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Abstract. This paper gives a brief overview of techniques developed recently for

analyzing the rate of convergence to equilibrium in Markov chain Monte Carlo exper-

iments. A number of applications in statistical physics are mentioned, and extensive
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1. Introduction. This short paper is a summary of a talk given at

the workshop on \Numerical Methods for Polymeric Systems" at the IMA

in May 1996. The purpose of the talk, and of this paper, is to bring to the

attention of the computational physics and chemistry communities some

techniques developed recently in computer science and discrete probability

for the analysis of convergence rates of Markov chains. When applied to

Markov chains arising in Monte Carlo experiments on physical systems,

these techniques can potentially yield rigorous bounds on the time to reach

equilibrium; this in turn leads to precise performance guarantees for the

experiments, in contrast to the heuristic error bars that are conventionally

quoted.

Since the techniques are well documented in survey articles and spe-

ci�c applications elsewhere (see, e.g., [9,19,21,36] and the references given

there), this paper will aim only to summarize the basic ideas from the per-

spective of statistical mechanics applications. Pointers to the literature are

provided for those wishing to dig deeper. My hope is that practitioners in

the Monte Carlo world will perceive the value of these analytical tools, and

apply them (probably with re�nements) to their own experiments. There

is by now a su�cient body of examples to suggest that this line of enquiry

should be quite fruitful.

1.1. The framework. We begin by introducing a general framework

that captures the essence of Markov chain Monte Carlo experiments. Con-

sider a statistical mechanical system that has a �nite set 
 of possible

con�gurations. Let w : 
 ! R

+

be a positive function de�ned on 
; we

shall refer to w(x) as the weight of con�guration x. Typically, w will take

the form w(x) = exp

�

� �H(x)

�

, where H(x) is the energy of x and the

�
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constant � depends inversely on temperature. The goal of a Monte Carlo

experiment can then be simply stated as follows:

Sample con�gurations at random from the probability distribution

�(x) = w(x)=Z 8x 2 
;

where Z =

P

x2


w(x) is a normalizing constant, known as the

partition function of the system. (When w has the exponential

form stated above, � is of course the Gibbs distribution.)

As a concrete example, consider the ferromagnetic Ising model on a

�nite graph G = (V;E) (which might typically be a region of the 3-

dimensional rectangular lattice). The vertex set V , which we shall take

to be [n] = f1; 2; : : :; ng, represents the sites, and the edge set E the pairs

of adjacent (or neighboring) sites. A con�guration x of the system is an

assignment of �1 spins to each site, i.e., 
 = f+1;�1g

[n]

; we shall write

x

i

for the spin at site i. The energy of con�guration x is

H(x) = �J

X

fi;jg2E

x

i

x

j

;

where J > 0 is the interaction energy. (Since the system is ferromagnetic,

con�gurations with larger numbers of aligned neighbors have lower energy.)

With � = 1=kT , where k is Boltzmann's constant and T is temperature,

the Gibbs distribution is then

�(x) = exp

�

��H(x)

�

=Z;

and the weight function is w(x) = exp

�

��H(x)

�

.

Note that in this example j
j = 2

n

, where n is the volume (number

of sites). Thus the con�guration space is exponentially large as a function

of the size of the system, making exhaustive enumeration of it infeasible.

This is a property shared by all statistical mechanical systems.

The size of the con�guration space, and the complexity of the distri-

bution �, motivate the Monte Carlo approach. The idea is to construct

a discrete-time ergodic Markov chain (X

t

)

1

t=0

whose state space is 
 and

which converges to the desired equilibrium (or stationary) distribution � as

t!1, regardless of the initial state X

0

. This much is usually a straightfor-

ward task.

1

All that is needed is to de�ne a connected neighborhood struc-

ture on 
, i.e., a connected graph whose vertices are con�gurations x 2 
.

This is usually done by introducing edges between con�gurations which dif-

fer by some small local perturbation;

2

for example, in the Ising model the

1

Though of course it is not so straightforward to construct a chain in which the

convergence is fast; we will have a lot more to say about this shortly.

2

Non-local perturbations are also possible, and potentially very powerful: perhaps

the most famous example is the Swendsen-Wang algorithm for the Ising and Potts mod-

els [37].
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neighbors of a con�guration x might be all those con�gurations obtained

from x by 
ipping the spin value at a single site. Generally, we will write

N (x) for the set of neighbors of x.

Given such a neighborhood structure, a Markov chain with the desired

properties is immediately obtained using the Metropolis rule. If the chain

is at state

3

X

t

= x at time t, a transition is made to a new state X

t+1

as

follows:

select a neighbor y of x with probability q(x; y)

with probability min

�

w(y)

w(x)

; 1

	

, set X

t+1

= y

else set X

t+1

= x

Here q(x; �) is a probability distribution over N (x) for each x 2 
, and

the function q is symmetric, i.e., q(x; y) = q(y; x). We may in fact allow

P

y2N (x)

q(x; y) < 1, in which case we set X

t+1

= x with the remaining

probability. The simplest choice for q is to set q(x; y) = �

�1

for all pairs

of neighbors x; y, where � = max

x2


jN (x)j is the maximum degree of

the neighborhood graph. It should be clear that implementing this Markov

chain is a simple task, requiring knowledge only of the local neighbor-

hood N (x) and the weight function w (and not of global quantities such

as the partition function Z).

We write P (x; y) for the transition probability Pr[X

t+1

= y j X

t

= x].

Note that P (x; y) > 0 if and only if x and y are neighbors (or if x = y).

Moreover, it is easy to check that the Markov chain is reversible with respect

to the distribution �, i.e., it satis�es the detailed balance conditions

�(x)P (x; y) = �(y)P (y; x) 8x; y 2 
:(1.1)

This immediately implies that the chain converges to �. (Strictly speaking,

we also need to ensure that the chain is aperiodic; this can be achieved easily

by the simple trick of adding an arti�cial holding probability to every state.

See section 1.2 for an example.)

To sample from �, it therefore su�ces to simulate the above process,

starting in some arbitrary initial con�guration, for su�ciently many steps;

the �nal con�guration will then be distributed (approximately) according

to �. This is the essence of the Markov chain Monte Carlo approach. The

central question, however, is the following:

How many steps is \su�ciently many" ?

Since it is in general not possible to determine whether a Markov chain has

reached equilibrium simply by observing it, we actually need an a priori

bound on its rate of convergence.

3

Henceforth, we shall use the terms \state" (of the Markov chain) and \con�gura-

tion" (of the physical system) interchangeably. Note that this deviates from some uses

of the word \state" in statistical physics.
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In practice, this problem is generally sidestepped by non-rigorous meth-

ods such as auto-correlation times or appeals to physical intuition. The

purpose of this paper is to demonstrate that the machinery exists for an-

swering the above question rigorously.

To phrase the question precisely we need a little notation. The vari-

ation distance between two probability distributions �; � on 
 is de�ned

by

k�� �k =

1

2

X

x2


j�(x)� �(x)j = max

S�


j�(S) � �(S)j:

Let p

t

(x; �) denote the distribution of the Markov chain at time t, given that

it starts in state X

0

= x. Following standard practice, we will measure the

distance of the chain from stationarity by the quantity

�

x

(t) = kp

t

(x; �)� �k:

It should be clear that �

x

(t) is directly related to error bars in statistical

estimates of quantities obtained from observations of the chain at time t.

Convergence of the chain means that �

x

(t) ! 0 as t ! 1, for all x.

To measure the rate of convergence, we introduce the quantity

�

x

(�) = minft : �

x

(t) � � for all t

0

� tg;

i.e., the time required to reduce the variation distance to �. We will refer

to �

x

(�) as the mixing time of the chain (from initial state x). Our goal will

be to calculate a priori upper bounds on the mixing time. These bounds

will tell us how long we need to run our Monte Carlo simulation in order

to be sure of achieving any speci�ed variation distance �, or equivalently,

any desired error bars in our experiment.

In the next two sections, we will describe two very di�erent approaches

to this problem: coupling and 
ows. Each of these has a powerful intuitive

appeal, and each has been successfully applied to the analysis of several

interesting Markov chains, both within statistical mechanics and outside.

Moreover, there are chains that are amenable to each of these approaches

but apparently not to the other.

We shall illustrate both approaches with a single toy example. This has

the advantage of keeping the technical di�culties to a minimum, though of

course it does not do justice to the full power of the techniques. For more

signi�cant examples, the reader is urged to consult the references provided

at the end of each section. In keeping with our desire not to obscure the

main ideas with technical details, we shall also be content with suboptimal

constants in our bounds. The reader should appreciate that these can (and

should) be signi�cantly sharpened in any real application.

1.2. A toy example. We close this introductory section by de�ning

the simple Markov chain which we shall use for illustration. The state
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space (set of con�gurations) will be 
 = f0; 1g

n

, the set of all 0-1 vectors

of length n; we shall write a vector x 2 f0; 1g

n

as (x

1

; : : : ; x

n

). The weight

function w will be constant, so the distribution � is uniform, i.e., �(x) =

2

�n

for all x 2 f0; 1g

n

. Con�gurations x; y are adjacent if and only if they

di�er in exactly one position. The Metropolis Markov chain in this case

is therefore simply nearest-neighbor random walk on the vertices of the

n-dimensional unit hypercube. (Another way to view this process is single

spin-
ip dynamics for the ferromagnetic Ising model with n sites in the

in�nite temperature limit.)

In order to avoid tiresome technical complications connected with pe-

riodicity, we add a holding probability of

1

2

to every state; that is, at every

step of the Markov chain, we either (with probability

1

2

) do nothing, or

(with probability

1

2

) make a step as above. Of course, this will slow down

the chain (and increase the mixing time) by at most a factor of 2, but makes

the results simpler to state; in practice, a much smaller holding probability

can be used.

In summary, then, our Markov chain makes transitions as follows from

any state x 2 
:

pick a position i 2 f1; : : : ; ng uniformly at random

with probability

1

2

, 
ip the ith bit of x (i.e., replace x

i

by 1� x

i

)

else do nothing

2. Coupling.

2.1. The idea. Coupling is an elementary probabilistic method for

bounding the mixing time of a Markov chain M by relating it to the stop-

ping time of an associated stochastic process. This process consists of a

pair (X

t

; Y

t

), evolving in time in such a way that

1. each of the processes (X

t

) and (Y

t

) is a faithful copy of M, given

initial states X

0

= x and Y

0

= y respectively; and

2. if X

t

= Y

t

, then X

t+1

= Y

t+1

.

We refer to such a process as a coupling for M.

The idea here is the following. Although each of (X

t

); (Y

t

), viewed

in isolation, behaves exactly like M, they need not be independent; on

the contrary, we will construct a joint distribution for the two processes in

such a way that they tend to move closer together. By the second condition

above, once they have met they must remain together at all future times.

For �xed initial states X

0

= x, Y

0

= y, we let T

xy

= minft : X

t

= Y

t

g,

i.e., the (random) time until the processes meet. The coupling time T ofM

is de�ned as the time that must elapse before the processes have met with

some prescribed probability, which we take to be 1�e

�1

. (There is nothing

magical about this constant; it merely a�ects the base of the logarithm in
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Theorem 2.1 below.) In other words, we de�ne

T = min

�

t : Pr[T

xy

> t] � e

�1

for all x; y

	

:

Now it is not hard to see that the coupling time provides a bound on

the mixing time of M. In fact, we can show:

Theorem 2.1. The mixing time of an ergodic Markov chain satis�es

�

x

(�) � T dln �

�1

e for all x 2 
:

Thus, to obtain an upper bound on the mixing time, it su�ces to �nd a

coupling with a small coupling time.

The proof of Theorem 2.1 is so simple that we sketch it here; a more

systematic development can be found in [1]. The key is the following gen-

eral observation known as the \coupling lemma," whose proof is an easy

exercise. Given any two random variables X;Y on 
 with distributions

�; � respectively, we have

k�� �k � Pr[X 6= Y ]:

To apply this in the context of our Markov chain, imagine that (Y

t

) is the

stationary process, i.e., Y

0

= y is distributed according to the stationary

distribution �, and hence the same holds for Y

t

at all later times t. Then,

by the coupling lemma applied to the random variables X

t

; Y

t

, we have

�

x

(t) � Pr[X

t

6= Y

t

] � max

x;y

Pr[T

xy

> t]:(2.1)

Also, by the de�nition of T we have, for any positive integer k and all pairs

x; y 2 
,

Pr[T

xy

> kT ] � e

�k

;(2.2)

to see this, consider a sequence of k epochs each of length T , during each

of which coupling fails to occur with probability at most e

�1

. Putting (2.1)

and (2.2) together yields the theorem.

Remarks (i) Theorem 2.1 has a converse which (very loosely stated) says

that there always exists a coupling that captures the time taken for the

chain to converge. For the details, see [15]. For applications of coupling to

more general processes see, e.g., the lectures by Lindvall [25] or the paper

by Thorisson [38].

(ii) It is often convenient to work with the expected coupling time, which we

de�ne as T = max

x;y

E (T

xy

), where E ( � ) denotes expectation. Applying

Markov's inequality to Theorem 2.1 shows that �

x

(�) � eT dln �

�1

e. This

is somewhat cruder than Theorem 2.1, but often easier to use in practice

when an upper bound on the expectation of T

xy

is readily available but its

distribution is more complicated. We shall use expectations in the example

in the next subsection.
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2.2. An example. Let us now apply Theorem 2.1 to obtain an upper

bound on the mixing time of our hypercube Markov chain from section 1.2.

First, we need to de�ne a suitable coupling. How can we de�ne a joint

distribution on two copies of this process so as to bring them together

quickly? The intuitively obvious idea is to make both processes choose the

same random bit at every step, thus tending to bring individual bits into

agreement.

To make this idea precise, it helps to rephrase the transitions of the

Markov chain very slightly. In state x 2 
, we do the following:

pick a position i 2 f1; : : : ; ng uniformly at random

pick a value b 2 f0; 1g uniformly at random

set x

i

= b

It should be clear that this is entirely equivalent to our original de�nition

at the end of section 1.2.

Now we can de�ne our coupling as follows. If the pair process (X

t

; Y

t

)

is in state (x; y) 2 
 �
, we do the following:

pick a position i 2 f1; : : : ; ng uniformly at random

pick a value b 2 f0; 1g uniformly at random

set x

i

= b and y

i

= b

Thus both copies of the process choose the same position i and the same

new value b for the associated bit.

It should be clear that this is a coupling: plainly, each copy viewed in

isolation is evolving exactly according to the original chain, so condition 1

is satis�ed. And the pair process can never cause agreeing bits to disagree,

so condition 2 is also satis�ed.

What is the coupling time? To analyze this, we introduce a measure

of distance between X

t

and Y

t

. Let D

t

denote the number of bit positions

in which X

t

and Y

t

di�er. Thus D

t

is a process taking integer values in the

interval [0; n], and D

t

= 0 if and only if X

t

= Y

t

. The quantity T

xy

is the

time required for D

t

to reach zero, given that X

0

= x and Y

0

= y.

How does D

t

change with time? The key observation is that, as soon as

a bit position i 2 f1; 2; : : : ; ng has been chosen, the values x

i

; y

i

agree, and

this persists for all times thereafter. This implies that D

t

is monotonically

decreasing; more precisely, it implies that, if D

t

= d, then

D

t+1

=

�

d� 1 with probability

d

n

;

d otherwise.

(2.3)

Thus, for any initial values x; y, the time T

xy

is stochastically dominated

by the random variable T

n

+T

n�1

+ � � �+T

1

, where T

d

is the time for D

t

to

decrease from d to d� 1. But from (2.3) T

d

is just the number of tosses of

a biased coin with heads probability

d

n

until the �rst head appears. Thus

E (T

d

) =

n

d

, and so E (T

xy

) �

P

n

d=1

E (T

d

) � n(lnn+ 
) as n!1, where
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 is Euler's constant. By Markov's inequality, as in Remark (ii) at the end

of the previous subsection, we have Pr[T

xy

> eE (T

xy

)] � e

�1

, and hence

T � max

x;y

eE (T

xy

) � en(lnn+O(1)).

Appealing to Theorem 2.1, we have therefore established:

Theorem 2.2. The mixing time of the hypercube Markov chain is

bounded above by

�

x

(�) � en

�

lnn+O(1)

�

dln �

�1

e:

This bound is in fact asymptotically tight, up to a small constant

factor; see [1].

Remarks (i) The reader familiar with discrete probability may have no-

ticed that a similar bound on the time for D

t

to hit 0 (with a slightly

better constant) could have been obtained immediately by analogy with

the coupon collector's problem: if each cereal box contains one of a set of

n di�erent coupons, each equally likely, how many boxes does one need to

buy in order to collect at least one copy of every coupon? The distribu-

tion of this random variable is well understood (see, e.g., Feller [13]). We

have presented the above more hands-on approach because it illustrates

the general form such arguments usually take in less tidy examples.

(ii) The following slightly more involved coupling shaves o� a factor of 2

from the bound of Theorem 2.2. As before, let (x; y) denote the state of the

pair process (X

t

; Y

t

), and now let A = fi

1

; : : : ; i

r

g be the set of positions

in which x; y di�er. Now let process X

t

choose position i 2 f1; : : : ; ng

uniformly at random. If i =2 A, let Y

t

choose the same i; if i = i

j

2 A,

let Y

t

choose i

j+1

(where we interpret i

r+1

as i

1

). In either case, let both

processes pick the same value b. The reader should check that this is also

a valid coupling. Now it should be clear that, under this coupling, (2.3)

becomes

D

t+1

=

8

<

:

d� 2 with probability

d

n

if d � 2;

0 with probability

d

n

if d = 1;

d otherwise.

Hence the time for D

t

to reach zero is stochastically dominated by the

random variable T

n

�

+ T

n

�

�2

+ � � �+ T

3

+T

1

, where n

�

= n if n is odd and

n

�

= n� 1 if n is even. This leads to a factor of 2 improvement.

2.3. Applications of coupling in statistical physics. Until re-

cently, applications of the coupling approach had been con�ned to Markov

chains that possess a high degree of symmetry, like the hypercube example

above. It was felt that coupling was not sophisticated enough to handle the

kind of complex chains that occur in Monte Carlo experiments in physics.

Recently, however, there have been some physical examples in which cou-

pling has turned out to provide the only known analysis.

The �rst of these was Jerrum's analysis of a Markov chain for the anti-

ferromagnetic q-state Potts model, where q is su�ciently large (speci�cally,



CONVERGENCE RATES FOR MONTE CARLO EXPERIMENTS 9

q must be at least 2d+ 1, where d is the maximum degree of the interac-

tion graph) [16]. The second was Luby, Randall and Sinclair's analysis

of Markov chains for several structures on 2-dimensional lattices, includ-

ing dimer coverings and Eulerian orientations (con�gurations of the ice

model) [27]. Other structures on 2-dimensional grids that have recently

been tackled are the 3-state Potts model (Madras and Randall [29]) and

independent sets, or con�gurations of the hard-core gas model (Luby and

Vigoda [28]). For a unifying view of some of these examples, and others,

see the interesting recent paper of Bubley and Dyer [6].

In all these cases, coupling is used to obtain an upper bound on the

mixing time of the form O(n

k

), where n is the volume and k is a small

constant and we have absorbed the usual dependence on ln �

�1

, as well as

constant factors, into the O. Note that such a bound with k = 1 is the best

we could possibly hope for for any Markov chain that makes only \local"

moves; and such a polynomial bound for any �xed k is quite non-trivial,

since the number of con�gurations in 
 is exponentially large as a function

of n. Currently, typical values of k are in the range [2::6], often rather too

big for Monte Carlo experiments on large systems. It is an area of active

research to tune the results so as to make k as small as possible.

The arguments in the above papers are quite straightforward, and only

slightly more complicated than that for the toy hypercube example above.

The principal complication is usually that the natural distance measure D

t

is not Markovian and not monotonically decreasing under the coupling,

as it was above. However, it is usually enough to show that the expected

change in D

t

at each time step is negative, and then appeal to a simple

martingale argument. These examples give much hope that other Markov

chains in statistical physics might be amenable to the coupling approach.

Another recent related development is due to Propp and Wilson [32].

They observe that, if the state space of the Markov chain is equipped

with a partial order with unique maximum and minimum elements a; b

respectively, and if the coupling preserves this order (in a certain strong

sense), then the coupling time is stochastically dominated by T

ab

, the time

for a pair of processes starting in the maximum and minimum states to

meet. This observation can dramatically simplify the task of bounding the

coupling time analytically. It also allows the coupling time to be estimated

rigorously by a simple experiment: namely, simulate the coupling with

X

0

= a and Y

0

= b until the processes meet. Propp and Wilson give some

examples from statistical mechanics where such a partial order exists. This

area seems ripe for further investigation.

We should also mention brie
y that coupling has been successfully ap-

plied to analyze the mixing time of a number of Markov chains arising in

computational applications outside statistical physics. Examples include

approximating the volume of convex bodies [7], generating acyclic orienta-

tions of certain graphs [5], and protocol testing [30].
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3. Flows.

3.1. The idea. The method of \
ows" is a more sophisticated ap-

proach to bounding the mixing time which has proved successful in han-

dling several rather complex Markov chains in statistical physics, including

ones related to monomer-dimer systems, the Ising model and self-avoiding

walks.

The intuition we are trying to capture here is the following: if a Markov

chain is \globally well connected," in the sense that it contains no bottle-

necks, then it should converge rapidly to equilibrium, i.e., the mixing time

should be small. The concept of \bottleneck" is most conveniently cap-

tured in the language of 
ow networks. We now proceed to set up the

appropriate framework.

We will view the Markov chain as a network whose vertices are the

elements of 
. There is a directed edge e = (x; y) between distinct states

x and y if and only if the transition probability P (x; y) > 0. This edge has

capacity c(e) = �(x)P (x; y), where as usual � is the stationary distribution.

We shall assume that the chain is reversible, as de�ned in equation (1.1);

this implies that to every edge e = (x; y) there corresponds a reversed edge

e = (y; x) with c(e) = c(e).

Our task is to route �(x)�(y) units of 
ow from x to y along the edges

of the network, for all ordered pairs of distinct states (x; y) simultaneously.

(We should think of there being a distinct \commodity" for each pair (x; y),

so that the 
ows between di�erent pairs do not interact.) Such a routing

is called a 
ow. The quality of the 
ow is measured as the maximum over

edges of the total 
ow (of all commodities) along the edge divided by the

capacity of the edge.

More formally, let P

xy

denote the set of all simple paths (i.e., paths

that touch each vertex at most once) from x to y in the network, and let

P =

S

(x;y)

P

xy

. A 
ow is a function f : P ! R

+

such that

X

p2P

xy

f(p) = �(x)�(y) 8x; y 2 
; x 6= y:

We extend f to edges in the obvious way: the 
ow along edge e is just

f(e) =

P

p3e

f(p). The cost of the 
ow f is then de�ned as

�(f) = max

e

f(e)

c(e)

:

Our earlier informal intuition can now be expressed as follows. If the

Markov chain supports a 
ow of low cost, then it can have no bottlenecks,

and hence its mixing time should be small. This intuition is formalized in

the following theorem.

Theorem 3.1. Let M be an ergodic reversible Markov chain with

holding probabilities P (x; x) �

1

2

at all states x. The mixing time of M
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satis�es

�

x

(�) � �(f)`(f)

�

ln�(x)

�1

+ ln �

�1

�

;

for any 
ow f , where `(f) is the length (number of edges) of a longest path

that carries non-zero 
ow in f .

Thus, in order to apply Theorem 3.1, we must �nd a 
ow f of low cost.

(The factor `(f) is rarely problematic since usually we route all 
ow along

geodesic paths and the diameter of the Markov chain is relatively small.)

Any such 
ow gives an upper bound on the mixing time.

Remarks (i) This theorem follows by combining Proposition 1 of [35]

and Corollary 6

0

of [35]. The proof proceeds via a bound on the second

eigenvalue of the transition matrix P , and is an instance of the general

technique of obtaining geometric bounds on eigenvalues. For more on this

large topic, see, e.g., [2,3,8,10,20,24,36].

(ii) As usual, the requirement that P (x; x) �

1

2

is introduced only to handle

periodic behavior in a way that simpli�es the statement of the theorem. In

practice, a much smaller holding probability can be used.

(iii) An alternative version of Theorem 3.1 has the quantity 8�(f)

2

in place

of �(f)`(f). Usually, however, this bound is inferior to that of Theorem 3.1.

For a detailed discussion of Theorem 3.1 and its relatives, see [35] and [10].

(iv) Theorem 3.1 has a suitably stated converse, which says (roughly) that

there always exists a 
ow whose cost is close to the mixing time. See

Theorem 8 of [35].

3.2. An example. We now apply Theorem 2.1 to obtain an upper

bound on the mixing time of our hypercube Markov chain from section 1.2.

To do this, we need to de�ne a suitable 
ow. How can we route 
ow

between all pairs of vertices of the hypercube in such a way that no edge is

overloaded? Let's consider the simplest type of 
ow, namely one in which

all the 
ow between a given pair of vertices (x; y) travels along a single

path, 


xy

. A canonical choice for 


xy

is the \bit-�xing" path, i.e., the path

which 
ips the bit values from x

i

to y

i

in the order i = 1; 2; : : : ; n.

More formally, this is the path whose ith edge is

�

(y

1

; : : : ; y

i�1

; x

i

; x

i+1

; : : : ; x

n

) ; (y

1

; : : : ; y

i�1

; y

i

; x

i+1

; : : : ; x

n

)

�

:

Note that some of these edges (those for which x

i

= y

i

) are self-loops, and

hence redundant; we eliminate these from the path. The length of the path

is then precisely equal to the number of positions in which x and y di�er.

Thus it is a geodesic (shortest path) between x and y.

Now in our 
ow f , we route all the (x; y) 
ow along the path 


xy

; i.e.,

we have f(


xy

) = �(x)�(y) for each x 6= y, and f(p) = 0 for all other

paths p. The intuition for this choice of 
ow is that, by symmetry of the

hypercube, the 
ow along every edge is the same. Since the total quantity

of all commodities 
owing in the system is

P

x 6=y

�(x)�(y) � 1 unit, and
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since no commodity travels a distance greater than n, the total 
ow

P

e

f(e)

along all edges is at most n. Now the number of edges is nN , where N = 2

n

is the number of vertices; so by symmetry we have f(e) �

n

nN

=

1

N

for

every edge e. But since the transition probability along every edge is

1

2n

,

the capacity of each edge is c(e) =

1

2nN

, so the cost of the 
ow is

�(f) = max

e

f(e)

c(e)

�

1=N

1=2nN

= 2n:

Finally, since `(f) = n, we can apply Theorem 3.1 to obtain the fol-

lowing bound on the mixing time:

Theorem 3.2. The mixing time of the hypercube Markov chain is

bounded above by

�

x

(�) � 2n

2

(n ln 2 + ln �

�1

):

This bound is signi�cantly weaker than that of Theorem 2.2, and this

slackness is typical of this heavier-duty method. However, there are exam-

ples for which 
ows provide the only known approach to obtaining good

bounds on the mixing rate (see section 3.3 below).

The above analysis of the cost of the 
ow leaves something to be desired

since it relies crucially on the strong symmetry properties of the hypercube,

and also on the fact that � is uniform. Obviously, interesting statistical

mechanical systems do not possess such a simple structure. We therefore

explain now an additional technique for analyzing the cost of a 
ow which

does not appeal to symmetry and which has proved essential in more com-

plex examples. For illustrative purposes we shall again use the above simple


ow f on the hypercube.

Recall that our goal is to bound the 
ow along any edge of the hyper-

cube. So let e = (z; z

0

) be any edge, where z = (z

1

; : : : ; z

i�1

; z

i

; z

i+1

; : : : ; z

n

)

and z

0

= (z

1

; : : : ; z

i�1

; z

0

i

; z

i+1

; : : : ; z

n

), i.e., edge e 
ips the ith bit of z. Let

paths(e) denote the set of 
ow-carrying paths that pass through e, i.e.,

paths(e) = f(x; y) : 


xy

3 eg. The trick is to use the con�guration space 


itself to measure the 
ow along paths in paths(e). To do this, we set up a

mapping �

e

: paths(e)! 
 with the following properties:

1. �

e

is an injection; and

2. �(x)�(y) = �(z)�(�

e

(x; y)) for all (x; y) 2 paths(e).

Property 1 means that each 
ow-carrying path through e is uniquely en-

coded by an element of 
: this places a bound on the total number of such

paths. Property 2 means that this encoding scheme is \
ow-preserving,"

in the sense that the 
ow �(x)�(y) along each path is proportional to the

weight �(�

e

(x; y)) of its encoding in the stationary distribution (note that

�(z) is �xed).

Before we demonstrate the existence of such a mapping �

e

for our

hypercube example, let's �rst see that it will immediately give us a bound
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on f(e). For we have

f(e) =

X

p3e

f(p) =

X




xy

3e

�(x)�(y)

=

X




xy

3e

�(z)�(�

e

(x; y))

� �(z):

The second line here follows from property 2, and the third line from prop-

erty 1 (since �

e

is an injection and � is a probability distribution). Finally,

since c(e) = �(z)P (z; z

0

), we have �(f) = max

e

f(e)

c(e)

�

1

P (z;z

0

)

= 2n, the

same bound as we obtained earlier using the symmetry argument.

4

It remains to specify the mapping �

e

with the required properties;

here, of course, we will need to use some combinatorial insight about the

hypercube. Let (x; y) be any element of paths(e). What can we say about x

and y? Well, since 


xy

is a bit-�xing path that passes through the edge

e = (z; z

0

), and this edge 
ips the ith bit, it must be the case that the �rst

i� 1 bits of y are exactly the �rst i� 1 bits of z, and the last n� i+1 bits

of x are exactly the last n � i+ 1 bits of z. So, since z is �xed, to specify

x and y uniquely it is enough to record the �rst i� 1 bits of x and the last

n � i + 1 bits of y. Thus we de�ne the encoding

�

e

(x; y) = (x

1

; : : : ; x

i�1

; y

i

; y

i+1

; : : : ; y

n

);

which is certainly a valid member of 
.

Now this mapping satis�es property 1, since, as we have seen, we can

recover x and y uniquely from �

e

(x; y): to be precise, if we let �

e

(x; y) =

(u

1

; : : : ; u

n

) then we can write down the explicit expressions

x = (u

1

; : : : ; u

i�1

; z

i

; z

i+1

; : : : ; z

n

) and y = (z

1

; : : : ; z

i�1

; u

i

; u

i+1

; : : : ; u

n

).

It also satis�es property 2, trivially, since � is the uniform distribution.

5

This concludes the argument.

We stress that this second argument is much more general than the

�rst, and does not appeal to symmetry. Moreover, since it uses the space of

con�gurations 
 to measure 
ow implicitly, it does not require any explicit

4

The reader should observe that this argument is completely general and follows

only from properties 1 and 2 of the encoding function �

e

. The only place where we have

used anything speci�c to the hypercube is in plugging in the value of P (z; z

0

) in the �nal

step.

5

In view of this fact, we could have dispensed with property 2 in this simple exam-

ple. However, when � is non-uniform, as is often the case in more realistic examples,

property 2 becomes signi�cant. Actually, it is usually necessary to work with a slightly

weaker property: namely, that �(x)�(y) � ��(z)�(�

e

(x; y)), where � is not too large.

Exactly the same argument still holds, except that the factor � appears in the �nal

bound on �(f).
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enumerative information (such as knowledge of the partition function Z).

The power of this argument has been demonstrated in several quite complex

examples (see the next subsection).

3.3. Applications of 
ows in statistical physics. Historically, the

earliest non-trivial bounds on mixing times for Markov chains in statistical

physics were proved using 
ows (usually together with the above injective

mapping trick), and this remains the only known approach for most of

these examples.

6

The �rst application, which motivated the development

of 
ows, was to monomer-dimer systems [17,36] | see section 12.4 of [19]

for an improved version. This analysis was later extended to Monte Carlo

algorithms for dense dimer systems on arbitrary lattices [23] and for the ice

model [31]. As in the case of coupling, the bounds on the mixing time are

of the form O(n

k

), where n is the volume and k a small constant (which

one can presumably make smaller with more work).

In [18], Jerrum and Sinclair introduced a Markov chain for the ferro-

magnetic Ising model (with arbitrary interaction topology) based on the

high-temperature expansion, and proved a similar O(n

k

) bound on the mix-

ing time, at all temperatures. This remains the only known Markov chain

for the Ising model with a mixing time that is provably polynomial in the

volume at all temperatures. It is somewhat frustrating that Markov chains

such as that of Swendsen-Wang [37], which appear in practice to have excel-

lent convergence behavior (at least for lattices), still elude analysis. (Note

that the Swendsen-Wang Markov chain de�nitely does not converge fast

on arbitrary graphs, as was proved recently by Gore and Jerrum [14].)

Another model in statistical physics for which a Monte Carlo algorithm

has been successfully analyzed using 
ows is the self-avoiding walk model

for linear polymers. The Markov chain here is due to Berretti and Sokal [4],

and the analysis can be found in [33]. An earlier analysis using similar

geometric techniques appeared in [24].

Flows have also been used in the analysis of Markov chains with compu-

tational applications outside statistical physics. Three of the most notable

examples are approximating the permanent of a 0-1 matrix [17,36], count-

ing the bases of a class of matroids [12] and �nding a maximummatching by

\simulated annealing" [17,34]. A comprehensive recent survey of all these

applications (including those in statistical physics) can be found in [19].

Finally, we should mention a related geometric technique for analyzing

the mixing time based on a quantity known as the conductance, or Cheeger

constant. For a reversible Markov chain, the conductance is de�ned as

� = min

S�


0<�(S)�

1

2

c(S; S)

�(S)

;

6

The technique is often referred to as the method of \canonical paths," since in

most cases a single path 


xy

carries all the 
ow from x to y, as in the above hypercube

example.
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where c(S; S) denotes the capacity of the cut separating the set S of states

from its complement S = 
�S, i.e., c(S; S) =

P

x2S;y2S

c(x; y). Note that

� is an explicit measure of bottlenecks in the Markov chain. An analog of

Theorem 3.1 (see, e.g., Theorem 2 of [35]) gives the same bound on �

x

(�)

with �(f)`(f) replaced by 2�

�2

; thus the chain has a small mixing time if

its conductance is not too small.

It should come as no surprise to the reader that 
ows and conductance

are very closely related, via a form of max-
ow min-cut theorem. Indeed,

historically 
ows were developed as an indirect means of estimating the con-

ductance for use in the above bound (though the direct 
ow-based bound of

Theorem 3.1 has since proved to be sharper in most cases). For a detailed

exposition of this connection, see [35].

Conductance has been used directly (without the aid of 
ows) to ana-

lyze the mixing time of several important Markov chains with an inherently

\geometric" 
avor. These include the work of Dyer, Frieze and Kannan [11],

Lov�asz and Simonovits [26] and others on computing volumes (see [21] for

a survey) and Karzanov and Khachian on counting linear extensions of a

partial order [22].
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