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ABSTRACT

We initiate the study of the minimum distortion problem:
given as input two n-point metric spaces, find a bijection be-
tween them with minimum distortion. This is an abstraction
of certain geometric problems in shape and image matching,
and is also a natural variation and extension of the funda-
mental problems of graph isomorphism and bandwidth. Our
focus is on algorithms that find an optimal (or near-optimal)
bijection when the distortion is fairly small. We present a
polynomial time algorithm that finds an optimal bijection
between two line metrics, provided the distortion is less than
3 + 2

√
2. We also give a parameterized polynomial time al-

gorithm that finds an optimal bijection between an arbitrary
unweighted graph metric and a bounded-degree tree metric.
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1. INTRODUCTION
Given two n-point metric spaces (U, d) and (V, d′), and a

bijection σ : U → V , the expansion of σ is defined as

max
x,y∈U,x 6=y

d′(σ(x), σ(y))

d(x, y)
.

The distortion of σ is defined as the product dist(σ) =
expansion(σ) × expansion(σ−1). In this paper we initiate
the study of the minimum distortion problem: Given as
input two equal-sized finite metric spaces, find a bijection
between them with minimum distortion. This is a very nat-
ural variant of the bi-Lipschitz embeddings questions that
were initially motivated by the study of Banach spaces, and
more recently explored by theoretical computer scientists
due to their extensive applications in graph theory, combi-
natorial optimization, learning theory, and high-dimensional
computational geometry (see, e.g., [24, 8, 32, 28, 23]). From
a computer science perspective, the core question of this line
of work has been to bound the distortion of an injection from
an input metric space into an implicit infinite host space (for
example, Euclidean space). In view of the proliferation of
such methods in current research, we find it surprising that
our problem apparently has not been studied before.

Our research was originally inspired by shape matching
and object recognition applications. For example, the goal
could be to identify a hand-written number by comparing
it with a set of stored prototype shapes. Matching of facial
features is another obvious domain. Typical feature-based
approaches to these applications first use an edge detector to
extract a shape’s silhouette or contours, and then represent
the shape by a sample of points on the detected curve(s).
Shapes are then compared by defining a distance function
between pairs of point sets. (This process could be part
of a bigger task of comparing large raster images involv-
ing the matching of “signatures” of local pieces; see, for
example, the survey [39].) Distortion is an attractive mea-
sure of similarity between point sets which is more sensitive
than many currently used approaches. For example, recent
work [3] proposes matching shapes by extracting a sample
of about 100 points and then attempting to match, for pairs
of points from the two shapes, their histograms of distances



to other points. (See also [22] for a different similarity mea-
sure, and [6] for a bijection which approximately preserves
distances under that notion of similarity.)

Closely related to our problem is recent work on matching
gel electrophoresis images. Gel electrophoresis is a technique
for surveying the protein contents of cells, resulting in two-
dimensional images consisting of thousands of points. Given
two such point sets U and V , one would like to find U ′ ⊂ U
and V ′ ⊂ V of maximum cardinality |U ′| = |V ′| such that U ′

and V ′ are “similar”. It was proposed in [1] to use a bound
on distortion as the notion of similarity. A more complicated
notion of similarity involving distortion and other parame-
ters appeared earlier in [19]. This maximum similarity

problem is in a sense the dual of the minimum distortion
problem. As detailed below, some of our results apply to
this problem as well.

More abstractly, we find the minimum distortion prob-
lem theoretically appealing due to its close relationship to
other fundamental algorithmic questions. Firstly, it is a nat-
ural optimization version of the graph isomorphism prob-
lem [26, 14]. In fact, the graph isomorphism problem on
input graphs G and H is trivially reduced to deciding if
there exists an isometric (i.e., distortion 1) bijection between
MG and MH , where MX denotes the shortest path metric
of a graph X. As we shall show, the minimum distortion
problem is apparently computationally harder than graph
isomorphism; on the other hand, it allows one to formulate
a natural notion of approximation for graph isomorphism
which seems interesting in its own right. In a different di-
rection, our problem can also be viewed as a variation and
generalization of the minimum bandwidth problem [7, 9].
This is precisely the problem of minimizing the expansion
of a bijection that maps MG to MP , where G is the input
graph and P is a path on the same set of vertices. We note
that, typically, good solutions to the bandwidth problem in-
cur a very large contraction, so they do not seem useful for
solving the distortion problem.

Our goal in this paper is twofold: to prove some initial
results about the minimum distortion problem, and to stim-
ulate further work on it. We begin with the simple obser-
vation that the problem is NP-hard, and indeed hard to ap-
proximate within a factor better than 2, or better than 4/3
in the restricted case where one of the metrics is an un-
weighted tree and the other an unweighted graph. Then, in
view of the potential applications mentioned above, we fo-
cus on designing polynomial time algorithms that are guar-
anteed to find the optimum distortion when it is small. This
represents a further change in emphasis from most existing
work on low distortion embeddings, which typically aims for
worst case bounds for a whole class of input metrics.

In our first main result, we give an algorithm that finds
the minimum distortion bijection between two line metrics
(i.e., sets of points in one dimension), provided the distortion
between them is less than 3 + 2

√
2. In addition to being a

natural (and, as it turns out, non-trivial) first step, line met-
rics could be used to design heuristics for higher dimensional
point sets by projecting each set in several different direc-
tions and then trying to match the two collections of pro-
jected images. In fact, the main difficulty that our algorithm
overcomes is that well-separated clusters of points on the line
may be “flipped” without incurring large distortion. This is
precisely the effect that projecting a high-dimensional point
set in two slightly different directions might have. We also
note that our algorithm can be adapted to solve the maxi-
mum similarity problem (see above) between two line met-

rics, thus settling a question raised in [1].
In our second main result, we present an algorithm that

finds, given an arbitrary graph G and a bounded-degree
tree T , a minimum distortion bijection between MG and
MT . The running time of this algorithm is polynomial
in the input size, but exponential in the degree of T and
doubly exponential in the distortion. This algorithm com-
plements our hardness result mentioned earlier, which im-
plies that this problem is NP-hard without the degree re-
striction on T . It can also be viewed as a parameterized
complexity result [11, 10], and should be compared with
the dynamic programming algorithm of [37] for recognizing
small-bandwidth graphs. However, we note that both the
objective function and the target space are simpler in the
bandwidth case. Our algorithms are based on dynamic pro-
gramming, though in both cases the dynamic programming
relies on some non-trivial structure of low-distortion embed-
dings which we develop in the paper.

To the best of our knowledge, the minimum distortion
problem has not been addressed before. Here we briefly sur-
vey previous work on related problems. The closest problem
to ours is the “maximum similarity” problem, as mentioned
above and formulated in [1]. In that paper, Akutsu et al.
prove that the two-dimensional version of maximum simi-
larity is NP-hard, where similarity is defined as having a
distortion at most α, for any 1 < α < 2.07. They also
present a polynomial time algorithm for the one-dimensional
version under the (severe) restriction that the mapping be-
tween the maximum subsets U ′, V ′ is monotone (i.e., con-
tains no “flips”). Graph isomorphism is one of a very short
list of fundamental problems whose structural complexity
remains open. The problem is clearly in NP, but unlikely
to be NP-complete (such a result would collapse the poly-
nomial hierarchy [26]). Efficient algorithms are known for
several special cases, including bounded-degree graphs [30],
bounded genus graphs [20, 33], circular-arc graphs [21], and
graphs with bounded eigenvalue multiplicity [2]. No polyno-
mial time algorithm is known for arbitrary graphs, even with
the aid of quantum computing. Minimum bandwidth, too, is
a notoriously elusive problem. It is NP-hard, even for special
classes of trees [35, 15, 34]. Only recently have breakthrough
results on approximating it been discovered. These give an
approximation algorithm for general graphs with polyloga-
rithmic guarantees [12, 13] and a super-constant hardness
result, even for caterpillars [38] (see also [5, 4]). Better ap-
proximation bounds are known for some special cases [25, 17,
18]. There are polynomial time algorithms for recognizing
small bandwidth graphs [37] and for computing the band-
width of interval graphs [27]. Finally, as we have mentioned,
most results on low distortion embeddings of finite metrics
into normed or other spaces deal with worst-case bounds
(see, e.g., [32, 23]), in contrast to our emphasis on optimal
or near-optimal distortion for individual metrics. One no-
table exception is the algorithm based on semidefinite pro-
gramming for finding a minimum distortion embedding of
an arbitrary finite metric into Euclidean space [29].

2. PRELIMINARIES
We begin with two simple but useful observations.

Proposition 2.1. Consider a bijection σ mapping (U, d)
to (V, d′). Then, dist(σ) is invariant under scaling either d
or d′, is always ≥ 1, and is equal for σ and σ−1. Moreover,
dist(σ) = 1 if and only if d and d′ are isometric.



Proposition 2.2. The minimum distortion problem can
be reduced to the following decision problem: given (U, d) and
(V, d′) and a real number α ≥ 1, does there exist a bijection
between U and V with expansion and inverse expansion at
most α?

Proof. Let U = {u1, . . . , un} and V = {v1, . . . , vn}.
Let σ denote an (unknown) bijection with minimum dis-
tortion. Observe that there is only a polynomial-size set
of possibilities for the expansion of σ, namely, the set of
d′(vk, vℓ)/d(ui, uj) as vk, vℓ range over V and ui, uj range
over U ; similarly there is only a polynomial-size set of pos-
sibilities for the expansion of σ−1. Thus one can guess
expansion(σ) and expansion(σ−1). Note that scaling U by a
factor of x while leaving V unchanged has the effect of mul-
tiplying the expansion of σ by 1/x and the expansion of σ−1

by x. Thus after guessing expansion(σ) and expansion(σ−1),
one can scale U so that the expansions of σ and of σ−1 are
equal; call that number α. The distortion is then α2.

The following observation is a simple consequence of the
triangle inequality, and is useful when considering metrics
that are shortest-path metrics of graphs.

Proposition 2.3. Suppose (U, d) and (V, d′) are the shor-
test-path metrics of weighted undirected graphs G and H re-
spectively, and let σ be any bijection between U and V . Then
the expansion of σ is achieved by an adjacent pair {ui, uj}
in G, and the expansion of σ−1 by an adjacent pair {vk, vℓ}
in H.

Finally in this section, we briefly address the computa-
tional complexity of the minimum distortion problem. Ev-
idently the problem is at least as hard as Graph Isomor-
phism (which is equivalent to the special case where both
input metrics are unweighted graphs, and a distortion of 1
is sought). Not surprisingly, it is in fact apparently harder,
as the following simple reductions demonstrate:

Proposition 2.4. (a) It is NP-hard to approximate the
minimum distortion problem within a factor better than 2.
(b) It is NP-hard to approximate the minimum distortion
problem within a factor better than 4/3 even in the restricted
setting where one of the metrics is an unweighted tree metric
and the other is a graph metric with edge weights 1/2 or 1.

Proof. For part (a), we give a simple reduction from
Hamilton Cycle. Let G = (U,E) be an unweighted, undi-
rected graph on n vertices. Construct a metric (U, d) by
setting d(u, v) = 1 if {u, v} is an edge of G, and d(u, v) = 2
otherwise. Similarly, let C = (V, E′) be the unweighted cy-
cle on n vertices, and construct a metric (V, d′) using the
same operation. Now it is straightforward to check that,
if G contains a Hamilton cycle, then an optimal bijection
between (U, d) and (V, d′) has distortion exactly 2. On the
other hand, if there is no such cycle then any bijection must
have distortion at least 4. We defer the proof of part (b) to
the appendix.

Remark: Part (b) of the above proposition further moti-
vates our Theorem 4.1 below, in which we give a polynomial
time algorithm for this same restricted setting except that
we require in addition that the tree have bounded degree.
(Actually in that theorem we also require the graph to be
unweighted, but it is easily seen that the proof generalizes
to graphs with bounded edge weights.)

In this paper, we begin to attack the minimum distortion
problem for certain restricted metric spaces, with an empha-
sis on devising polynomial time algorithms when the distor-
tion is small. We begin by discussing the one-dimensional
problem, in which both U and V are sets of points on
a line. This is a natural simplification of the important
case of matching two point sets in the plane (under the
Euclidean metric), which is motivated, e.g., by the shape
matching application mentioned in the introduction. The
one-dimensional problem turns out to exhibit some interest-
ing structure that highlights some of the issues involved in
more general cases of the problem. We will then go on to
deal in Section 4 with the case where U is a bounded-degree
tree metric and V is an arbitrary unweighted graph metric.

3. MINIMUM DISTORTION MAPS ON

THE REAL LINE
The main result of this section is the following:

Theorem 3.1. Let U = {u1, . . . , un}, V = {v1, . . . , vn}
be two subsets of the real numbers. Let α <

p

3 + 2
√

2.
There is a polynomial time algorithm to decide whether there
exists a bijection between U and V with expansion and in-
verse expansion at most α.

Applying Proposition 2.2, we immediately deduce a poly-
nomial time algorithm for the minimum distortion problem
in one dimension provided the distortion is below the thresh-
old value 3 + 2

√
2:

Corollary 3.2. In the situation of Theorem 3.1, if the
optimal bijection between U and V has distortion less than
3 + 2

√
2, then there is a polynomial time algorithm for find-

ing it.

In the following subsection we develop some structural
properties of low-distortion one-dimensional maps, and then
in the next subsection we use these properties to devise an
algorithm to find a low-distortion map.

3.1 Structural properties
We begin by introducing the key concept of a forbidden

pattern.1 In our context, this is a bijection between subsets
of U and V whose presence implies large distortion. Let
U, V be sets of n points on the real line, and let π be a
fixed permutation on {1, . . . , k} (a “pattern”). We say that
a bijection σ from U to V contains π if there exists a subset
u1 < u2 < · · · < uk of points in U such that

σ(ui) < σ(uj) if and only if π(i) < π(j), for 1 ≤ i, j ≤ k.

Otherwise, we say that σ avoids π.
Specifically, we will consider the pattern on four points

shown in Figure 1. The following lemma provides a lower
bound on the distortion of any bijection that contains this
pattern (or its inverse).

Lemma 3.3. Let σ be any bijection between U and V with
distortion less than 3+2

√
2. Then σ must avoid the pattern

in Figure 1 and its inverse.

Proof. Note that a bijection σ contains the pattern iff
σ−1 contains the inverse pattern. Thus it is sufficient to

1Permutations with forbidden patterns have been inten-
sively studied in enumerative combinatorics. See, for ex-
ample, [31] and the references therein.
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Figure 1: A forbidden pattern

show that any σ containing the pattern necessarily has dis-
tortion at least 3 + 2

√
2. Let u1 < u2 < u3 < u4 be points

in U occurring in the pattern, and v1 < v2 < v3 < v4 their
images in V . Denote the inter-point distances in U, V by
the parameters a, b, c, x, y, z as shown in Figure 1. Our aim
is to show that the infimum, over all strictly positive val-
ues of these parameters, of the distortion of this four-point
mapping is at least 3 + 2

√
2.

First, note that we may assume without loss of general-
ity that a = c and x = z. For if not, we may consider
the configuration in which the values of a, c and of x, z are
interchanged, which by symmetry has the same distortion.
Averaging these two configurations yields a configuration
with a = c and x = z, whose distortion is no larger than the
orginal one.

Recall from Proposition 2.3 that the expansion of σ is
achieved by an edge, i.e., in this case by an adjacent pair
{ui, ui+1}: call such an edge tight. Now we may assume
without loss of generality that all three edges are tight. For
suppose, e.g., that the middle edge {u2, u3} is not tight.
Then we may reduce its length b (keeping a = c fixed) until
it becomes tight, thus keeping the expansion of σ unchanged
and not increasing the expansion of σ−1. A similar argument
applies to the other two edges.

With the above observations, denoting the infimum dis-
tortion by α2, by rescaling if necessary we may assume the
existence of a set of distances a = c, b, x = z, y such that

(i) the expansion of every edge in U under σ is exactly α;

and

(ii) the expansion of every edge in V under σ−1 is at most
α + ǫ, for an arbitrarily small ǫ > 0.

Now (i) implies the following equalities:

x + y = αa;
2x + y = αb,

(1)

and (ii) the following inequalities:

a + b ≤ (α + ǫ)x;
2a + b ≤ (α + ǫ)y.

(2)

Solving the equations (1) gives x = α(b−a) and y = α(2a−
b), which when substituted into the inequalities (2) yields

a(α(α + ǫ) + 1) ≤ b(α(α + ǫ) − 1);

b(α(α + ǫ) + 1) ≤ 2a(α(α + ǫ) − 1).

This in turn implies that (α(α + ǫ) + 1)2 ≤ 2(α(α + ǫ)− 1)2

for all ǫ > 0, and hence by continuity also for ǫ = 0. Thus
we have (α2 + 1) ≤

√
2(α2 − 1), whence α2 ≥ 3 + 2

√
2

as required. In fact this value of α is actually achieved by

setting a = 1, b = α2+1
α2−1

=
√

2, x = 2α and y = 2
√

2α.

We can now exploit the fact that σ does not contain the
above pattern to obtain a decomposition of σ into two bi-
jections between smaller sets:

Lemma 3.4. Let U = u1 < u2 < · · · < un and V = v1 <
v2 < · · · < vn. Consider any bijection σ between U and V
that avoids the pattern in Figure 1 and its inverse. Then
there exists an initial subinterval I = {u1, . . . , um} of U of
cardinality 0 < m < n such that either σ(I) = {v1, . . . , vm}
or σ(I) = {vn−m+1, . . . , vn}. I.e., the image of I is either
an initial or a final subinterval of V .

Proof. If σ(u1) = v1 or σ(u1) = vn, then we take m = 1
and we are done. Otherwise, let vi = σ(u1). We now assume
that σ(un) > vi; the other case will be dealt with later. Let
um be maximal such that σ(um) < vi; note that 1 < m < n.
Then let vk be maximal such that σ(uj) = vk for some
j < m, and let uℓ be such that σ(uℓ) = vk. If k = i then
σ({u1, . . . , um}) = {v1, . . . , vi} and we are done, so assume
k > i. Clearly we have σ({u1, . . . , um}) ⊆ {v1, . . . , vk}. We
claim that this inclusion is actually an equality, so that σ
maps I = {u1, . . . , um} to an initial subinterval of V .

Indeed, suppose it is not. Then there must exist p > m
such that σ(up) < vk. But this means we have four points
u1 < uℓ < um < up whose images satisfy

σ(um) < vi = σ(u1) < σ(up) < vk = σ(uℓ).

This is precisely the forbidden pattern of Figure 1, so we
have a contradiction to Lemma 3.3. Thus σ({u1, . . . , um}) =
{v1, . . . , vk}, which concludes the proof for the case σ(un) >
vi.

For the other case (σ(un) < vi), we apply the same ar-
gument as above to the reflected permutation σ′(u) = n −
σ(u) + 1, which avoids the pattern in Figure 1 by virtue of
the fact that σ avoids the inverse pattern. This establishes
that σ′ maps an initial subinterval I to an initial subinterval
of V , and hence that σ maps I to a final subinterval of V .
This concludes the proof for the second case.

Lemma 3.4 suggests that, in order to solve the decision
problem, one might guess the right value of m (via dynamic
programming) and then solve each of the two corresponding
subproblems. However, these two subproblems are not in-
dependent so this näıve approach fails. Nonetheless, Propo-
sition 2.3 guarantees that the constraints induced by one
subproblem on the other can be captured by the images of a
small number of points, which again we can afford to guess.
This observation allows us to formulate a dynamic program-
ming algorithm, as described next.

3.2 The algorithm
The algorithm builds a dynamic programming table T

which is boolean and indexed by the following parameters:

• a subinterval I = {um, um+1, . . . , um+c−1} of U and a
subinterval J = {vm′ , vm′+1, . . . , vm′+c−1} of V of the
same cardinality c ≥ 1;

• two elements v and v′ of J , and two elements u and u′

of I .



The corresponding entry is true iff there is a bijection σ
between I and J , such that σ(um) = v, σ(um+c−1) = v′,
σ−1(vm′ ) = u and σ−1(vm′+c−1) = u′, and with expansion
and inverse expansion at most α.

The table is computed in order of increasing values of c.
The base case c = 1 is trivial. For c > 1, to compute
T [I, J, v, v′, u, u′], we run through all partitions of I and J
into two non-empty intervals, I = Iℓ ∪ Ir and J = Jℓ ∪ Jr,
and set our result to true if there is at least one combination
such that one of the following two conditions holds:

(i) for some uℓ, ur, vℓ, vr, the entries T [Iℓ, Jℓ, v, vℓ, u, uℓ]
and T [Ir, Jr, vr, v

′, ur, u
′] are both true, and also vr −

vℓ ≤ α(min(Ir)−max(Iℓ)) and ur −uℓ ≤ α(min(Jr)−
max(Jℓ));

or

(ii) for some uℓ, ur, vℓ, vr, the entries T [Iℓ, Jr, v, vr, uℓ, u
′]

and T [Ir, Jℓ, vℓ, v
′, u, ur] are both true, and also vr −

vℓ ≤ α(min(Ir)−max(Iℓ)) and ur −uℓ ≤ α(min(Jr)−
max(Jℓ)).

The two inequalities in the above conditions state that the
expansion of the edge {max(Iℓ), min(Ir)} and the inverse ex-
pansion of the edge {max(Jℓ), min(Jr)} are each at most α.
(See Figure 2.)
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Figure 2: Filling in the table: case (i)

Once the table is filled, to decide whether there is a bi-
jection from U to V with expansion and inverse expansion
at most α, we only need to check that T [U, V, v, v′, u, u′] is
true for at least one setting of the parameters (v, v′, u, u′).

The correctness of the algorithm follows from Lemma 3.4
(which supplies the recursive decomposition) and Proposi-
tion 2.3 (which ensures that it is sufficient when combin-
ing subproblems to check only the expansion of the edge
{max(Iℓ), min(Ir)} and the inverse expansion of the edge
{max(Jℓ), min(Jr)}). The running time can be bounded
crudely by inspection. The size of the table is O(n7), and
computing one entry of the table takes time O(n5), for an
overall running time of O(n12). This concludes the proof of
Theorem 3.1.

3.3 Maximum similarity
Recall from the introduction the “maximum similarity”

problem, which takes as input two metrics (U, d) and (V, d′)
and a value α, and asks for two subsets U ′ ⊆ U and V ′ ⊆
V of maximum cardinality such that there is a bijection
between U ′ and V ′ with distortion at most α. This problem
was formulated in [1], where the one-dimensional version
was posed as an open question. Our algorithm above can

be easily extended to solve the maximum similarity problem
for line metrics, with the same restriction on the distortion.

Theorem 3.5. Let U = {u1, . . . , un}, V = {v1, . . . , vn}
be two subsets of the real numbers. Let α <

p

3 + 2
√

2.
There is a polynomial time algorithm to find U ′ ⊂ U and
V ′ ⊂ V of maximum cardinality |U ′| = |V ′|, such that there
exists a bijection between U ′ and V ′ with expansion and in-
verse expansion at most α.

The algorithm is a simple modification of the one above,
and we sketch it briefly. The dynamic programming table
is indexed as before, except that now v, v′, u, u′ denote the
images and inverse images of the minimum and maximum
matched elements of U and V respectively. The entries of the
table are integers corresponding to the maximum cardinality
of a pair of subsets having a bijection within the specified
distortion, and respecting the images of the extreme points.
In addition to consistency conditions, when combining two
entries after partitioning I = Iℓ ∪ Ir and J = Jℓ ∪Jr, the al-
gorithm checks whether the expansion of the pair {max{u ∈
Iℓ, u matched}, min{u ∈ Ir, u matched}} and the inverse
expansion of the pair {max{v ∈ Jℓ, v matched}, min{v ∈
Ir, v matched}} are both at most α.

4. MAPPING GRAPHS TO

BOUNDED­DEGREE TREES
In this section we prove the following theorem, which gives

a fixed-parameter polynomial time algorithm in similar vein
to that for bandwidth given in [37].

Theorem 4.1. Let (U, d) be the shortest-path metric of
an unweighted tree T of maximum degree b, and (V, d′) the
shortest-path metric of an arbitrary unweighted graph G′.
Then for any fixed constants b and α ≥ 1, there is an O(n2)
time algorithm that decides whether there exists a bijection
between U and V with expansion and inverse expansion at
most α.

As will become evident shortly, the running time is expo-
nential in the degree b and doubly exponential in the distor-

tion α (actually it is about exp(bO(α3))).
Note that we cannot immediately appeal to Proposition 2.2

to deduce the existence of a polynomial time algorithm for
finding a minimum distortion bijection in this case. This
is because the reduction to the decision problem given in
Proposition 2.2 uses scaling of the metrics, while Theo-
rem 4.1 holds only for unweighted graph metrics. However,
as will become clear below, a simple modification of our al-
gorithm for Theorem 4.1 can be used to test for the existence
of a bijection with expansion α1 and inverse expansion α2

(for any constants α1, α2 ≥ 1). Given this observation, it
is then easy to determine a minimum distortion bijection
by trying the polynomially many candidate pairs of integer
values for α1 and α2. Accordingly, we get:

Corollary 4.2. In the situation of Theorem 4.1, for any
fixed constant c, if the optimal bijection between U and V
has distortion at most c then there is a polynomial time al-
gorithm for finding it.

Remarks: (i) It is not hard to check that the algorithm
still works, with minor modifications, when the edges of G
are given weights in some bounded range. (ii) We have not
been able to adapt the algorithm to handle the maximum
similarity problem, as we did for line metrics in Section 3.3.



4.1 Structural properties
The algorithm relies on several structural properties spelled

out in the following lemma. For a vertex u ∈ T (resp.,
of G′), let B(u, ℓ) (resp., B′(u, ℓ)) denote the closed ball of
radius ℓ around u in T (resp., in G′); and for a subset of
vertices A ⊆ T (resp., in G′), we denote by Γ(A) (resp.,
Γ′(A)) the set of neighbors of A that lie outside A. We also
assume throughout that T is rooted at some arbitrary ver-
tex r0, and for any vertex r of T we denote by Tr the subtree
rooted at r. We shall abuse notation slightly by identifying
subsets of vertices of T or of G′ with the subgraphs that
they induce, where convenient.

Lemma 4.3. Let σ : U → V be a bijection with expansion
and inverse expansion at most α. Then

1. G′ has maximum vertex degree at most bα.

2. For any r ∈ T , each connected component of G \
B′(σ(r), α2) lies either entirely in σ(Tr) or entirely in
G′ \ σ(Tr).

3. For any r ∈ T , for any adjacent pair (u′, v′) in G′ with
u′ ∈ σ(Tr) and v′ /∈ σ(Tr), both σ−1(u′) and σ−1(v′)
are in B(r, α − 1).

Proof. To prove the first statement, note that for any v ∈
V the expansion of σ−1 implies σ−1(B′(v, 1)) ⊆ B(σ−1(v), α),
and the cardinality of this latter ball is at most bα by the
degree bound on T .

To prove the second statement, let v′ = σ(v) be a vertex
of Γ′(σ(Tr)). By definition, v′ is adjacent to some vertex
u′ = σ(u) of σ(Tr). From the expansion of σ−1 we have
d(u, v) ≤ α. Since u ∈ Tr and v /∈ Tr, and since T is
a tree, the shortest path from u to v goes through r, and
thus d(r, v) ≤ α. Hence, using the expansion of σ, we have
d′(σ(r), v′) ≤ α2. Equivalently,

Γ′(σ(Tr)) ⊆ B′(σ(r), α2),

which after a moment’s thought is seen to imply the second
statement.

To prove the third statement, we have d′(u′, v′) = 1 by
assumption, which by the expansion of σ−1 implies that
d(σ−1(u′), σ−1(v′)) ≤ α. As above, this in turn implies
that d(σ−1(u′), r) ≤ α − 1 and d(σ−1(v′), r) ≤ α − 1, as
required.

We are now ready to specify the dynamic programming
algorithm.

4.2 The algorithm
The algorithm begins by verifying that |U | = |V | = n

and that the maximum vertex degree in G′ is at most bα

(as required by the first property in Lemma 4.3). If not, it
rejects.

Now root T at some arbitrary vertex r0. The algorithm
builds a dynamic programming table T which is boolean
and indexed by the following parameters:

• r ∈ {u1, . . . , un}, the root of a subtree Tr of T (wrt
the rooting r0 of T ).

• r′ ∈ {v1, . . . , vn}, an injection τ from B(r, α)∩Tr into
B′(r′, α2), and a subset S of the vertices of G′ with
the property that each connected component of G′ \
B′(r′, α2) lies entirely within S or entirely outside S.

The corresponding entry is true iff there exists an injection
σ : Tr →֒ G′ such that σ(r) = r′, σ coincides with τ on
B(r, α)∩ Tr, and σ(Tr) = S, and such that the expansion of
every edge of Tr, and the inverse expansion of every edge of
σ(Tr), are each at most α. Observe that inverse expansion
is guaranteed only between neighbors in (and hence within
connected components of) the image σ(Tr).

Informally, the idea here is that we memorize in detail the
restriction of the map σ to the ball of radius α around r.
For the rest of the map, we memorize only the set of points
of G′ that are in the image. The second part of Lemma 4.3
ensures a compact encoding, as described below. As we
shall see presently, detailed local knowledge of σ around r
is sufficient to allow us to combine the maps from different
subtrees and check the distortion as we go.

The table is computed by considering the subtree roots r
in bottom-up order. Let {ri} be the children of a given
root r. To compute T (r, r′, τ, S), we run over all combi-
nations of entries {T (ri, r

′
i, τi, Si)}i all of which have value

true. We set our result to be true if at least one of these com-
binations satisfies the three conditions below, and false oth-
erwise. We may of course assume that the indices (r, r′, τ, S)
are self-consistent, i.e., that τ (r) = r′ and that the image
of τ is contained in S.

1. The map τ is consistent with all the maps τi, the Si

are disjoint and do not include r′, and S is the union
of the Si plus the vertex r′.

2. For each r′i, we have d′(r′, r′i) ≤ αd(r, ri).

3. For each adjacent pair v′, w′ in G′, that belong to dif-
ferent sets Si (or with v′ = r′), both v′ and w′ are in
the image of τ and satisfy d(τ−1(v′), τ−1(w′)) ≤ α.

Once the dynamic programming table is filled, to produce
the final output the algorithm simply checks whether some
table entry T (r0, ·, ·, ·) is true.

4.3 Analysis

Running time

Note first that the degree bound on G′ in the first part

Lemma 4.3 implies that B′(v, α2) has size at most bα3

for
any v.

We claim that the size of table T is at most

n × n × (bα3

)bα × 22bα
3

= O(n2)

The first two factors arise from r, r′ respectively, while the
third factor bounds the number of maps from B(r, α) to
B′(r′, α2). The fourth factor bounds the number of possi-
bilities for the set S: from the second part of Lemma 4.3,
note that S can be specified by a subset of points in the ball
B′(r′, α2) together with a subset of the connected compo-

nents of G′ \B′(r′, α2) (of which there are at most bα3

). We
observe that the constant hidden in the O(·) is exponential
in b and doubly exponential in α, as mentioned earlier.

How long does it take to fill in one entry of table T ? Given
r and r′, we only have to consider combinations such that
r′i ∈ B′(r′, α), so the number of combinations is O(1). For
any given combination {T (ri, r

′
i, τi, Si)}i, the three condi-

tions can be checked in constant time. Condition 1 involves
checking consistency of a fixed number (b + 1) of functions
on a fixed-size domain, and of b+1 sets each of which is com-
pactly represented as described earlier. Condition 2 requires



just b simple comparisons. And condition 3 requires one
comparison for each of at most (bα)2 pairs τ−1(v′), τ−1(w′).

The overall running time is thus O(n2).

Correctness

We prove by induction (bottom-up in T ) that, as claimed
in the specification of the algorithm, the following property
holds: a table entry of T is true iff there exists an injection
σ : Tr →֒ G′ such that σ(r) = r′, σ coincides with τ on
B(r, α)∩Tr, and σ(Tr) = S, and such that the expansion of
every edge of Tr under σ, and the inverse expansion of every
edge of σ(Tr), are each at most α.

First, if there exists an injection σ from Tr satisfying the
above property, then σ induces injections σi from Tri

also
satisfying the property, by induction the corresponding table
entries will be true, and all the conditions checked by the al-
gorithm will obviously be satisfied except for the one stating
that v′, w′ are in the image of τ ; but one can readily verify
that this condition follows from the third part of Lemma 4.3
applied to ri. Thus the corresponding table entry for r will
be set to true, as claimed.

Conversely, suppose that we find entries for the ri which
are all true and whose combination satisfies the three con-
ditions checked by the algorithm. By induction, each of
those entries has a corresponding injection σi : Tri

→֒ G′

satisfying the above property. Since these injections are all
consistent (by condition 1), we can combine them and ex-
tend them to an injection σ : Tr →֒ G′ by adding the image
σ(r) = r′. This σ will be consistent with τ and S, so it
remains only to verify its expansion and inverse expansion
properties. The expansion of edges {r, ri} is checked ex-
plicitly in condition 2, and all other edges lie within one
of the Tri

and hence have bounded expansion by induction.
For the inverse expansion, consider any edge {v, w} of σ(Tr).
If σ−1(v) and σ−1(w) both lie in the same subtree Tri

, then
the inverse expansion is bounded by induction. Otherwise,
condition 3 ensures that their inverse expansion does not
exceed α.

Finally, note that a bijection between T and G′ of the
desired form exists iff some table entry T (r0, ·, ·, ·) is true,
where r0 is the root of the entire tree T . This follows from
the fact that the corresponding injection σ must in fact be
a bijection since |U | = |V |, and must have expansion at
most α on all edges of T and inverse expansion at most α
on all edges of G′, hence by Proposition 2.3 overall expansion
and inverse expansion at most α.

This completes the verification of the algorithm, and hence
the proof of Theorem 4.1.

5. OPEN QUESTIONS
In this paper we have examined a new set of issues related

to finite metrics, and have obviously raised many more ques-
tions than we have resolved. Below we mention some of the
most pertinent open problems that arise from our investiga-
tions.

1. As mentioned earlier, it would be of great interest in
geometric applications to extend our one-dimensional
result of Section 3 to two dimensions, for example by
proving a two-dimensional analog of Theorem 3.1, with
some constant c > 1 replacing 3 + 2

√
2. As noted

in Section 3.3, our one-dimensional algorithm can be
modified to handle the maximum similarity problem.
On the other hand, Akutsu et al. [1] prove that the
two-dimensional maximum similarity problem is NP-

hard when similarity means distortion at most α, for
any 1 < α < 2.07. This may indicate that the two-
dimensional minimum distortion problem is hard even
for small distortion, or at least that it requires a dif-
ferent approach. In this connection, we note also that
very recently Papadimitriou and Safra [36] have proved
that the three-dimensional version of the problem (i.e.,
deciding whether there is a bijection of distortion at
most α between two point sets in three-dimensional
Euclidean space) is NP-hard for any fixed α. (They
also show that it is NP-hard to approximate the min-
imum distortion in this setting within a factor of 3.)
Thus we cannot hope for a three-dimensional result of
similar strength to our one-dimensional one.

2. In Section 4 we gave an algorithm that finds an opti-
mal bijection between an arbitrary graph metric and
a bounded-degree tree metric. Can one extend this
result to a wider class of graph metrics than bounded-
degree trees, possibly at the cost of some approxima-
tion in the optimal distortion?

3. Our algorithm for the one-dimensional problem in Sec-
tion 3 was based on identifying a specific forbidden
pattern whose presence guarantees large distortion (at
least 3 + 2

√
2). It is tempting to suggest that this

approach can be extended to construct a parameter-
ized polynomial time algorithm for all values of the
distortion. Indeed, one can construct a family of for-
bidden patterns, of increasing sizes, which guarantee
arbitrarily large distortion. However, it does not seem
immediately clear how to use these larger patterns al-
gorithmically as we did for the four-point pattern in
Lemma 3.4.

4. Our emphasis has been on algorithms that find opti-
mal solutions in cases where the optimal distortion is
fairly small, which we believe is the most appealing sce-
nario for applications. From a theoretical perspective,
it would be interesting to determine the approxima-
bility of the minimum distortion problem. Is there a
constant factor approximation algorithm for the gen-
eral case? We suspect that the problem is hard unless
the input metrics are severely restricted.
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Appendix

Proof of Proposition 2.4(b). We give a simple reduction from
the Multiprocessor Scheduling problem, defined as follows:

Input: A set of n jobs with positive integer lengths p1, . . . , pn,
and a number of processors m.
Question: Is there a “flat” schedule, i.e., a partition of the
jobs into m classes so that the sum of the lengths of the jobs
in each class is exactly

P

i pi/m ?

Multiprocessor Scheduling is well known to be strongly NP-
complete [16].

Given an instance as above, we construct a weighted graph
G and an unweighted tree T as follows. For each job i, there
is a clique of pi “job” vertices in G. There are also m “pro-
cessor” vertices, each of which is connected by an edge to all
job vertices. Finally, there is a single “anchor” vertex that is
connected to all processor vertices. All edges have weight 1,
except for the edges adjacent to the anchor vertex, which
have weight 1/2. This completes the description of G. The
tree T consists of a root vertex r with m children and

P

i
pi

grandchildren, evenly distributed among the m children.

Notice first that, if there is a flat schedule, then we can
map the anchor vertex to the root of the tree, the processor
vertices to the children, and for each job i, the pi correspond-
ing job vertices to children of its assigned processor. It is
easy to check that this mapping has expansion 3 (achieved
by an edge between a processor vertex and a job vertex as-
signed to a different processor), and inverse expansion 1 (no
edge of T is increased in length under the inverse map).
Thus the distortion is 3.

Now we will be done if we can show that, if there is no flat
schedule, then the distortion must be at least 4. First it is
not too hard to verify that any mapping that does not map
the anchor to the root, processor vertices to its children,
and job vertices to its grandchildren without separating the
vertices of any job must incur an expansion of at least 4. Sec-
ond, note that the inverse expansion of any bijection must
be at least 1. This is because in G there are only m pairs
of vertices whose pairwise distances are less than 1, which
is much less than the number of edges (each of length 1)
in T . Hence the inverse expansion of some edge in T must
be at least 1. Putting these observations together confirms
that the distortion must be at least 4 when no flat schedule
exists.


