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Abstract

In [18], Nisan proved an exponential lower bound on the

size of an algebraic branching program (ABP) that com-

putes the determinant of a matrix in the non-commutative

“free algebra” setting, in which there are no non-trivial re-

lationships between the matrix entries. By contrast, when

the matrix entries commute there are polynomial size ABPs

for the determinant.

This paper extends Nisan’s result to a much wider class

of non-commutative algebras, including all non-trivial ma-

trix algebras over any field of characteristic 0, group al-

gebras of all non-abelian finite groups over algebraically

closed fields of characteristic 0, the quaternion algebra and

the Clifford algebras. As a result, we obtain more com-

pelling evidence for the essential role played by commuta-

tivity in the efficient computation of the determinant.

The key to our approach is a characterization of non-

commutative algebras by means of the polynomial identi-

ties that they satisfy. Extending Nisan’s lower bound frame-

work, we find that any reduction in complexity compared

to the free algebra must arise from the ability of the identi-

ties to reduce the rank of certain naturally associated ma-

trices. Using results from the theory of algebras with poly-

nomial identities, we are able to show that none of the iden-

tities of the above classes of algebras is able to achieve such

a rank reduction.
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sion, UC Berkeley, supported by NSF grants CCR-9820951 and CCR-
0121555.

‡ Supported in part by NSF ITR grant CCR-0121555. Part of this work
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1. Introduction

All known polynomial time algorithms for computing

the determinant of a matrix appear to rely on the fact that

multiplication in the underlying field (in which the ma-

trix entries reside) is commutative. How hard is it to com-

pute the determinant in a non-commutative setting? This

question is motivated by the broader aim of understand-

ing the computational power of commutativity [21], as

well as by recent algorithmic applications of determinants

over non-commutative algebras to approximating the per-

manent [3, 5].

In a landmark paper [18], Nisan pioneered the study of

non-commutative computation. His main result was an ex-

ponential lower bound (of the form Ω(2n)) for the size of

any algebraic branching program (ABP) that computes the

determinant of an n × n matrix, viewed as a formal alge-

braic expression whose indeterminates {x11, x12, . . . , xnn}
do not commute. Since the determinant can be computed

by an ABP of size O(n3) in the commutative setting [9,

16, 17, 22], this provides intriguing evidence of the compu-

tational power of commutativity.† Very recently, the ABP

model has been used by Raz and Shpilka [21] to give an ef-

ficient deterministic algorithm for polynomial identity test-

ing over non-commutative formulas.

The main limitation of Nisan’s result, and of the ABP

model as used to date, is that it is restricted to the free al-

gebra F〈x11, . . . , xnn〉 over a field F, in which not only

does commutativity fail to hold, but there is no struc-

ture whatsoever (i.e., no non-trivial relations hold between

the indeterminates). However, it remains quite conceiv-

able that, in some specific non-commutative algebra (e.g.,

† Nisan in fact stated his result in terms of formula size, rather than ABP
complexity. His exponential lower bound on ABP size translates di-
rectly to a similar bound on formula size, which he contrasted with
the fact that the determinant can be computed by a formula of size

nO(log n) in the commutative setting.



the quaternions), the determinant can be computed effi-

ciently. It seems important that any comparison of commu-

tative and non-commutative computation consider all non-

commutative algebras, not only the free algebra.

In this paper, we address this issue by proposing an ap-

proach that allows the algebras to have much more struc-

ture than the free algebra, without being commutative. We

characterize an algebra over F by the polynomial identi-

ties that it satisfies. In this view, commutative F-algebras

(when F has characteristic 0) are characterized by the poly-

nomial identity x1x2−x2x1 = 0. By contrast, the free alge-

bra F〈x1, x2, . . .〉 satisfies no non-trivial identities. Adding

polynomial identities (without including the commutative

identity) creates a spectrum of algebras between these two

extremes. The study of polynomial identities has been an

active topic in algebra for the past fifty years (see the

book [7] for a survey). Our aim is to use the machinery of

that field to study the power of non-commutativity in a man-

ner that is more sensitive to the structure of the algebra; in

particular, lower bounds for algebras that admit a rich class

of identities give more compelling evidence for the impor-

tance of commutativity than that provided by Nisan’s result.

Our first step is to extend Nisan’s lower bound frame-

work for ABPs, based on the combinatorial structure of the

monomials of the function being computed, as expressed in

the rank of certain naturally associated matrices. This sim-

ple step leads to a useful tool for comparing the ABP com-

plexities in the free algebra and in the algebra of interest:

essentially, any reduction in complexity corresponds to an

ability of the polynomial identities to reduce the rank of the

associated matrices.

We then go on to apply this framework to obtain expo-

nential lower bounds for the ABP complexity of the deter-

minant over a range of natural non-commutative algebras.

The first class we consider are matrix algebras, whose el-

ements are d × d matrices over a field F. This is prob-

ably the most natural and most widely studied family of

non-commutative algebras, and has also arisen in connec-

tion with approximating the permanent [3, 5]. We note that

the algebra of d×d matrices satisfies the symmetric polyno-

mial identity s2d(x1, . . . , x2d) = 0, where sk(x1, . . . , xk)

is defined to be
∑

σ sgn(σ)
∏k

i=1 xσi, with the sum ranging

over all k-permutations σ. Thus s2 is the commutative iden-

tity, and sk for k > 2 can be viewed as higher-order gener-

alizations of commutativity. We show an exponential ABP

lower bound for the determinant over any non-trivial ma-

trix algebra:

Theorem 1.1 Any ABP for computing the determinant of

an n×n matrix whose entries belong to the algebra of d×d
matrices, d ≥ 2, over a field F of characteristic 0 has size

at least 2n.

We then go on to apply the above result, together

with some additional observations, to deduce a simi-

lar lower bound for computing the determinant over several

other classes of non-commutative algebras. These re-

sults are summarized in the following theorem:

Theorem 1.2 The same lower bound as in Theorem 1.1

holds for ABPs computing the determinant over any of the

following algebras:

1. The algebra of d × d upper triangular matrices over a

field F of characteristic 0, for any d ≥ 2.

2. The quaternion algebra, and indeed all higher Clifford

algebras.‡

3. The group algebra of any finite, non-abelian group G
over any algebraically closed field F of characteris-

tic 0. (I.e., the algebra whose elements are F-vectors

indexed by group elements, with multiplication inher-

ited from the group.)

To conclude this introduction, we briefly mention some

related work on lower bounds for the determinant and

permanent in other restricted models of computation. In

addition to the non-commutative case studied here and

in [18], exponential lower bounds are known for other re-

stricted models including formulas of depth 3 (over finite

fields) [10, 11] and various restricted classes of multilinear

formulas [19, 21]. In a recent breakthrough, Raz [20] ob-

tained a super-polynomial bound (of the form nΩ(log n)) on

the size of an arbitrary multilinear formula for the perma-

nent or the determinant (over any field). By contrast, the

best known lower bound for the size of general arithmetic

formulas for the determinant is Ω(n3) [12].

The remainder of the paper is organized as follows.

In Section 2 we provide necessary background on ABPs

and polynomial identities. In Section 3 we review Nisan’s

framework for lower bounds based on rank, and extend it to

general algebras with polynomial identities. We apply this

framework to obtain an exponential lower bound for matrix

algebras (Theorem 1.1) in Section 4, and for several other

algebras (as enumerated in Theorem 1.2) in Section 5. We

conclude with a discussion of some limitations of our re-

sults, and some suggestions for future work, in Section 6.

2. Background

2.1. Algebras with polynomial identities

Let F be a field and A an associative algebra over F, or

an F-algebra (i.e., A is a vector space over F together with a

distributive multiplication operation). Note that we will al-

ways assume that multiplication in A is associative, but it

‡ See, e.g., [14] for a definition. These algebras were used in [5] in con-
nection with approximating the permanent.



need not be commutative. We also assume the existence of

a multiplicative unity. Familiar examples of F-algebras are

the following:

1. F〈X〉, the free algebra over F generated by a countable

set of indeterminates X = {x1, x2, . . .}, correspond-

ing to all polynomials with coefficients in F in which

no non-trivial relationships exist between the indeter-

minates.

2. F[X ], the standard polynomial ring over F, corre-

sponding to polynomials over F in which the indeter-

minates commute.

3. The matrix algebra Matd(F), consisting of all d × d
matrices with entries in F.

4. For any group G, the group algebra FG, whose

elements are vectors of the form
∑

g∈G cgg
with cg ∈ F, with multiplication defined by

(
∑

g∈G agg)(
∑

h∈G bhh) =
∑

g,h∈G agbhgh.

We now introduce the central concept of polynomial

identities, which we shall use to characterize different F-

algebras. We shall limit our treatment to the essentials; for

more background on this topic, see the monograph [7].

Definition 2.1 Let A be any algebra over F. A polynomial

z(x1, . . . , xm) ∈ F〈X〉 is a polynomial identity of A if and

only if z(a1, . . . , am) = 0 for all a1, . . . , am ∈ A.

It is well known (see, e.g., [7]) that the set of all polynomial

identities of a given algebra A forms a T-ideal of F〈X〉, i.e.,

a two-sided ideal that is closed under all endomorphisms

of A.§ Thus if z(x1, . . . , xm) is an identity of A, then sub-

stitution for each of the xi by an arbitrary element of F〈X〉
also yields an identity. We denote this T-ideal by T (A). We

say that a set of identities B ⊆ F〈X〉 is a basis or generat-

ing set of T (A) if every element of T (A) can be expressed

as a linear combination of the form
∑

ℓ

αℓzℓ(g1ℓ, . . . , gmℓ)βℓ,

with zℓ ∈ B and αℓ, βℓ, giℓ ∈ F〈X〉.
For example, the free algebra F〈X〉 has no non-trivial

identities, while any commutative algebra over a field F of

characteristic 0 has a generating set consisting of the sin-

gle identity x1x2 − x2x1. The study of polynomial identi-

ties has been an active topic in algebra for the past fifty years

(see [7] for a survey), but it remains an important open prob-

lem to find (minimal) generating sets for most widely stud-

ied algebras.¶ A celebrated theorem of Amitsur and Lev-

§ Indeed, there is a 1-1 correspondence between the T-ideals of F〈X〉
and the varieties of algebras satisfying a given set of polynomial iden-
tities.

¶ It is known that any algebra over a field of characteristic 0 has a finite
generating set for its polynomial identities [13].

itzki [1] says that the matrix algebra Matd(F) satisfies the

identity s2d, where sk is defined as

sk(x1, . . . , xk) =
∑

σ∈Sk

sgn(σ)

k∏

i=1

xσi

and is known as the standard identity of degree k. (Note that

the commutative identity x1x2 − x2x1 is the standard iden-

tity s2; the standard identities can be viewed as natural, pro-

gressively weaker generalizations of commutativity.) More-

over, Matd(F) satisfies no identities of lower degree. For

d = 2 (the 2 × 2 matrix algebra), it has been shown rela-

tively recently by Drensky [6] that, if F has characteristic 0,

then s4 together with the Hall identity

h(x1, x2) = [[x1, x2]
2, x1],

(where [a, b] denotes the “commutator” ab−ba) form a min-

imal generating set. This fact will be crucial to the present

paper. Generating sets (let alone minimal ones) for Matd(F)
are not known for any d > 2; indeed, this remains one of the

central open questions in the area of polynomial identities.

(See [4] for recent computer-assisted efforts in this direc-

tion.) Note, however, that any identity satisfied by Matd(F)
for d > 2 is also satisfied by Mat2(F) (but not conversely).

Another fact that will be useful later is that, if F has char-

acteristic 0, then for any F-algebra A the T -ideal T (A) of

polynomial identities of A has a generating set consisting

entirely of multilinear identities. (See [7, Thm 4.3.2] for a

proof; a polynomial f(x1, . . . , xn) is considered multilinear

if xi has degree 1 in each monomial of f for all 1 ≤ i ≤ n.)

From this it is straightforward to deduce that, if z is a poly-

nomial identity of A, then all the homogeneous components

of z are themselves identities.

2.2. Algebraic branching programs

Algebraic branching programs were introduced by

Nisan [18] as an algebraic analog of standard (arith-

metic) branching programs.

Definition 2.2 An algebraic branching program (ABP) is a

directed acyclic graph with one source and one sink. The

vertices of the graph are partitioned into levels numbered

from 0 to d (the degree of the ABP), and edges may only go

from level i to level i + 1. The source is the only vertex at

level 0 and the sink is the only vertex at level d. Each edge

is labeled with a homogeneous linear polynomial in inde-

terminates xi (i.e., a function of the form
∑

i cixi, with co-

efficients ci ∈ F). The size of an ABP is the number of ver-

tices.

An ABP computes the degree-d homogeneous polyno-

mial in F〈X〉 that is the sum, over all paths from the source

to the sink, of the product of the linear functions associated



with the edges along that path. Figure 1(a) shows a toy ex-

ample of a branching program that computes f(x1, x2) =
x2

1 + 2x1x2 + x2
2 in R〈X〉. Note that the order of multipli-

cation is important and follows the order of the paths.

(b)

sink

sourcesource

(a)

sink

x1 + 2x2 x1 + x2

x1 + x2
x2

x2

x1

Figure 1. (a) An ABP that computes x2
1+2x1x2+x2

2

over R〈X〉; and (b) an ABP that computes the same

function over R.

For a homogeneous polynomial f ∈ F〈X〉 over n vari-

ables x1, . . . , xn, the branching program complexity B(f)
is defined as the size of a smallest ABP that computes f .

(We shall see in the next section that B(f) = 4 for the

above polynomial f , so the ABP in Figure 1(a) is optimal.)

We stress that the original concepts of ABPs and branch-

ing program complexity refer to computation in the free al-

gebra F〈X〉, where there are no non-trivial relations

among the indeterminates xi. However, we can general-

ize them rather naturally to describe computation over any

F-algebra A:

Definition 2.3 An algebraic branching program computes

a function f over A if and only if, for all substitutions of the

indeterminates xi by values ai ∈ A, the output of the ABP

is f(ai).

The branching program complexity of f over an algebra A
will be denoted by BA(f), and is defined as the size of the

smallest ABP that computes f over A. (Note that the un-

adorned notation B(f) is reserved for the free algebra com-

plexity of f .)

These definitions are intended to capture the idea that,

in a specific algebra A, branching programs may be able

to take advantage of polynomial identities in A to reduce

the complexity of computing some functions. As an ex-

ample, suppose we are working in R (viewed trivially as

an R-algebra). Then the branching program shown in Fig-

ure 1(b) computes the same toy polynomial f as above by

making use of the identity x1x2−x2x1 = 0 to instead com-

pute the equivalent polynomial x2
1 + x1x2 + x2x1 + x2

2.

Clearly since f has degree 2 this ABP must be optimal, and

so BR(f) = 3.

Although it is not a major concern of this paper, we note

that the measure B(f) can be related to other measures such

as formula size F (f). For example, for any homogeneous

polynomial f of degree d, we have (see [18])

B(f) ≤ d(F (f) + 1); F (f) ≤ B(f)O(log d).

2.3. ABPs for the determinant

We conclude this section by discussing ABPs in the con-

text of the determinant function, which will be our main ap-

plication. The determinant of an n × n matrix with entries

x11, . . . , xnn is defined by

detn(x11, . . . , xnn) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

xi,σi.

As explained in the introduction, we are interested in

the branching program complexity of detn (as a func-

tion of n) over various F-algebras A. Nisan showed in [18]

that B(detn) = 2n over the free (real) algebra R〈X〉. Re-

call that this algebra is non-commutative, and indeed has

no interesting structure. At the other extreme, we may con-

sider the situation in which we are working over a commu-

tative algebra, such as R itself. In this setting there exist

polynomial size ABPs for detn:

Theorem 2.4 Let A be any commutative algebra over a

field F. Then BA(detn) ≤ O(n3).

Note that some well-known determinant algorithms, such

as Gaussian elimination, cannot be formulated as ABPs.

However, there are a number of polynomial-time combina-

torial algorithms (e.g., [9, 16, 17, 22]) that can be used to

prove Theorem 2.4. For completeness, and because it was

not originally phrased as an ABP, we provide in Appendix A

a sketch of one of these, due to Mahajan and Vinay [16].

In the remainder of the paper, our goal will be to under-

stand the complexity of computing the determinant in alge-

bras between these two extremes.

3. A framework for lower bounds

In [18] Nisan introduced a characterization of the ABP

complexity B(f) (over the free algebra F〈X〉) in terms of

the ranks of certain matrices describing the combinatorial

structure of the monomials of f . In this section we first

briefly describe Nisan’s framework, and then extend it to

computation over general F-algebras.

Let f(x1, . . . , xn) be a homogeneous polynomial of de-

gree d. For each 0 ≤ k ≤ d, Mk(f) denotes an nk × nd−k

matrix with entries in F as follows. Each row of Mk(f) cor-

responds to an (ordered) monomial of degree k, and each



column corresponds to a monomial of degree d−k; the ma-

trix entry at position (xi1 · · ·xik
, xj1 · · ·xjd−k

) is the coef-

ficient of the combined monomial xi1 · · ·xik
xj1 · · ·xjd−k

in f .

The following theorem gives a precise relationship be-

tween B(f) and the matrices Mk(f):

Theorem 3.1 (Nisan [18]) For any homogeneous polyno-

mial f ∈ F〈X〉 of degree d,

B(f) =

d∑

k=0

rank(Mk(f)).

By applying this theorem to the determinant function, Nisan

shows that B(detn) = 2n. (Indeed, this result applies to

any polynomial that is weakly equivalent to the determi-

nant, where two polynomials f and g are weakly equiva-

lent if for each monomial in f there exists a monomial in g
consisting of the same variables (possibly in a different mul-

tiplicative order and with a different non-zero coefficient),

and vice versa. The permanent is an example of such a func-

tion.)

We now extend Nisan’s results to handle not just F〈X〉,
but all F-algebras for fields F of characteristic 0. In particu-

lar, we characterize BA(f) in terms of the polynomial iden-

tities of A as follows:

Theorem 3.2 Let F be a field of characteristic 0, f ∈ F〈X〉
be a homogeneous polynomial of degree d, and A be any F-

algebra. Then if f /∈ T (A) (i.e., if f is not identically zero

over A), the ABP complexity of f over A is given by

BA(f) = inf
z(·)≡0

B(f + z) = inf
z(·)≡0

d∑

k=0

rank(Mk(f + z)),

where the infimum is over the zero polynomial and all

degree-d homogeneous polynomial identities z of A.

Proof: Let P be a branching program that computes

f(x1, . . . , xn) over A. By definition P computes a ho-

mogeneous formal polynomial g ∈ F〈X〉; we need to

show that g is of the form f + z for some homoge-

neous degree-d polynomial identity z of A.

This is almost immediate. Since P computes f over A,

we have by definition that f(a1, . . . , an) = g(a1, . . . , an)
for all instantiations ai ∈ A. Hence if we define the func-

tion z(x1, . . . , xn) = g(x1, . . . , xn) − f(x1, . . . , xn), we

have that z(a1, . . . , an) = 0 for all ai ∈ A, and thus z
is either the zero polynomial or a polynomial identity. But

z = g − f with f, g homogeneous; so, recalling from Sec-

tion 2.1 that each of the homogeneous components of z is

also a polynomial identity, and using the assumption that f
is not itself an identity, we may conclude that z is in fact ho-

mogeneous of degree d. Since P computes g = f + z, we

are done. The second equality in the theorem is a direct ap-

plication of Nisan’s result (Theorem 3.1).

We can see a very simple application of this general

framework by referring to the examples in Figure 1, where

we are computing f(x1, x2) = x2
1 + 2x1x2 + x2

2. For the

case of the free algebra R〈X〉, we apply Nisan’s theorem

and find that

M0(f) =
x

2
1 x1x2 x

2
2

1 [1 2 1]
, M1(f) = x1

x2

x1 x2[
1 2
0 1

]

and M2(f) = M0(f)T, which implies B(f) =
rank(M0(f)) + rank(M1(f)) + rank(M2(f)) =
1+2+1 = 4. Hence the ABP shown in Figure 1(a) is min-

imal.

When working over R rather than R〈X〉, we can add the

identity z(x1, x2) = x2x1 − x1x2 to obtain g(x1, x2) =
f(x1, x2) + z(x1, x2) = x2

1 + x1x2 + x2x1 + x2
2. We then

observe that

M0(g) =
x

2
1 x1x2 x2x1 x

2
2

1 [1 1 1 1]
, M1(g) = x1

x2

x1 x2[
1 1
1 1

]

and M2(g) = M0(g)T, so the ABP complexity of f over R

is BR(f) ≤ 1 + 1 + 1 = 3. Since this is clearly minimal (f
has degree 2), equality must hold and we confirm that the

ABP in Figure 1(b) is optimal.

In principle, then, given any function f , we can com-

pare its branching program complexity over any given alge-

bra A to its free-algebra complexity by determining all of

the polynomial identities of A and checking if any of them

are able to reduce the rank of the matrices Mk(f).

We conclude this section by noting that as a consequence

of the ABP model, the only identities we need to consider

in Theorem 3.2 are homogeneous (of the same degree as f ).

This might be seen as a weakness of our framework, as

one may conceivably be able to exploit non-homogeneous

identities to reduce the complexity of f . (The ABP model

is fully general for computation in the free algebra, for if

f is homogeneous then there is no advantage in allowing

the ABP to be non-homogeneous.) However, even allow-

ing non-homogeneous ABPs, we can obtain the bound

B̂A(f)2 ≥ C inf
z(·)≡0

B(f + z)

for a universal constant C, where B̂ is the size of the small-

est general ABP that computes f overA, and the infimum is

over the zero polynomial and all homogeneous identities z
of degree d. (For more precise definitions and a proof, see

Appendix B.) Thus at the cost of a square we can assume all

identities are homogeneous. Since our lower bounds will be

exponential, this square will affect only the constant in the

exponent.



4. Computing the determinant over matrix al-

gebras

As mentioned earlier, Nisan [18] showed that the ABP

complexity of the determinant over the free algebra ‖ F〈X〉
satisfies

B(detn) = 2n. (1)

In this section we prove a similar lower bound for a much

wider class of non-commutative algebras, namely, for all

matrix algebras over any field of characteristic 0. This is

Theorem 1.1 from the introduction, which we restate here:

Theorem 4.1 For any d ≥ 2, the ABP complexity of com-

puting the determinant over the d × d matrix algebra over

any field F of characteristic 0 is given by

BMatd(F)(detn) = 2n.

Proof: We observe that Nisan proves (1) via Theorem 3.1,

by showing that each of the matrices Mk(detn) has rank

exactly
(

n
k

)
. (This actually follows rather easily as the ma-

trices have a very special form.) Following our generalized

framework of Theorem 3.2, our task is to show that, for any

homogeneous, degree-n polynomial identity z of the ma-

trix algebra Matd(F), the rank of Mk(detn + z) remains at

least
(
n
k

)
. In other words, we have to show that no identity of

the matrix algebras can reduce the rank of Mk(detn). Note

that since any polynomial identity of Matd(F) for d > 2 is

also an identity for Mat2(F), it is sufficient to show this for

the identities of Mat2(F).
In fact, for each value of k, we will examine only a sub-

matrix of Mk(detn + z) and show that this submatrix al-

ready contains
(
n

k

)
linearly independent rows. We define our

submatrix as follows: for each subset S = {a1, . . . , ak} of

size k, 1 ≤ a1 < . . . < ak ≤ n, we keep those rows

that correspond to monomials of the form
∏k

j=1 xσj,aσj

for all permutations σ ∈ Sk; for each such subset, we as-

sume that its rows are contiguous in the submatrix. Simi-

larly, for each subset S′ = {bk+1, . . . , bn} of size n − k,

1 ≤ bk+1 < . . . < bn ≤ n, we keep those columns that cor-

respond to monomials of the form
∏n−k

j=1 xk+σj,bk+σj
for all

permutations σ ∈ Sn−k; these columns are also assumed to

be contiguous. Hence each pair of subsets (S, S′) defines a

“block” of size k! × (n − k)! in the submatrix.

We will denote this submatrix M̃k(detn + z), and also

denote by M̃k(detn) and M̃k(z) the submatrices created by

restricting Mk(detn) and Mk(z) to the same sets of rows

and columns. Note that M̃k(detn + z) = M̃k(detn) +

M̃k(z).

‖ In fact, Theorem 3.2 shows that Nisan’s lower bound also holds for
any algebra (over a field of characteristic 0) that does not satisfy any
polynomial identities.

We now analyze the structure of M̃k(detn) and M̃k(z)
in each of the (S, S′) blocks. Note that S and S′ correspond

naturally to two sets of variables, Γ(S) = {x1a1
, . . . , xkak

}
and Γ(S′) = {xk+1,bk+1

, . . . , xnbn
}, and that a non-zero

entry in an (S, S′) block corresponds to a monomial whose

variables are exactly those in Γ(S) ∪ Γ(S′). The analysis

of M̃k(detn) is straightforward: if S and S′ are disjoint

(equivalently, if their union is [n]), then the (S, S′) block

in M̃k(detn) will contain a single non-zero entry (either 1
or −1); otherwise, it is entirely zero.

The key to the rest of the proof is the following claim

about the structure of M̃k(z):

Claim 4.2 For any z ∈ T (Mat2(F)), the sum of the entries

of M̃k(z) in any (S, S′) block is zero.

Before proving the claim, we use it to complete the proof

of the theorem. We can think of M̃k(detn + z) as a large

matrix divided into a
(
n
k

)
×

(
n
k

)
grid of (S, S′) blocks. In

this grid, there is a diagonal of (S, S′) blocks whose entries

sum to ±1, but all other (S, S′) blocks have an entry sum

of 0. From this it is easy to see that rank(M̃k(detn + z)) ≥(
n

k

)
, as required.

To conclude, we supply the proof of the above claim.

Proof of Claim 4.2: Recall from Section 2.1 that any

z ∈ T (Mat2(F)) must be a sum of identities gen-

erated by the standard identity s4(x1, x2, x3, x4) =∑
σ∈S4

sgn(σ)
∏4

i=1 xσi and the Hall identity in two vari-

ables h(x1, x2) = [[x1, x2]
2, x1], as these form a basis

for T (Mat2(F)). In fact, we will prove a stronger ver-

sion of the claim by allowing z to take on a more gen-

eral form. Notice that both s4 and h can be generated by

the polynomial t(x1, x2, x3, x4) = [x1, x2][x3, x4]; specif-

ically, s4(x1, x2, x3, x4) is the sum of six terms of the

form t(xi1 , xi2 , xi3 , xi4) with appropriate signs, while

h(x1, x2) = t(x1, x2, x1, x2)x1 − x1t(x1, x2, x1, x2).
Hence any identity z in T (Mat2(F)) can be written in the

form

z =
∑

ℓ

αℓt(g1ℓ, g2ℓ, g3ℓ, g4ℓ)βℓ

where αℓ, βℓ, giℓ ∈ F〈X〉. Note that in order for z to be ho-

mogeneous of degree n, each of the αℓ, βℓ and giℓ must

also be homogeneous. Furthermore, since t is multilinear,

we can assume without loss of generality that αℓ, βℓ, and

the giℓ are all monomials.

We now show that for each ℓ, the sum of the entries of

Mk(αℓt(giℓ)βℓ) is zero over any (S, S′) block. We do this

by showing that any non-zero entry in an (S, S′) block is

canonically canceled by another entry in the same block.

Suppose αℓt(giℓ)βℓ is non-zero somewhere in an (S, S′)
block. Then the set of variables used in αℓ, βℓ and the giℓ is



exactly Γ(S)∪Γ(S′). Furthermore, there exists some order-

ing of g1ℓ and g2ℓ and of g3ℓ and g4ℓ (without loss of gen-

erality, say g1ℓ, g2ℓ and g3ℓ, g4ℓ) such that the first k vari-

ables of the resulting monomial αℓg1ℓg2ℓg3ℓg4ℓβℓ are ex-

actly those in Γ(S) and the last n − k variables are exactly

those in Γ(S′). This implies that (1) the variables used in

αℓ, g1ℓ and g2ℓ are contained in Γ(S); or (2) the variables

used in g3ℓ,g4ℓ, and βℓ are contained in Γ(S′). ((1) holds if

αℓ, g1ℓ and g2ℓ contain at most k variables in total, and (2)

holds if g3ℓ, g4ℓ and βℓ contain at most n − k variables in

total; note that both may hold.) If the former is true, then

the reordering g2ℓg1ℓg3ℓg4ℓ produces the same non-zero en-

try with opposite sign elsewhere. Otherwise, the reordering

g1ℓg2ℓg4ℓg3ℓ has the same effect.

This finishes the proof of the claim and theorem.

Remark: As with Nisan’s original result for F〈X〉, our the-

orem also holds for all polynomials that are weakly equiv-

alent to detn (as defined just after Theorem 3.1), using a

similar proof.

5. Other non-commutative algebras

In this section we combine our result for matrix alge-

bras in the previous section with some additional observa-

tions to obtain similar lower bounds for several other im-

portant classes of non-commutative algebras, as claimed in

Theorem 1.2 of the introduction.

5.1. Upper triangular matrices

Let UMatd(F) denote the set of d × d upper triangu-

lar matrices over a field F. Clearly UMatd(F) is a subal-

gebra of Matd(F). It turns out (see [7, Thm 5.2.1(i)]) that

the single identity t(x1, x2, x3, x4) = [x1, x2][x3, x4] used

in the proof of Theorem 4.1 is actually a generating set for

UMat2(F). Therefore, that proof actually establishes that

the ABP complexity of the determinant is exponentially

large even over UMatd(F), a stronger result.

Theorem 5.1 For any d ≥ 2, the ABP complexity of com-

puting the determinant over the algebra of d×d upper trian-

gular matrices over any field F of characteristic 0 is given

by

BUMatd(F)(detn) = 2n.

5.2. Group algebras

Let G be a finite group. The group algebra

of G over a field F, denoted FG, consists of ele-

ments of the form
∑

g∈G cgg for cg ∈ F, with ad-

dition defined in the natural way. Multiplication is

defined according to the group operation, namely:

(
∑

g∈G agg)(
∑

h∈G bhh) =
∑

g,h∈G agbhgh.

We will combine our result for matrix algebras in the pre-

vious section with some elementary representation theory

to prove an exponential lower bound on the ABP complex-

ity of computing the determinant over any non-commutative

group algebra, whenever F is algebraically closed and of

characteristic 0:

Theorem 5.2 Let G be a finite non-abelian group, and F

an algebraically closed field of characteristic 0. The com-

plexity of computing the determinant over the group alge-

bra FG is given by

BFG(detn) = 2n.

Proof: We show that if G is non-abelian, then any polyno-

mial identity satisfied by FG is also satisfied by Matd(F)
for some d ≥ 2. A direct application of Theorem 4.1 then

yields our result.

A classical fact from group representation theory tells us

that, since G is finite and non-abelian, it must have an irre-

ducible representation of degree at least two; i.e., there ex-

ists a homomorphism ρ : G → GLd(F) for some d ≥ 2
such that the image of G, {ρ(g) : g ∈ G}, has no nontriv-

ial invariant subspaces in Fd.

We can now apply the following result of Burnside (see,

e.g., [15]):

Lemma 5.3 (Burnside) Let H be a group of invertible d×d
matrices over an algebraically closed field F. Then H has

no nontrivial invariant subspaces in Fd if and only if H con-

tains d2 linearly independent matrices, i.e., if and only if the

F-span of H in Matd(F) is Matd(F) itself.

From this we see that the induced homomorphism on alge-

bras ρ̂ : FG → Matd(F) is surjective, and therefore any

polynomial identity satisfied by FG must also be satisfied

by Matd(F).

5.3. Quaternions and Clifford algebras

One of the most familiar examples of a non-commutative

algebra is Hamilton’s quaternions. This is a real algebra of

dimension four, with basis elements {1, i, j, k} and defin-

ing relations i2 = j2 = k2 = −1 and ij = k = −ji.
We can again apply our result on Mat2(F) to deduce an ex-

ponential lower bound for computing the determinant of a

quaternion matrix:

Theorem 5.4 Let H denote Hamilton’s quaternions. Then

BH(detn) = 2n.

Proof: We invoke the useful fact that, if F has charac-

teristic 0, the polynomial identities of an F-algebra do not

change when the base field F is extended. This fact is folk-

lore, but according to Drensky [8] can be traced back to [23,



Lemma 2.3]. Since both H and Mat2(R) become Mat2(C)
when the base field is extended from R to C, we deduce

that T (H) = T (Mat2(R)), i.e., the quaternions satisfy ex-

actly the same identities as the 2× 2 matrices. The theorem

now follows directly from Theorem 4.1.

This theorem can be immediately extended to all higher

Clifford algebras, as defined (e.g.) in [14]. The first three

Clifford algebras are CL1 = R, CL2 = C and CL3 = H;

the mth Clifford algebra CLm has dimension 2m−1 over the

reals, and is isomorphic to either Matd(F) or Matd(F) ⊕
Matd(F), for some d and F = R, C or H. (A more oper-

ational definition is given in [5]. Note that we are abusing

notation here because H is not a field.) We need only note

that CLm is contained in CLm+1 for all m ≥ 1, and there-

fore T (CLm+1) ⊆ T (CLm). Thus each CLm for m ≥ 3 in-

herits the lower bound for BH(detn) given in Theorem 5.4.

Our results on Clifford algebras are relevant to recent

proposals that reduce approximating the permanent of an

n × n 0, 1-matrix A to computing the determinant of a re-

lated matrix Â, obtained by replacing the 1-entries of A by

suitable random matrices. For example, Barvinok [3] has

shown that if detn(Â) can be efficiently computed when

each non-zero entry of Â is chosen independently from

a standard Gaussian distribution over a high-dimensional

real matrix algebra, then we obtain a polynomial time ap-

proximation algorithm for the permanent of A within ratio

(1 + ǫ)n for arbitrarily small ǫ > 0. More recently, Chien,

Rasmussen and Sinclair [5] showed that if we can compute

detn(Â) efficiently when each non-zero entry of Â is an

independent, uniformly random basis element of the Clif-

ford algebra CLm with m = O(log n), then we have a fully

polynomial randomized approximation scheme for the per-

manent.

Our results indicate that any attempt to implement these

approaches will require a determinant algorithm that cannot

be cast as an algebraic branching program, or will need to

use special statistical properties of the random matrix Â.

6. Discussion

As stated in the introduction, our main goal in this work

is to better understand the nature of non-commutative com-

putation, and the role played by commutativity in the design

of efficient algebraic algorithms. We have used the determi-

nant as a vehicle for these investigations. In this final sec-

tion, we briefly discuss some limitations of our results and

some ideas for further work.

6.1. Limitations

Our current results do not fully describe the computa-

tional power of commutativity in computing determinants.

While there remain some non-commutative F-algebras A

over which we have yet to determine BA(detn), a more im-

portant limitation derives from the ABP model. As currently

defined, an ABP sees an algebra only in terms of its polyno-

mial identities, and cannot exploit any additional structure it

may have. We now show two examples of this: Barvinok’s

symmetrized determinant and the Dieudonné determinant.

For an n × n matrix A over an F-algebra

A, the symmetrized determinant [3] is defined as

sdetn(A) = 1
n!

∑
σ∈Sn

∑
τ∈Sn

sgn(σ)sgn(τ)
∏n

i=1 aσi,τi.

Thus sdetn can be viewed as the average of the stan-

dard (Cayley) determinant detn over all n! possible row

orderings, and is in fact weakly equivalent to detn. There-

fore, for (say) A = Mat2(R) (so that the entries of A are

2×2 real matrices), Theorem 4.1 implies BA(sdetn) ≥ 2n;

however, Barvinok has shown that sdetn can in fact be com-

puted in polynomial time.∗∗ The key idea used is to operate

on the four entries of each 2 × 2 matrix separately, some-

thing an ABP cannot do.

If A is a matrix over a division algebra A (such as

the quaternions), we can define the Dieudonné determinant

Ddetn of A (see, e.g., [2]). This can be computed in polyno-

mial time using Gaussian elimination, which is made possi-

ble by the presence of inverses in A. While Ddetn(A) and

detn(A) are not equal in general, they are similar enough

for Ddetn(A) to be useful in the permanent estimators dis-

cussed in Section 5.3 (see [5]). Here, it is the ability to do

division that takes us outside the ABP model.

Note that neither of these examples shows that the stan-

dard determinant detn can be efficiently computed over

a specific non-commutative algebra; however, they do

demonstrate the importance of considering more gen-

eral models of computation.

6.2. Some open questions

Within the ABP model discussed in this paper, a num-

ber of open questions suggest themselves. Firstly, it would

be interesting to complete our picture of which non-

commutative algebras, if any, allow for polynomial-sized

ABPs for the determinant. While our approach thus far ap-

pears ad hoc in that we have focused on specific ex-

amples of algebras, there may not in fact be too many

classes of polynomial identities that we still need to exam-

ine. Note that our analysis of the degree-four polynomial

identity t(x1, x2, x3, x4) = [x1, x2][x3, x4] already cov-

ers a large spectrum of identities. We feel that an important

gap here in both our understanding and our proof tech-

nique is the effect of polynomial identities of degree 3,

such as the standard identity s3, on the rank of the ma-

trices Mk. Secondly, it would be interesting to extend

∗∗ More generally, if A is of finite dimension r, then sdetn can be com-
puted in time O(nr+3) [3].



our investigation of the role of commutativity to func-

tions other than the determinant.

Another interesting set of issues concerns the ABP

model itself. To what extent can one strengthen the model

while retaining similar lower bounds for determinant com-

putation over (say) matrix algebras? One natural extension

would allow an ABP computing over a matrix algebra to ac-

cess the individual components of its input matrices; as

we saw above, this is helpful in computing the sym-

metrized determinant sdetn (though we do not know what

happens for detn itself). Similarly, in algebras with invo-

lution (such as the Clifford algebras), we might allow an

ABP to use the involutions of its input variables. More am-

bitiously, we might consider more general models of

computation, such as those capable of implementing Gaus-

sian elimination.
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Appendix

A. An O(n3)-size ABP for the determinant

over commutative algebras

As claimed in Theorem 2.4, we sketch without proof an

algebraic branching program of size O(n3) for computing

the determinant of an n×n matrix A = (aij) over any com-

mutative algebra A, based on an algorithm of Mahajan and

Vinay [16].

We first think of A as a weighted directed graph in

which the vertices are labeled 1, . . . , n and each edge (i, j)
has weight aij . A closed walk on this graph is a path

(v1, . . . , vk) (starting from v1 and moving to vk before re-

turning to v1 along edge (vk, v1)) in which v1 appears only

once and is the vertex with smallest label on the path (also

called the head). A closed walk sequence is an ordered se-

quence of closed walks whose total length is n and whose

heads are in strictly increasing order. The weight of a closed

walk sequence is the product of the weights of the edges it

contains.

Let Cn denote the set of all closed walk sequences, and

for each C ∈ Cn, let w(C) denote the weight of C and

sgn(C) = (−1)n+k, where k is the number of closed walks

in C. Note that the sum of sgn(C)w(C) over only those

closed walk sequences that are cycle covers of the graph is

exactly the determinant of A. Moreover, Mahajan and Vinay

show that in fact detn(A) =
∑

C∈Cn
sgn(C)w(C), where

the sum is over all closed walk sequences. The proof of this

fact relies on commutativity of the matrix entries aij to en-

sure that the contributions of closed walk sequences that do

not correspond to cycle covers cancel. (Cancellations occur

between closed walk sequences in which the same edges ap-

pear but in different orders.) Mahajan and Vinay then give

a simple dynamic programming algorithm for computing

this sum, which can be interpreted as an algebraic branch-

ing program as follows.

The ABP has depth n. A vertex at level i, 1 ≤ i ≤
n − 1, is labeled with a triple (p, h, v) with p ∈ {0, 1},

h ∈ {1, . . . , n}, and v ∈ {1, . . . , n}. The function com-

puted at such a vertex (i.e., the function computed by the

ABP having this vertex as its sink) is the sum of the weights

of all valid length-i prefixes of closed walk sequences in

which the parity of the number of closed walks completed

so far is p, the head of the walk currently being constructed

is h, and the current end vertex of this walk is v. There

are edges going from level i to level i + 1 as follows. Ver-

tex (p, h, v) at level i < n − 1 is connected to all valid

(p, h, u) at level i + 1 by an edge with label xvu (corre-

sponding to extending the current walk to vertex u), and to

all valid (1 − p, h′, h′) by an edge with label xvh (corre-

sponding to completing the current closed walk and start-

ing a new one with head h′). Finally, vertex (p, h, v) at level

n− 1 is connected to the sink (the only vertex at level n) by

an edge with label (−1)n+p+1xvh (corresponding to com-

pleting the last closed walk and incorporating the sign of

the closed walk sequence). This algebraic branching pro-

gram has size O(n3) (O(n2) vertices at each of O(n) lev-

els), and it is straightforward to check that it computes the

above sum over all closed walk sequences.

B. General algebraic branching programs

We formalize and prove the claim from Section 3 that

allowing general (non-homogeneous) polynomial identities

and ABPs costs us only a square in our lower bounds.

First consider a generalized setting for Theorem 3.2, in

which the ABP model is extended in a natural way to al-

low computation of non-homogeneous polynomials. This is

done by allowing the edge labels to be arbitrary linear poly-

nomials (including constants) and dropping the requirement

that the graph be leveled. Arguing exactly as in the proof of

Theorem 3.2, we have that for any homogeneous f of de-

gree d,

B̂A(f) = inf
ẑ(·)≡0

B̂(f + ẑ), (2)

where B̂ denotes the smallest general ABP that computes

a particular function and the infimum is over the zero poly-

nomial and all identities ẑ (not necessarily homogeneous)

of A. However, recall from Section 2.1 that for any such ẑ,

its homogeneous components are also identities; thus, in

particular, the degree-d homogeneous component of f + ẑ
is of the form f + z, where z is homogeneous of degree d.

Now, given a (general) ABP of size s and depth ℓ for

a function g, it is not hard to construct (see [21]) a (stan-

dard) ABP of size O(sℓ) that computes each of the degree-

d homogeneous components of g. Thus there is an ABP of

size O(sℓ) = O(s2) that computes f + z. Combining this

with (2) gives

B̂A(f)2 ≥ C inf
z(·)≡0

B(f + z)

for a universal constant C, where the infimum is over the

zero polynomial and all homogeneous identities z of de-

gree d. This is what we claimed.


