

�guration outside �

k

so we 
an use the optimal temporal mixing assumption for a pro
ess on �

k

.

Noti
e that when running the 
hain X

�

k

t

for kn steps, on average kj�

k

j of the steps hit �

k

. Using

a Cherno� bound, with probability at least 1� exp(�

kj�

k

j

8

), the number of steps that hit �

k

is at

least

kj�

k

j

2

. Thus, we 
an use the same bound as when running a pro
ess on �

k

for

kj�

k

j

2

steps.

Spe
i�
ally,

kX

�

k

kn

� Y

�

k

kn

k

�

� kX

�

k

kn

� Y

�

k

kn

k

�

k

� bj�

k

j exp

�

�
 �

k

2

�

+ exp

�

�

kj�

k

j

8

�

�

b[2(2d � 1)e

2

k℄

d

j�j exp

�

�
 �

k

2

�

+ exp

�

�

k

8

�

� b

0

j�j exp(�


0

� k)

for appropriate 
onstants b

0

and 


0

> 0.

We now pro
eed with the proof of Theorem 2.3.

Proof of Theorem 2.3: Let 	 be a subset of volume n, � and �

u

be two boundary 
on�gurations

that di�er only at u, and let � � 	. Following Lemma 4.1, we assume the dynami
s has proje
ted

optimal mixing and show that

k�

�

	

� �

�

u

	

k

�

� b

0

j�j exp

�

�




0

(2d� 1)e

2

� dist(u;�)

�

+ 4j�je

�dist(u;�)

:

The idea of the proof is that when running the Glauber dynami
s, the time needed in order

for the proje
ted distribution on � to be 
lose to the stationary one is less than the time it takes

for the disagreement at u to per
olate into �. Formally, 
onsider the following two instan
es

of the Glauber dynami
s on 	. The �rst, denoted by Z

t

, is an instan
e with � as the boundary


on�guration while the se
ond, denoted by Z

0

t

, is an instan
e with �

u

as the boundary 
on�guration.

The initial 
on�guration of 	 in both 
hains is 
hosen from the distribution �

�

u

	

. Noti
e that this

is the stationary distribution of Z

0

t

and therefore Z

0

t

= �

�

u

	

for all t.

Using the triangle inequality, we have k�

�

	

� �

�

u

	

k

�

= k�

�

	

�Z

0

t

k

�

� k�

�

	

� Z

t

k

�

+ kZ

t

�Z

0

t

k

�

.

By letting t =

dist(u;�)

(2d�1)e

2

� n we 
an make sure both terms are small. We bound the �rst term

using the temporal mixing time assumption. Namely, for t =

dist(u;�)

(2d�1)e

2

� n we have k�

�

	

� Z

t

k

�

�

b

0

j�j exp(�


0

�

dist(u;�)

(2d�1)e

2

). We use Lemma 3.1 in order to bound the se
ond term. Noti
e that Z

t

and Z

0

t

have the same initial distribution on 	 and thus they 
an be 
oupled su
h that at time zero

they have the same 
on�guration on 	 with probability 1. We 
ontinue to 
ouple the two pro
esses

using an identity 
oupling. Disagreement may per
olate from u, but sin
e dist(u;�) = (2d� 1)e

2

t

n

we have kZ

t

� Z

0

t

k

�

� 4j�je

�dist(u;�)

.

We 
on
lude this se
tion with a 
ouple of remarks on the generalization of the arguments made

above to other settings. First, noti
e that we never used the fa
t that the di�eren
e on the boundary

is only at a single site u. Indeed, if the di�eren
e is on a subset � we have the same bound (as

a fun
tion of dist(�;�)) without adding any fa
tor that depends on �. Se
ond, the argument for

showing that proje
ted temporal mixing implies spatial mixing uses only Lemma 3.1 and 
an thus

be 
arried out in models with any underlying �nite degree graph. On the other hand, the proof
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of Lemma 4.1 uses the sub-exponential growth of Z

d

and breaks down for graphs with exponential

growth. Indeed, the Ising model on a tree at an appropriate temperature provides a 
ounterexample

to the 
laim of Lemma 4.1 in su
h graphs. This 
ounterexample 
an be dedu
ed from [11℄, where

it is shown that there are temperatures where the Glauber dynami
s for the Ising model on a tree

has optimal temporal mixing but a modi�ed form of strong spatial mixing (where the di�eren
e

on the boundary may in
lude many sites) does not hold, whi
h in parti
ular means that proje
ted

optimal mixing does not hold.

5 From Spatial to Temporal Mixing: The Monotone Case

In this se
tion we show that in monotone systems the strong spatial mixing assumption implies

optimal temporal mixing of the single-site Glauber dynami
s (Theorem 2.4). A
tually, we state two

theorems whose 
ombination gives Theorem 2.4. The �rst theorem, whose proof uses ideas from the

proof of Theorem 4.2 of [13℄, states that the strong spatial mixing assumption implies O(n log

2

n)


oupling time of any monotone identity 
oupling, uniformly in the volume n and in the boundary


on�guration. The se
ond theorem, whi
h is based on Theorem 3.12 of [12℄, states (for general

systems) that if there exists n

0

for whi
h the 
oupling time of any identity 
oupling of the Glauber

dynami
s on subsets of volume n

0

is at most




log n

0

n

1+1=d

0

for an appropriate 
onstant 
, uniformly

in the boundary 
on�guration, then this identity 
oupling has optimal mixing. In parti
ular, any

upper bound of o(

n

1+1=d

log n

) on the asymptoti
 
oupling time immediately implies that the identity


oupling has optimal mixing.

Theorem 5.1. Strong spatial mixing implies that the 
oupling time of any monotone identity


oupling of the Glauber dynami
s on any subset of volume n is at most T (n) = 
n(log n)

2

for some


onstant 
, uniformly in n and in the boundary 
on�guration.

Proof: As in our earlier arguments, the idea of the proof is again to lo
alize the dynami
s, whi
h

allows us to use indu
tive bounds from smaller volume subsets. However, here we use strong spatial

mixing to a
hieve the lo
alization, rather than the bound on the speed of propagation of information

from Lemma 3.1.

Fix a large enough n

0

(to be determined later). By 
hoosing an appropriate 
onstant 
 = 
(n

0

),

the 
oupling time statement is true for all n � n

0

. This is a 
onsequen
e of the fa
t that any

two instan
es of the 
hain will 
oales
e in �nite time under any monotone 
oupling, e.g., be
ause

eventually both instan
es will simultaneously rea
h a maximal or minimal state. We go on to show

the statement of the theorem is valid for n > n

0

, by indu
tively assuming its validity for volumes

m � [2 �

2

�

log(3e�n)℄

d

, where �; � are the 
onstants in the de�nition of strong spatial mixing

(De�nition 2.2).

Let 	 be a subset of volume n with an arbitrary boundary 
on�guration. Let (X

t

) and (Y

t

)

be two instan
es of the 
hain with arbitrary initial 
on�gurations inside 	. We will show that

after T (n) steps, for every site v 2 	, the probability that the two spins at v di�er is at most

1

en

,

and therefore, the probability that two 
on�gurations (on the whole of 	) di�er is at most

1

e

, as

required.

Consider the regular box of radius

2

�

log(3e�n) around v, and let �

v

be the interse
tion of this

box with 	. Let m = j�

v

j and noti
e that m � [2 �

2

�

log(3e�n)℄

d

. We now introdu
e four additional


hains that may only update sites in �

v

. We will 
ouple these 
hains along with (X

t

) and (Y

t

) su
h

11



that, whenever the site 
hosen to be updated is outside �

v

only X

t

and Y

t

are updated while the

additional four 
hains remain un
hanged. On the other hand, when the site to be updated belongs

to �

v

all six 
hains are updated simultaneously a

ording to the monotone identity 
oupling. Below

we des
ribe the additional four 
hains and their initial 
on�gurations. Noti
e that we only des
ribe

the initial 
on�guration inside 	. Outside 	, all four 
hains have the same boundary 
on�guration

as (X

t

) and (Y

t

).

1. Q

+;�

v

t

: the 
hain starting from the all plus 
on�guration on 	.

2. Q

�;�

v

t

: the 
hain starting from the all minus 
on�guration on 	.

3. Z

+;�

v

t

: the 
hain starting from the all plus 
on�guration outside �

v

, while the initial 
on-

�guration inside �

v

is 
hosen from the (stationary) Gibbs measure on �

v

with this boundary


on�guration.

4. Z

�;�

v

t

: the 
hain starting from the all minus 
on�guration outside �

v

, and the stationary

Gibbs measure 
orresponding to this boundary 
on�guration inside �

v

.

Noti
e that we 
an simultaneously 
ouple the six 
hains su
h that at time zero, with probability

one, Q

+;�

v

0

� X

0

� Q

�;�

v

0

, Q

+;�

v

0

� Y

0

� Q

�;�

v

0

, and Z

+;�

v

t

� Z

�;�

v

t

. Sin
e we use a monotone

identity 
oupling, we have by indu
tion that these relations hold for all t. Thus, we have

Pr(X

t

[v℄ 6= Y

t

[v℄) � Pr(Q

+;�

v

t

[v℄ 6= Q

�;�

v

t

[v℄) �

Pr(Q

+;�

v

t

[v℄ 6= Z

+;�

v

t

[v℄) + Pr(Z

+;�

v

t

[v℄ 6= Z

�;�

v

t

[v℄) + Pr(Z

�;�

v

t

[v℄ 6= Q

�;�

v

t

[v℄):

We use the strong spatial mixing assumption to bound the middle term of the last expres-

sion. Noti
e that sin
e Z

+;�

v

t

and Z

�;�

v

t

represent the stationary Gibbs distributions on �

v

with

the appropriate boundary 
on�gurations then strong spatial mixing (together with the triangle

inequality

4

) gives kZ

+;�

v

t

�Z

�;�

v

t

k

fvg

� j��

v

n�	j� exp(�� �dist(��

v

n�	; v)). This bound on the

total variation distan
e does not guarantee the same bound on disagreement under the 
oupling

be
ause the 
oupling we use is not ne
essarily the optimal one. However, monotoni
ity guarantees

that our 
oupling is within a fa
tor of q � 1 (re
all that q is the size of the spin spa
e) from the

optimal 
oupling, as explained next. We embed the ordering asso
iated with v in the linear order-

ing 1; 2; : : : ; q with integer arithmeti
. Sin
e the spins at v are 
oupled su
h that with probability

one Z

+;�

v

t

[v℄ � Z

�;�

v

t

[v℄, we have

Pr(Z

+;�

v

t

[v℄ 6= Z

�;�

v

t

[v℄) � E(Z

+;�

v

t

[v℄� Z

�;�

v

t

[v℄) =

E(Z

+;�

v

t

[v℄) � E(Z

�;�

v

t

[v℄) � (q � 1)kZ

+;�

v

t

� Z

�;�

v

t

k

fvg

�

(q � 1)j��

v

n �	j� exp(�� � dist(��

v

n �	; v)) �

1

3en

for large enough n. Noti
e that in order to get the inequality in the middle line we used an optimal


oupling of Z

+;�

v

t

[v℄ and Z

�;�

v

t

[v℄ together with the fa
t that the os
illation of any fun
tion whose

range is [1; q℄ is at most q � 1.

4

The strong spatial mixing assumption gives bounds only for 
omparing two Gibbs distributions whose boundary


onditions di�er at a single site. We use the triangle inequality in order to extend the bound to 
omparing two

distributions whose boundary 
onditions di�er at multiple sites.

12



In order to 
omplete the proof we have to show that Pr(Q

+;�

v

t

[v℄ 6= Z

+;�

v

t

[v℄) �

1

3en

when

t = T (n) (by symmetry, the same will hold for the minus 
hains). Using a Cherno� bound, if we

run the dynami
s on 	 for 
n(logn)

2

steps then with probability at least 1 �

1

6en

the number of

steps in whi
h �

v

is hit is at least

1

2


m(log n)

2

= (2 log n)
m

log n

4

� (2 log n)
m(logm)

2

for large enough n. If we assume that indeed �

v

is hit this often then we 
an use the indu
tion

hypothesis to bound the probability that the spins at v di�er be
ause the two 
hains we are


omparing have the same �xed boundaries outside �

v

. Indeed, after T (m) = 
m(logm)

2

steps in

�

v

, the 
on�gurations (on the whole of �

v

) disagree with probability at most

1

e

, and thus after

(2 log n)T (m) steps, they disagree with probability at most

1

n

2

. Hen
e, Pr(Q

+;�

v

T (n)

[v℄ 6= Z

+;�

v

T (n)

[v℄) �

1

6en

+

1

n

2

�

1

3en

for large enough n, as required.

Remark: The reader may have noti
ed that, by 
arrying through a more 
areful analysis in the

above proof, one 
an get a slightly better bound | for example, O(n log n(log log n)

2

) | on the


oupling time. However, sin
e in any 
ase we will redu
e the 
oupling time to O(n log n) using the

next theorem, we 
hoose to keep the 
al
ulations simpler by only showing a bound of O(n log

2

n).

Theorem 5.2. Suppose there exists an identity 
oupling su
h that for all subsets � of volume at

most n

0

, where n

0

is a suÆ
iently large 
onstant, the 
oupling time of the given identity 
oupling

on � is at most

1

8(2d�1)e

2

n

1=d

0

log n

0

j�j uniformly in the boundary 
on�guration. Then for all n and for

all subsets 	 of volume n with any boundary 
on�guration, Pr(X

kn

6= Y

kn

) � j	j exp(�
k), where


 = 2(2d� 1)e

2

n

�

1

d

0

. Namely, this identity 
oupling has optimal mixing.

Proof: Consider the Glauber dynami
s on 	 with an arbitrary boundary 
on�guration. We will

show that for any two instan
es of the 
hain (X

t

) and (Y

t

) and any v 2 	 we have Pr(X

kn

[v℄ 6=

Y

kn

[v℄) � exp(�
k) under the given identity 
oupling. Using a union bound, this implies that

Pr(X

kn

6= Y

kn

) � j	j exp(�
k).

Let l

0

= d

1




e = d

n

1=d

0

2(2d�1)e

2

e. As before, we will use Lemma 3.1 to lo
alize the dynami
s. Together

with the hypothesis of the theorem, this will imply that after l

0

n steps the spins at v agree with

high probability. What we want, however, is that the probability of disagreement will 
ontinue to

de
ay exponentially with the number of steps. Noti
e that su
h a result would follow if, on
e the

spins at v agreed, they 
ontinued to agree through the rest of the pro
ess, but this is 
learly not

the 
ase. However, using the sub-exponential growth of Z

d

and another lo
alization argument, we


an show that if all the spins within a large enough radius around v agree at a given time, then the

spins at v will 
ontinue to agree for suÆ
iently many steps (depending on the radius of agreement).

Bootstrapping from the suÆ
iently small probability of disagreement after l

0

n steps, we get the

required exponential de
ay.

We pro
eed with the formal proof. Let �(k) = max

X

0

;Y

0

;v2	

Pr(X

kn

[v℄ 6= Y

kn

[v℄). We have the

following two 
laims.

Claim 1. Under the hypothesis of the theorem, �(l

0

) �

1

e2

d

(n

0

+1)

=

1

e2

d

([2(2d�1)e

2

l

0

℄

d

+1)

.
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Claim 2. Without any assumptions, for any k

1

and k

2

, �(k

1

+ k

2

) � [2(2d� 1)e

2

k

2

℄

d

�(k

1

)�(k

2

) +

4e

�k

2

.

Theorem 5.2 follows from the 
ombination of the above two 
laims. To see this, let �(k) =

2

d

([2(2d � 1)e

2

k℄

d

+ 1) � max

n

�(k); 2e

�

k

2

o

. Using Claim 2, we have by an expli
it 
al
ulation

that �(2k) � �(k)

2

. On the other hand, from Claim 1 we get that �(l

0

) �

1

e

(where we used

the fa
t that l

0

is large enough to handle the 
ase of �(l

0

) < 2e

�

l

0

2

). We then 
on
lude that

�(k) � �(k) � exp(�

k

l

0

), as required.

Proof of Claim 1: Let v 2 	 be any site. As in Lemma 4.1, the idea is to take a regular box of

volume n

0

around v. Then, sin
e we run the 
oupled 
hains for only l

0

n steps, information from

the boundary of this box does not have enough time to per
olate to v. We 
an therefore assume

the boundaries around this box are �xed. But then, the assumption of the theorem guarantees that

the spins at v will agree with the required probability.

Formally, let �

v

be the interse
tion of the regular box of volume n

0

around v with 	. Let (X

�

v

t

)

and (Y

�

v

t

) be two 
hains whose initial 
on�gurations inside �

v

agree with X

0

and Y

0

respe
tively,

and whi
h have the same �xed arbitrary boundary 
on�guration on ��

v

n�	. We have Pr(X

t

[v℄ 6=

Y

t

[v℄) � Pr(X

t

[v℄ 6= X

�

v

t

[v℄) + Pr(X

�

v

t

[v℄ 6= Y

�

v

t

[v℄) + Pr(Y

�

v

t

[v℄ 6= Y

t

[v℄). Noti
e that dist(v; ��

v

n

�	) �

1

2

n

1=d

0

= (2d � 1)e

2

l

0

. Therefore, using Lemma 3.1, we have Pr(X

l

0

n

[v℄ 6= X

�

v

l

0

n

[v℄) �

4e

�(2d�1)e

2

l

0

.

We go on to bound Pr(X

�

v

l

0

n

[v℄ 6= Y

�

v

l

0

n

[v℄). Noti
e that sin
e in both 
hains the 
on�guration

outside �

v

is �xed and is identi
al in both 
hains and sin
e j�

v

j � n

0

, we 
an use the hypothesis of

the theorem to bound the above probability. If we run the 
oupled 
hains for l

0

n steps, then with

probability at least 1 � exp(�

l

0

8

j�

v

j) the number of steps that hit �

v

is at least

l

0

2

j�

v

j. If indeed

that many steps hit �

v

then a

ording to the hypothesis of the theorem, Pr(X

�

v

t

[v℄ 6= Y

�

v

t

[v℄) �

e

�2 log n

0

= n

�2

0

. Thus, Pr(X

�

v

l

0

n

[v℄ 6= Y

�

v

l

0

n

[v℄) � n

�2

0

+ exp(�

l

0

8

j�

v

j). Putting this together with the

result of the previous paragraph we get Pr(X

l

0

n

[v℄ 6= Y

l

0

n

[v℄) � n

�2

0

+ exp(�

l

0

8

) + 8e

�(2d�1)e

2

l

0

�

1

e2

d

(n

0

+1)

for suÆ
iently large n

0

, as required. �

Proof of Claim 2: We use Lemma 3.1 on
e again, this time in the sense that in k

2

n steps,

information 
an per
olate over a distan
e of at most (2d � 1)e

2

k

2

. Thus, if the spins of all the

sites within that radius from v agree after k

1

n steps, then the spin at v will 
ontinue to agree

after (k

1

+ k

2

)n steps with high probability.

Formally, let �

v;k

2

be the interse
tion of the regular box of radius (2d�1)e

2

k

2

around v with 	,

and let A stand for the event that X

k

1

n

[�

v;k

2

℄ 6= Y

k

1

n

[�

v;k

2

℄. Then, using Lemma 3.1 we have

Pr(X

(k

1

+k

2

)n

[v℄ 6= Y

(k

1

+k

2

)n

[v℄) � (1� Pr(A))4e

�(2d�1)e

2

k

2

+ Pr(A)�(k

2

):

The proof is 
on
luded on
e we noti
e that Pr(A) � j�

v;k

2

j�(k

1

) � [2(2d � 1)e

2

k

2

℄

d

�(k

1

). �

This 
ompletes the proof of Theorem 5.2.

Remark: Noti
e that, in fa
t, the proof of Theorem 5.2 gives the stronger property of proje
ted

optimal mixing, as in Lemma 4.1. The hypothesis of Theorem 5.2 di�ers from that of Lemma 4.1
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in two respe
ts. On one hand, the hypothesis of Theorem 5.2 is stronger be
ause it works with

the 
oupling time of an identity 
oupling rather than with the mixing time in general. On the

other hand, the hypothesis in Theorem 5.2 is weaker be
ause the time bounds are weaker. The

reason why a weaker time bound is suÆ
ient for 
oupling time is that we 
an appeal to the union

bound Pr(X

t

[�℄ 6= Y

t

[�℄) �

P

v2�

Pr(X

t

[v℄ 6= Y

t

[v℄). We used this union bound twi
e, �rst when

we redu
ed the proof to bounding the probability of disagreement at a single site, and se
ond

when we bounded the probability of the event A. Noti
e that the 
orresponding inequality for

the total variation distan
e is not ne
essarily true. Namely, we 
annot in general assert that

kX

t

�Y

t

k

�

�

P

v2�

kX

t

�Y

t

k

fvg

. If this assertion were true then we 
ould have done with assuming

a fast mixing time (rather than a fast 
oupling time) and working with the total variation distan
e

rather than with the probability of disagreement throughout the proof.

As remarked at the beginning of this se
tion, 
ombining Theorems 5.1 and 5.2 immediately

yields Theorem 2.4.

6 From Spatial to Temporal Mixing: The General Case

In this se
tion we prove Theorem 2.5. Namely, we show that in general (without assuming mono-

toni
ity), strong spatial mixing implies that the heat-bath blo
k dynami
s has optimal temporal

mixing if the blo
ks used are large enough. Using path 
oupling [3℄, the proof is redu
ed to showing

that strong spatial mixing implies that a 
ondition known as the Dobrushin-Shlosman 
ondition

holds. The last impli
ation was proven in [6℄, but we in
lude a simple proof of it here.

Proof of Theorem 2.5: Consider the heat-bath dynami
s HB(L) on a re
tangle 	 of volume n

with an arbitrary boundary 
on�guration. Noti
e that L here is a large enough 
onstant to be set

later and will depend only on the dimension d and the 
onstants from the de�nition of strong spatial

mixing. In parti
ular, L is uniform in n and the boundary 
on�guration. Re
all that the dynami
s


hooses a blo
k to be updated from B(	; L), whi
h is the set of translations of the regular box of

side-length L that interse
t 	. We denote the number of blo
ks by m = jB(	; L)j and noti
e that

n � m � L

d

n (the lower bound is due to the fa
t that the number of translations that interse
t 	

is at least the volume of 	 while the upper bound 
rudely uses the fa
t that ea
h site is 
overed

by L

d

translations). Using the path 
oupling method [3℄, it is enough to show that there exists a


onstant 
 > 0 (independent of n and the boundary 
on�guration) su
h that, for any site u 2 	 and

any two 
on�gurations �,�

u

that di�er only at u, there exists a 
oupling of the two 
hains whose


urrent 
on�gurations are � and �

u

respe
tively su
h that after one step, the average Hamming

distan
e between the two 
oupled 
on�gurations is at most 1�




m

, i.e, de
reases by at least




m

.

We 
ouple these two 
hains using a spe
i�
 identity 
oupling. Namely, the blo
k 
hosen to be

updated is the same in both 
hains, and if the boundaries of that blo
k are the same in both �

and �

u

then we 
ouple the update of the blo
k su
h that the 
on�gurations inside the blo
k agree

with probability one. If the boundaries are not the same (this 
an happen only if u is on the

boundary of the 
hosen blo
k), we use a 
oupling to be des
ribed below.

From the way we de�ned the heat-bath blo
k dynami
s, ea
h site in 	 is in
luded in exa
tly

L

d

blo
ks. Sin
e we use an identity 
oupling, if a blo
k in
luding the site u is 
hosen to be updated

then the Hamming distan
e between the two 
on�gurations will be zero (i.e., de
rease by one) sin
e

the boundaries of this blo
k are the same in both � and �

u

. The probability of 
hoosing a blo
k as

15



above is

L

d

m

. Thus, it is enough to show that the 
ontribution to the expe
ted 
hange in Hamming

distan
e from 
hoosing the rest of the blo
ks is at most

L

d

�


m

.

As we already mentioned, the Hamming distan
e may in
rease only if the blo
k 
hosen to be

updated is one whose boundaries in
lude u. Sin
e there are at most 2dL

d�1

su
h blo
ks, we will

be done on
e we show that we 
an 
ouple the update of ea
h su
h blo
k � su
h that the resulting

average Hamming distan
e in � is stri
tly less then

L

2d

.

Consider a blo
k � su
h that u 2 ��. Let r =

1

2

(

L

4d

)

1

d

, �

r

= fv 2 � jdist(v; u) � rg, and

�

r

= �n�

r

. By the strong spatial mixing assumption, k�

�

�

��

�

u

�

k

�

r

� �j�

r

j exp(�� � r) � L

�d

for

a large enough L. We 
an thus 
ouple the update of � su
h that the two 
oupled 
on�gurations

disagree over �

r

with probability at most L

�d

. A trivial upper bound on the resulting average

Hamming distan
e in � in this 
oupling is then j�

r

j+ L

�d

j�

r

j �

L

4d

+ 1.
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