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Abstra
t

Motivated by many re
ent algorithmi
 appli
ations, this paper aims to promote a systemati


study of the relationship between the topology of a graph and the metri
 distortion in
urred

when the graph is embedded into `

1

spa
e. The main results are:

1. Expli
it 
onstant-distortion embeddings of all series-parallel graphs, and all graphs with

bounded Euler number. These are the �rst natural families known to have 
onstant dis-

tortion (stri
tly greater than 1). Using the above embeddings, algorithms are obtained

whi
h approximate the sparsest 
ut in su
h graphs to within a 
onstant fa
tor.

2. A 
onstant-distortion embedding of outerplanar graphs into the restri
ted 
lass of `

1

-

metri
s known as \dominating tree metri
s". A lower bound of 
(logn) on the distortion

for embeddings of series-parallel graphs into (distributions over) dominating tree metri
s

is also presented. This shows, surprisingly, that su
h metri
s approximate distan
es very

poorly even for families of graphs with low treewidth, and ex
ludes the possibility of using

them to explore the �ner stru
ture of `

1

-embeddability.

�
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1 Introdu
tion

Let G = (V;E) be an undire
ted graph. Ea
h assignment of non-negative weights to the edges of G

naturally de�nes a metri
 spa
e (V; �),

1

where for ea
h pair of verti
es x; y 2 V , �(x; y) = d

G

(x; y)

is the shortest-path distan
e between them. We say that the metri
 � is supported on (or generated

by) G. Let (S; �) be another metri
 spa
e. An embedding of G into (S; �) is a mapping � : V ! S.

The distortion of � is the smallest value 
 � 1 su
h that

d

G

(x; y) � �(�(x); �(y)) � 
 d

G

(x; y) 8x; y 2 V:

Thus the distortion measures the maximum fa
tor by whi
h any distan
e is stret
hed in the em-

bedding. (This is a slightly restri
ted de�nition, in whi
h we assume that no distan
es are shrunk.

See Se
tion 2 for a general de�nition.)

In re
ent years, the idea of embedding a graph into a \ni
e" metri
 spa
e with low distortion has

emerged as a useful ingredient in the design and analysis of algorithms in a variety of domains.

\Ni
e" metri
 spa
es are those with well-studied stru
tural properties, su
h as Eu
lidean or `

1

spa
e, or weighted trees and distributions over them. A very in
omplete list of appli
ations in
ludes

approximation algorithms for graph and network problems, su
h as sparsest 
ut [26, 2℄, minimum

bandwidth [17, 8℄, low-diameter de
ompositions [26℄, and optimal group Steiner trees [19, 10℄, and

online algorithms for metri
al task systems and �le migration problems [4, 6℄. These appli
ations,

together with its intrinsi
 mathemati
al interest, have made the study of low-distortion embeddings

a signi�
ant �eld in its own right.

Most of the embeddings 
onsidered in the literature, notably [9, 4, 26℄, have been for metri
s

supported on general graphs, and give results that bound the worst-
ase distortion over all graphs.

However, when the input graph has some spe
ial stru
ture, it is plausible that better embeddings


an be found. This is quite intuitive: it is 
lear that any metri
 is generated by the 
omplete graph

on its points, while only a very limited set of metri
s 
an be generated by weighting the edges

of, say, a tree. Thus the 
omplexity of a metri
 generated by a graph G intrinsi
ally depends on

the topology of G. At present, very little is known about this interplay between the topologi
al

and metri
al properties of the graph; the sear
h for 
onne
tions between the two is emerging as

an intriguing and 
hallenging area. This paper fo
uses in parti
ular on the relationship between

the topology of graphs and their optimal (or near-optimal) embeddings into `

1

(i.e., real spa
e of

arbitrary dimension endowed with the `

1

metri
).

Embeddings into `

1

have been widely studied, and are of spe
ial importan
e due to their intimate


onne
tion with the problem of �nding a sparsest 
ut in multi
ommodity 
ow networks, whi
h in

turn is a key ingredient in approximate solutions of many other problems in su
h areas as VLSI

layout, network routing and eÆ
ient simulations of one network by another (see, e.g., [7, 25, 23℄).

Although �nding the exa
t sparsest 
ut is a 
omputationally hard problem, eÆ
ient approximation

algorithms for it 
an be obtained by embedding a natural metri
 asso
iated with the optimal

multi
ommodity 
ow into `

1

; the approximation ratio depends essentially on the distortion.

One motivation behind this paper is the intriguing 
onje
ture that any metri
 supported on a planar

graph (hen
eforth 
alled a planar metri
) 
an be embedded into `

1

with 
onstant distortion. More

1

More 
orre
tly, a semi-metri
 spa
e, sin
e we allow �(x; y) = 0 even when x 6= y.
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generally, we 
onje
ture that this holds for any family of graphs whi
h ex
ludes a �xed minor.

There is some eviden
e to suggest that planar metri
s are better behaved than general metri
s with

respe
t to `

1

-embeddability. In an interesting re
ent development, Rao [33℄ has given an O(

p

log n )-

distortion embedding of n-point planar metri
s into `

1

, while the lower bound for general metri
s is


(log n). This result, and the de
omposition lemma of [22℄ on whi
h it is based, attest to the spe
ial

stru
ture of planar metri
s. Further eviden
e for this is provided by Konjevod et al., who have

shown that any planar metri
 
an be embedded with a distortion of O(log n) into a distribution

over dominating tree metri
s [24℄, while the best known upper bound for general metri
s is still

O(log n log log n) [5℄.

Despite this promise, 
urrent te
hniques are apparently inadequate to resolve the above 
onje
ture.

For embeddings into `

1

, a 
elebrated result of Bourgain [9℄ tells us that any metri
 supported on

an n-vertex graph (i.e., any metri
 on n points) 
an be embedded into `

1

with distortion O(log n);

unfortunately, the embedding te
hnique is not sensitive to the topology and in
urs a 
(log n)-

distortion even for the metri
 generated by the unit-weighted path P

n

. Similarly, the method of

Konjevod et al. of �nding distributions over dominating trees is limited by a lower bound of 
(log n)

for embedding the n� n grid [1, 24℄. Lastly, Rao gives embeddings into `

1

by �rst embedding into

`

2

, an approa
h that is limited by a lower bound of 
(

p

log n ) for embedding even series-parallel

graphs into `

2

[27℄.

In this paper, we systemati
ally explore how the topology of a graph a�e
ts the distortion in-


urred by `

1

-embeddings of metri
s supported on it. Using the intimate 
onne
tion between `

1

-

embeddability of metri
s supported on a graph and multi
ommodity 
ow problems de�ned on it,

one 
an show that graphs all of whose metri
s are isometri
ally embeddable into `

1

(i.e., embed-

dable with distortion 1) are exa
tly the graphs whi
h ex
lude K

2;3

as a minor, whi
h essentially


orresponds to the 
lass of outerplanar graphs. This fa
t, whi
h rests on a theorem of Okamura and

Seymour [29℄, is our starting point. As a natural next step, we 
onsider the family of graphs whi
h

have K

4

as an ex
luded minor. These are graphs with treewidth 2, and essentially 
orrespond to

the familiar 
lass of series-parallel graphs. Our �rst main result is an expli
it `

1

-embedding of these

graphs with small 
onstant distortion. This is the �rst natural family known to have a 
onstant

distortion stri
tly bigger than 1. In addition, our 
onstru
tion implies a simple polynomial time

algorithm for �nding a sparsest 
ut within a 
onstant fa
tor of optimal in series-parallel graphs. In

a similar vein, we also show that any family of graphs with bounded Euler 
hara
teristi
 
an be

embedded into `

1

with 
onstant distortion. The te
hnique we use for these results is to expli
itly


onstru
t a set of 
ut metri
s whose sum approximates the original graph metri
 very 
losely. Cut

metri
s arise naturally in the study of `

1

-embeddability sin
e any `

1

-embeddable metri


2


an be

represented as a sum of 
ut metri
s with non-negative 
oeÆ
ients, and vi
e versa [15℄.

We then go on to study the approximation of a metri
 by a probability distribution over (domi-

nating) tree metri
s. Sin
e tree metri
s are `

1

-embeddable (and so are their non-negative 
ombi-

nations), this gives us an alternative to the 
ut metri
s approa
h. Furthermore, embeddings based

on su
h metri
s have proved parti
ularly easy to work with, and possess additional properties that

have been exploited in devising approximation algorithms and online algorithms for many problems

(see, e.g., [4, 6, 3, 19, 36, 10, 12℄). It is natural to ask if we 
an obtain the above embeddability

results for outerplanar and series-parallel graphs using these more restri
ted metri
s. The answers

2

We shall use the unquali�ed term \`

1

-embeddable" to mean \isometri
ally embeddable into `

1

".
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are mixed. On the one hand, we show that this is possible for outerplanar graphs, at a small 
ost:

we give an expli
it embedding for su
h graphs into a distribution over dominating tree metri
s with

distortion 8 (
ompared to distortion 1 obtained using 
uts). On the other hand, we prove a 
omple-

mentary negative result by exhibiting a family of series-parallel graphs for whi
h any distribution

over dominating tree metri
s must ne
essarily in
ur a distortion of 
(logn).

Thus we see that the tree metri
s approa
h breaks down at a surprisingly early stage (even for

graphs of treewidth 2), whi
h suggests that su
h embeddings by themselves o�er little hope for

exploring the �ner stru
ture of `

1

-embeddings. However, our results also indi
ate that 
ombining

dominating tree metri
s with 
ut metri
s is a potentially powerful te
hnique. Indeed, the graphs

whi
h give the lower bound for tree embeddings mentioned above 
an be shown to have extremely

simple `

1

-embeddings using 
uts. Combining these 
ut metri
 embeddings with tree embeddings in

a 
areful fashion leads us to an alternative 
onstant distortion embedding for series-parallel graphs.

The organization of the paper 
losely follows the above outline. After a short se
tion 
ontaining

some de�nitions and notation, we brie
y illuminate the 
onne
tion between 
ows and `

1

-embeddings

in Se
tion 3. The embeddings of series-parallel graphs and graphs with small Euler number are

des
ribed in Se
tion 4. Finally, in Se
tion 5, we present our positive and negative results on

embeddings into tree distributions, as well as the alternative embedding for series-parallel graphs.

2 De�nitions and notation

Metri
s: Let X be a set. A fun
tion d : X �X ! R

+

is 
alled a semi-metri
 if it is symmetri
,

i.e., d(x; y) = d(y; x) for all x; y 2 X, and d(x; x) = 0 for all x 2 X, and also satis�es the triangle

inequality, i.e., d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X. If, in addition, d(x; y) = 0 holds

only when x = y, then d is a metri
. In this paper, we shall only 
onsider �nite semi-metri
s.

The number of points will usually be denoted by n. Without risk of 
onfusion, the distin
tion

between metri
s and semi-metri
s may sometimes be blurred. For more details on many of the

metri
 
on
epts used here, see the book of Deza and Laurent [15℄.

Given two metri
 spa
es, (V; �) and (W;�), and a map f : V !W , de�ne the following quantities:

kfk = max

x;y2V

�(f(x); f(y))

�(x; y)

;

kf

�1

k = max

x;y2V

�(x; y)

�(f(x); f(y))

:

We say that f has 
ontra
tion kf

�1

k, expansion kfk and distortion D(f) = kfk � kf

�1

k. We say

that (W;�) r-approximates (V; �) (or that the distortion between � and � is at most r) if there

exists a map f : V ! W with D(f) � r. Often we shall 
onsider two distan
e fun
tions � and �

over the same vertex set V . In su
h 
ases, we shall assume that f is the identity map. Also, � will

be said to dominate � if for all x; y 2 V , �(x; y) � �(x; y).

Let G = (V;E) be an undire
ted graph. A metri
 (V; �) is supported on (or generated by) G if it is

the shortest path metri
 of G w.r.t. some non-negative weighting of the edges E. Unless spe
i�ed

4



otherwise, we shall assume that the edge-weights w(�) satisfy w(e) = �(e), where � is the shortest-

path metri
 of G with weights w. Observe that if it is not the 
ase, the edge e 
an be removed

without a�e
ting the metri
; su
h an e will be 
alled redundant.

For a set S � V , the 
ut metri
 Æ

S

on V is de�ned by Æ

S

(x; y) = 1 if jS\fx; ygj = 1, and Æ

S

(x; y) = 0

otherwise. An important observation is that the `

1

-embeddable metri
s on V are pre
isely those

metri
s whi
h 
an be written as a sum of 
ut metri
s on V with non-negative 
oeÆ
ients [15℄. One

impli
ation of this is that if two metri
s �

1

and �

2

on the same underlying set are `

1

-embeddable,

then so is their sum �

1

+ �

2

.

Finally, we use the following simple observation throughout the paper: if ea
h blo
k (i.e., bi
on-

ne
ted 
omponent) G

i

of a graph G 
an be embedded into `

1

with distortion D

i

, then G 
an be

embedded into `

1

with distortion max

i

D

i

. This immediately implies, in parti
ular, that any metri


supported on a tree T 
an be embedded isometri
ally into `

1

. (For a more dire
t proof of this

latter fa
t, let (S

e

;

�

S

e

) be the 
ut obtained by deleting an edge e in T ; it 
an be veri�ed that

� =

P

e2T

d

T

(e) � Æ

S

e

is isometri
 to the tree metri
 d

T

[15, Prop.11.1.4℄.)

Multi
ommodity 
ows: A multi
ommodity 
ow network (V;E; P ) is spe
i�ed by an undire
ted

graph G = (V;E), where E is the set of edges along whi
h 
ow 
an be routed, and a set P of

unordered pairs of verti
es in V between whi
h demands 
an be pla
ed. In the unrestri
ted 
ase,

where P 
onsists of all pairs of verti
es, we shall omit expli
it mention of P and refer to the network

simply as G = (V;E). Assigning non-negative 
apa
ities C to the graph edges E and demands D

to the pairs P gives us a parti
ular instan
e (V;C;D) of the multi
ommodity 
ow problem. For

ba
kground, see the survey by Shmoys [35℄.

The optimal solution to this problem is the maximum value � su
h that there is a multi
ommodity


ow f respe
ting the edge 
apa
ities that satis�es a �-fra
tion of ea
h demand. We shall refer to

� as MaxFlow(V;C;D). Its value (as well as an a
tual 
ow f whi
h realizes it) 
an be found in

polynomial time by linear programming.

A 
losely related problem is the sparsest 
ut problem, whi
h entails �nding a partition (A;A) of V

that minimizes the ratio

�(A) =

Capa
ity(A;A)

Demand(A;A)

=

C � Æ

A

D � Æ

A

:

(To make sense of the inner produ
ts, note that C;D and the 
ut metri
 Æ

A


an all be viewed as

elements of the ve
tor spa
e R

(

n

2

)

.) We shall refer to � = min

A

�(A) as MinCut(V;C;D).

In the sequel it will be 
onvenient to use the following identities (see, e.g., [26℄ or [15, page 135℄ for

the proofs):

MaxFlow(V;C;D) = min

Æ2M(V )

C � Æ

D � Æ

; MinCut(V;C;D) = min

Æ2M

1

(V )

C � Æ

D � Æ

; (2.1)

where M(V ) is the set (in fa
t, a 
onvex 
one) of all metri
s over V , and M

1

(V ) is the set (again,

a 
onvex 
one) of all `

1

-embeddable metri
s over V . As M

1

(V ) �M(V ) (the in
lusion being stri
t

for V of size � 5), it is always the 
ase that MaxFlow � MinCut.

5



In 
ontrast with the 
ase when there is just one 
ommodity, the MinCut is not equal to the MaxFlow

in general. The ratio 
 � 1 between the MinCut and the MaxFlow is 
alled the gap of the instan
e

(V;C;D). From the 
omputational point of view, 
omputing the value of the MinCut (and hen
e

also the value of 
) is an NP-hard problem.

Graphs and Minors: An outerplanar graph G is a planar graph with an embedding in the plane

so that every vertex lies on the outer (unbounded) fa
e. A series-parallel graph G = (V;E) with

terminals s; t 2 V is either a single edge fs; tg, or a series 
ombination or a parallel 
ombination

of two series-parallel graphs G

1

and G

2

with terminals s

1

; t

1

and s

2

; t

2

. The series 
ombination of

G

1

and G

2

is formed by setting s = s

1

, t = t

2

and identifying s

2

= t

1

; the parallel 
ombination is

formed by identifying s = s

1

= s

2

, t = t

1

= t

2

.

The graph G = (V;E) has an H-minor if there exists a sequen
e of edge-deletion and edge-


ontra
tion operations on G whi
h results in a graph G

0

that is isomorphi
 to H. Note that ea
h

vertex of G

0


orresponds to a (
onne
ted) set of verti
es of G whi
h were 
ontra
ted to it. For

U � V , we say that G has an H-minor w.r.t. U if it has an H-minor G

0

su
h that for every vertex

of G

0

, the 
orresponding set of verti
es of G 
ontains a vertex from U . Finally, we say that G is

H-free (w.r.t. U) if it has no H-minor (w.r.t. U).

It is well known that K

4

-free graphs are those whose blo
ks are series-parallel graphs [16, p.185℄,

and that K

2;3

-free graphs are those whose blo
ks are either outerplanar or isomorphi
 to K

4

[16,

p.81℄.

Finally, the Euler number of an undire
ted 
onne
ted graph G is de�ned as �(G) = jE(G)j �

jV (G)j + 1. (Throughout this paper, the symbol �(G) denotes the Euler number and not the


hromati
 number.)

3 Multi
ommodity 
ows, metri
s and graphs

Multi
ommodity 
ows have long been an obje
t of study in 
ombinatorial optimization (see [18℄

for a histori
al survey). The 
lassi
al theory was 
on
erned mainly with the following question:

Under what 
onditions on the 
ow network (V;E; P ) is the MaxFlow equal to the MinCut for every

setting of 
apa
ities C and demands D? As it turns out, this question is equivalent to the following

question 
on
erning the `

1

-embeddability of metri
s: What are the 
onditions on (V;E; P ) su
h

that, for every metri
 � supported on G = (V;E), there exists an `

1

-embeddable metri
 � on V

su
h that � dominates �, and � = � on P ? [34, Se
tion 3℄

In light of this equivalen
e, the 
lassi
al results about 
ows (in 
ases where the gap 
 = 1) have


onsequen
es for `

1

-embeddability and vi
e versa. For instan
e, a well-known theorem due to

Okamura and Seymour [29℄ says that if G = (V;E) is a planar graph with outer fa
e F , and P


onsists only of pairs of verti
es in F , then the MaxFlow and MinCut are equal for all instantiations

of C and D. Taking G = (V;E) to be an outerplanar graph, letting P 
onsist of all pairs in V and

using the above equivalen
e, we 
an infer that all metri
s supported on outerplanar graphs 
an be

isometri
ally embedded into `

1

. (See also [14℄ for a dire
t argument.)

To state this and other su
h results su

in
tly, let us introdu
e some notation. For a metri
 �, let

6






1

(�) be the minimum distortion between � and �, where � ranges over all `

1

metri
s, and let 


1

(G)

be the maximum value of 


1

(�) for all metri
s � supported on G. Hen
e, we have just seen that




1

(G) = 1 for every outerplanar graph G.

In fa
t, this turns out to be almost a 
hara
terization of graphs G with 


1

(G) = 1. The full

pi
ture is that 


1

(G) = 1 i� G is K

2;3

-free. On the one hand, as mentioned earlier, ea
h blo
k of

a K

2;3

-free graph is either outerplanar or isomorphi
 to K

4

, and a graph is `

1

-embeddable i� ea
h

of its blo
ks is. We have already seen that outerplanar graphs are `

1

-embeddable; it is also well

known that the same holds for any metri
 on four points [15, Example 11.1.8℄. Thus, for every

K

2;3

-free graph G, 


1

(G) = 1. Conversely, it is well known that the metri
 of the unit-weighted

K

2;3

is not `

1

-embeddable [15, Example 6.3.2℄. Now if G has a K

2;3

-minor, 
onsider the sequen
e

of edge 
ontra
tions and deletions whi
h turn G into K

2;3

. Assigning1 to ea
h deleted edge, 0 to

ea
h 
ontra
ted edge, and 1 to the remaining edges, we obtain a semi-metri
 supported on G and


oin
iding (as a metri
 spa
e) with that of the unit-weighted K

2;3

. Thus, 


1

(G) � 


1

(K

2;3

) > 1.

Hen
e we have the following 
hara
terization:

Proposition 3.1 The 
lass of graphs for whi
h 


1

(G) = 1 is exa
tly the 
lass of K

2;3

-free graphs.

Mu
h re
ent resear
h on multi
ommodity 
ows has been dire
ted towards the 
ase where equality

does not hold, and to �nding good bounds on the ratio 
 between the MinCut and the MaxFlow.

This study was pioneered in the paper of Leighton and Rao [25℄, and the results presented there

were extended in a long sequen
e of papers by several authors (see [35℄ for a detailed a

ount). The

best results known [26, 2℄ show that for any 
ow network (V;E; P ), the gap between the MaxFlow

and the MinCut 
an never be more than O(log jP j), and hen
e O(log n). This bound is tight when

G = (V;E) is a 
onstant-degree expander, all edge 
apa
ities are unity and there is unit demand

between all pairs of verti
es. Better results have been obtained for planar graphs, showing that in

su
h graphs the gap 
 never ex
eeds O(

p

logn ) [33℄, and in fa
t is bounded by a 
onstant in the

spe
ial 
ase of uniform demands [22℄.

An intimate relationship between the gap 
 and 


1

(G) holds even in the 
ase where the MaxFlow

is not equal to the MinCut, and provides a 
ompelling motivation for studying the quantity 


1

(G).

Theorem 3.2 For any graph G = (V;E), the worst possible gap 
 attained by a multi
ommodity


ow problem on G is exa
tly 


1

(G).

Proof: The dire
tion 
 � 


1

(G) was shown already in [26℄. Indeed, by de�nition of 


1

, for every

metri
 � supported on G, there exists an `

1

-embeddable metri
 Æ whi
h distorts � by at most 


1

(G).

But then, by de�nition of distortion,

C�Æ

D�Æ

� 


1

(G)

C��

D��

, and in view of (2.1) we are done.

For the other, apparently new, dire
tion 
 � 


1

(G), it will be 
onvenient to use an equivalent dual

de�nition of 


1

(�) for a metri
 � on V :




1

(�) = max

(C;D)

D � �

C � �

; (3.2)

where the maximum is taken over all non-negative ve
tors C;D indexed by ordered pairs of verti
es

of V whi
h satisfy the restri
tion

D�Æ

C�Æ

� 1 for any `

1

-embeddable metri
 Æ on V . The proof of

this equality follows from general fa
ts about 
onvex 
ones, and is deferred to the appendix.
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By this dual de�nition, there exists a metri
 � supported on G, and non-negative ve
tors C;D �

R

(

jV j

2

)

, su
h that

D��

C��

= 


1

(G), while for any `

1

-embeddable metri
 Æ we have

D�Æ

C�Æ

� 1 . First

we 
laim that, without loss of generality, one may assume that C vanishes outside E(G). Indeed,

assume that for some pair of verti
es fi; kg 62 E(G), the value C(i; k) is stri
tly positive. Sin
e �

is supported on G, there exist edges e

1

= (j

0

; j

1

); e

2

= (j

1

; j

2

); :::; e

q

= (j

q�1

; j

q

) in G su
h that

j

0

= i; j

q

= k and �(j

0

; j

q

) = �(j

0

; j

1

) + :::+ �(j

q�1

; j

q

). De�ne a new ve
tor C

0

by

C

0

(i; k) = 0;

C

0

(j

r�1

; j

r

) = C(j

r�1

; j

r

) + C(i; k) for ea
h r = 1; 2; ::q, and

C

0

(u; v) = C(u; v) otherwise.

Now, the pair C

0

;D 
an repla
e the pair C;D in the above de�nition of 


1

(G). Clearly, for any

metri
 Æ on V we have C

0

�Æ � C �Æ; in parti
ular, for any `

1

-embeddable Æ we have (D � Æ)=(C

0

� Æ) �

(D � Æ)=(C � Æ) � 1 , as required by (3.2). On the other hand, for �, the \worst" metri
 supported

on G, we have the equality C

0

� � = C � �, and thus (D � �)=(C

0

� �) = (D � �)=(C � �) = 


1

(G) .

Repeating this updating pro
edure for all non-edges of G, we arrive at a ve
tor C that vanishes

outside E(G).

Employing su
h a pair C;D and bearing in mind the de�nitions of MinCut and MaxFlow given in

(2.1), we 
on
lude that


 � 
(V;C;D) =

MinCut(V;C;D)

MaxFlow(V;C;D)

�

min

Æ2M

1

(V )

(C � Æ)=(D � Æ)

(C � �)=(D � �)

�

D � �

C � �

= 


1

(G) :

Re
all that by Proposition 3.1, the graphs for whi
h 


1

(G) = 1 are exa
tly the K

2;3

-free graphs.

It is no 
oin
iden
e that this 
hara
terization involves ex
luded minors. Observe that the graph-

theoreti
 fun
tion 


1

is minor-monotone, i.e., if H is a minor of G than 


1

(G) � 


1

(H). Indeed,

edge deletion 
orresponds to assigning the edge the value1, while edge 
ontra
tion 
orresponds to

assigning it the value 0. The prin
ipal 
onsequen
e of this observation is that F




, the family of all

graphs G with 


1

(G) � 
, is minor-
losed for any 
. Hen
e, by a 
elebrated theorem of Robertson

and Seymour, any F





an be 
hara
terized in terms of forbidden minors (see, e.g., [16, Cor.12.5.3℄).

Another 
onsequen
e of monotoni
ity of 


1

(G) is that the set f


1

(G)g � R where G ranges over all

�nite graphs, 
ontains no in�nite des
ending sequen
e. Indeed, assume that 


1

(G

1

) > 


1

(G

2

) >




1

(G

3

) > ::: is an in�nite des
ending sequen
e. By a theorem of Robertson and Seymour, there

must exist G

i

and G

j

with j > i su
h that G

i

is a minor of G

j

(see, e.g., [16, Thm.12.5.2℄),


ontradi
ting the monotoni
ity of 


1

. In parti
ular, every point of f


1

(G)g 
ontains a unique \next

to the right" point. Currently, we only know that the smallest point of this set is 1, and the se
ond

smallest is 


1

(K

2;3

), whi
h 
an be shown to be 4=3.

An intriguing 
onje
ture, and one of the main motivations behind this paper, is that for any non-

trivial minor-
losed family F of graphs, there exists a 
onstant 


F

� 1 su
h that for all G 2 F ,




1

(G) � 


F

.

The results in the next se
tion provide some eviden
e in support of this 
onje
ture. We 
onsider

the next natural minor-
losed 
lass of graphs 
ontaining K

2;3

, namely the 
lass of series-parallel
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graphs, and show that they are `

1

-embeddable with 
onstant distortion. In addition, we bound the

distortion 


1

(G) of a graph in terms of its Euler 
hara
teristi
 alone, and thus establish an in�nite

sequen
e of natural minor-
losed families with 
onstant distortion, namely those with bounded

Euler 
hara
teristi
.

4 Constant-distortion embeddings for some graph families

In this se
tion, we shall present expli
it 
onstant-distortion embeddings into `

1

of the natural minor-


losed families of series-parallel graphs, and of graphs with bounded Euler 
hara
teristi
. These

are the �rst non-trivial results exhibiting (ne
essarily) non-isometri
 embeddings of graph families

with 
onstant distortion.

4.1 Series-parallel graphs

Our goal will be to show that any metri
 supported on a series-parallel graph is embeddable in

`

1

with 
onstant distortion. In fa
t, our argument is presented for the slightly more general 
lass

of treewidth-2 graphs, i.e., graphs whose blo
ks are series-parallel graphs. Re
all that this is a

minor-
losed family with K

4

as the ex
luded minor. We have not attempted to a
hieve the best

possible 
onstant distortion, whi
h we believe is rather less than the value of (just under) 14 shown

here.

Theorem 4.1 Let G = (V;E) be a weighted graph with treewidth 2, and let � = �

G

be the metri


indu
ed by the edge weights of G. Then there exists an `

1

-embeddable metri
 e� and a 
onstant


 < 14 su
h that for every u; v 2 V ,

1




�(u; v) � e�(u; v) � �(u; v):

Moreover, this embedding preserves the length of edges, i.e., for every (u; v) 2 E, e�(u; v) = �(u; v).

Finally, e� 
an be 
omputed in polynomial time.

Before proving the theorem, let us brie
y dis
uss some properties of treewidth-2 graphs and the

metri
s generated by them. A

ording to one of the many alternative de�nitions, treewidth-2

graphs 
an be 
onstru
ted using the following 
omposition pro
edure. Start with a single edge e

0

,

and repeatedly atta
h a single new vertex to the endpoints of an already existing edge (whi
h we


all the parent edge of the vertex); �nally, after all the verti
es have been atta
hed, remove an

arbitrary subset of the edges. We shall 
onsider a weighted treewidth-2 graph G together with

the sequen
e of intermediate weighted graphs G

2

; G

3

; :::; G

n

= G o

urring during its 
omposition,

where G

2

is the initial edge e

0

. Ea
h new edge e = (u; v) will be endowed with weight �(u; v),

where � is the metri
 indu
ed by G. Observe that, w.l.o.g., we may assume that no edges are

removed in the se
ond stage of the 
onstru
tion, sin
e removing a non-essential edge e (one with

weight �(e)) has no e�e
t on �.

The manner in whi
h G was 
onstru
ted implies that the metri
 �

i

indu
ed by an intermediate

graph G

i

on V (G

i

) � V (G) agrees with � restri
ted to these verti
es, i.e., �

i

= �j

V (G

i

)

. A 
loser

9
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Figure 4.1: An
estor and related edges.

look at the stru
ture of G reveals more information about �. Let us de�ne the notions of an
estor

and related edges of a vertex. The de�nition is re
ursive: the an
estor edges of x 2 V (G) in
lude

the parent edge e = (s; t) of x, and the an
estor edges of s and t. The �rst edge e

0

is an an
estor

edge of both its endpoints, and thus of all x in V (G). A related edge of a vertex is an edge both

of whose endpoints lie either on an
estor edges of x, or 
oin
ide with x. In parti
ular, all an
estor

edges of x are also related edges of x.

An example is shown in Figure 4.1, in whi
h the verti
es were added in the order x

1

; x

2

; x

3

; x

4

. The

parent edge of x

4

is e

3

, its an
estor edges are fe

0

; e

1

; e

3

g, while f(t; x

1

); (x

1

; x

3

); (s; x

4

); (x

3

; x

4

)g

are its related non-an
estor edges.

Let e be an an
estor edge of x. De�ne G

x;e

, a subgraph of G, as the union of all the related edges of

x whi
h were introdu
ed after e, plus edge e itself. (For example, in Figure 4.1 the graph G

x

4

;e

1

is

the subgraph indu
ed by the verti
es fs; x

1

; x

3

; x

4

g.) The subgraph G

x;e

has a parti
ularly simple

stru
ture: it is 
onstru
ted by starting from e, marking it, and repeatedly atta
hing a single new

vertex to the endpoints of the 
urrently marked edge, upon whi
h the marked edge is unmarked

and one of the newly added edges is marked. The order of 
omposition of G

x;e

is indu
ed by that

of G. The graph G

x;e

will simplify our later analysis; for the moment, observe that the distan
e

between any pair of verti
es in G

x;e

is equal to their original distan
e in G.

For a pair of verti
es x; y, the last 
ommon an
estor edge f = (s; t) of x; y is the 
ommon an
estor

edge of x and y whi
h was added last in the 
omposition of G. When neither x nor y lies on an

an
estor edge of the other, two possibilities may o

ur: either f separates x and y (i.e., every x-y

path passes through either s or t), or there exists a vertex q whose parent edge is f , su
h that (s; q)

is an an
estor edge of x (but not of y) while (t; q) is an an
estor edge of y (but not of x).

We are now ready to embark on the proof of the theorem.

Proof of Theorem 4.1: We start with the indu
tive 
onstru
tion of the approximating metri
 e�.

The 
onstru
tion follows the 
omposition pro
edure for G, �rst de�ning e� on G

2

, then extending it

to G

3

, G

4

, et
. in turn. In the base 
ase, G

2

is a single edge e

0

= (a; b), and we set e�(a; b) = �(a; b).

For the indu
tive step, we assume that e� is already de�ned on V (G

i�1

). Assume also that G

i

is

obtained from G

i�1

by atta
hing a new vertex x to the endpoints of the edge (s; t). Let

Æ =

�(x; s) + �(x; t)� �(s; t)

2

; P

s

=

�(x; t)� �(x; s) + �(s; t)

2�(s; t)

; P

t

=

�(x; s)� �(x; t) + �(s; t)

2�(s; t)

:
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Now, the value of e�(x; �), where � stands for any vertex of G

i�1

, is de�ned as

e�(x; �) = Æ + P

s

e�(s; �) + P

t

e�(t; �) : (4.3)

The de�nition of e� immediately implies that it is 
omputable in polynomial time.

The argument that e� is `

1

-embeddable is indu
tive. The base 
ase is that e� on G

2

is trivially

`

1

-embeddable. For the indu
tive step, observe that e� on G

i

is a positive linear 
ombination of

three metri
s: the 
ut metri
 Æ

fxg

(with 
oeÆ
ient Æ), the metri
 e� on G

i�1

with x at distan
e 0

from s (with 
oeÆ
ient P

s

), and the metri
 e� on G

i�1

with x at distan
e 0 from t (with 
oeÆ
ient

P

t

). The 
ut metri
 is `

1

-embeddable; e� on G

i�1

is `

1

-embeddable by the indu
tion hypothesis, and

identifying the vertex x with either s or t does not a�e
t this. Thus, by indu
tion, the restri
tion of

e� to ea
h G

i

(and hen
e to G

n

= G) is a sum of `

1

-embeddable metri
s, and hen
e is `

1

-embeddable.

The next fa
t to prove is that e� is dominated by �. Sin
e � is the shortest path metri
 of G, the

expansion of e� is bounded by its expansion on the edges of G; thus it suÆ
es to prove the stronger

statement that every edge of G maintains its length under e�, i.e., for every e = (u; v); e�(u; v) =

�(u; v). This stronger statement is again established by an indu
tive argument. The 
laim obviously

holds for G

2

. Assume that the vertex x is atta
hed to the edge (s; t) 2 E(G

i�1

). By the indu
tive

assumption, the 
laim holds for G

i�1

, and in parti
ular for (s; t). Consider, e.g., the new edge

(x; s); by (4.3), e�(x; s) = Æ + P

t

e�(s; t) = Æ + P

t

�(s; t) whi
h, by de�nition of Æ and P

t

, equals

�(x; s).

Bounding the 
ontra
tion of e� will be the hardest part of the proof. In preparation for this, let

us give an equivalent but more intuitive \ba
kwards" des
ription of e�. We envisage the pro
ess of


onstru
ting e� as starting from the �nal vertex, and 
ollapsing the 
urrent \last" vertex onto one

of the endpoints of its parent edge. More pre
isely, if the edge (s; t) is the parent of x, we remove

the 
ut metri
 
orresponding to x (with weight Æ), and then 
ollapse the vertex x onto either s or t,

with probabilities P

s

and P

t

respe
tively. (Note that P

s

and P

t

sum to 1, and both are non-negative

by the triangle inequality.) Upon rea
hing G

2

, we simply remove the 
orresponding 
ut metri
,

thus 
ollapsing the entire graph to a single point. The metri
 e� is just the expe
ted sum of the

(weighted) 
ut metri
s removed in this pro
ess. In what follows, we shall make repeated use of this

view of e� as the expe
ted result of a random pro
ess.

The bound we will prove on the 
ontra
tion of e� is stated in the following lemma.

Lemma 4.2 Let x and x

�

be any two verti
es of G. Then, for any � 2 (

1

2

; 1), we have

e�(x; x

�

) �

(1� �)(2� � 1)

1 + �

�(x; x

�

):

Theorem 4.1 follows at on
e from this lemma: we simply 
hoose � optimally to be

p

3 � 1, and


on
lude that the 
ontra
tion (and hen
e the distortion) of e� is at most 13:92.

We will split the proof of Lemma 4.2 into two 
ases:

Case (i): x

�

lies on an an
estor edge of x.

Case (ii): Neither x nor x

�

lies on an an
estor edge of the other.
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Figure 4.2: Proof of Lemma 4.2, Case (i).

Proof of Lemma 4.2, Case (i): In this 
ase x

�

= s lies on an an
estor edge e = (s; t) of x.

Consider the graph G

x;e

as de�ned above, and let h(s

1

; t

1

); : : : ; (s

k

; t

k

) = (s; t)i be the sequen
e

of an
estor edges of x up to the edge on whi
h s lies. (See Figure 4.2.) For 
onvenien
e, set also

s

0

= t

0

= x. For 1 � i � k, de�ne

L

i

= �(s

i

; t

i

); �

i

= �(s

i�1

; s

i

); �

i

= �(t

i�1

; t

i

):

Note that for ea
h i � 2, either t

i�1

= t

i

with �

i

= 0, or s

i�1

= s

i

with �

i

= 0.

Denote by P

s

(resp., P

t

) the probability (under the random-pro
ess de�nition of e�) that, when

x 
ollapses to the edge (s; t), it 
ollapses onto s (resp., t). Let � be the expe
ted sum of the

weights of the 
uts removed under all 
ollapses of x up to and in
luding this time. Then we have

e�(x; s) = �+ P

t

e�(s; t), and therefore, by the edge preservation property of e�,

e�(x; s) = � + P

t

�(s; t) : (4.4)

Note also that not only is the a
tual distan
e �(x; s) equal in G and in G

x;e

, but the same holds for

the approximated distan
e e�(x; s): this is 
lear from (4.4) sin
e the quantities � and P

t

must be

equal in G and in G

x;e

. Thus in what follows we may restri
t our attention to the subgraph G

x;e

.

Now let P

i

s

(resp., P

i

t

) be the probability that, when x 
ollapses to the edge (s

i

; t

i

), it 
ollapses

onto s

i

(resp., t

i

), and let �

i

be the expe
ted sum of the weights of the 
uts removed under all


ollapses of x up to and in
luding this time. Assume also that t

i

= t

i�1

while s

i

; s

i�1

are distin
t,

as in Figure 4.2. (The other 
ase is handled symmetri
ally.) The following 
laim establishes three

inequalities relating the value of e�(x; s

i

) to the values of e�(x; s

i�1

) and e�(x; t

i�1

).

Claim 4.3 Let � 2 (

1

2

; 1). Then, in the above situation,

(a) If P

i�1

s

� �, then e�(x; s

i

) � e�(x; s

i�1

) + (2� � 1)�

i

.

(b) If P

i�1

t

� �, then e�(x; s

i

) � e�(x; t

i�1

) + (2� � 1)L

i

.

(
) Otherwise, if 1� � � P

i�1

s

� �, then e�(x; s

i

) +

2�

1��

(�

i

��

i�1

) � e�(x; s

i�1

) + �

i

.
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Proof: The proof is elementary but somewhat te
hni
al. Arguing as in the derivation of (4.4),

we obtain

e�(x; s

i�1

) = �

i�1

+ P

i�1

t

L

i�1

;

e�(x; t

i�1

) = �

i�1

+ P

i�1

s

L

i�1

:

(4.5)

Keeping in mind the edge preservation property of e�, and 
onditioning on whether x 
ollapsed onto

s

i�1

or t

i�1

, we 
an express e�(x; s

i

) as

e�(x; s

i

) = �

i�1

+ P

i�1

t

L

i

+ P

i�1

s

�

i

: (4.6)

Performing a formal manipulation, we get

e�(x; s

i

) = �

i�1

+ P

i�1

t

(L

i

+ �

i

) + (P

i�1

s

� P

i�1

t

)�

i

� �

i�1

+ P

i�1

t

L

i�1

+ (P

i�1

s

� P

i�1

t

)�

i

= e�(x; s

i�1

) + (P

i�1

s

� P

i�1

t

)�

i

;

where we have used the triangle inequality L

i�1

� L

i

+ �

i

, and (4.5). This implies (a).

Similarly,

e�(x; s

i

) = �

i�1

+ P

i�1

s

(L

i

+ �

i

) + (P

i�1

t

� P

i�1

s

)L

i

� �

i�1

+ P

i�1

s

L

i�1

+ (P

i�1

t

� P

i�1

s

)L

i

= e�(x; t

i�1

) + (P

i�1

t

� P

i�1

s

)L

i

;

implying (b).

In order to show (
), 
onsider the 
hange in �. Let Æ

i�1

be the weight of the 
ut removed while


ollapsing s

i�1

to (s

i

; t

i

). Then

�

i

��

i�1

= P

i�1

s

� Æ

i�1

= P

i�1

s

�

�

i

+ L

i�1

� L

i

2

:

Substituting this expression for the value of (�

i

��

i�1

), and using (4.6) and (4.5), we get

e�(x; s

i

) +

2P

i�1

t

P

i�1

s

(�

i

��

i�1

) = [�

i�1

+ P

i�1

t

L

i

+ P

i�1

s

�

i

℄ +

�

P

i�1

t

(�

i

+ L

i�1

� L

i

)

�

= e�(x; s

i�1

) + �

i

:

We are now in a position to bound e�(x; s) from below in terms of �(x; s). For this purpose, we

will 
onstru
t a path between x and s in G

x;e

, and show that every edge on this path makes a

substantial 
ontribution to e�(x; s). Sin
e the length of the path is at least �(x; s), this will yield

the desired lower bound.

The path � from s = s

k

to x in G

x;e

will be de�ned as follows. Assume we have already 
onstru
ted

some initial segment of �, and have rea
hed an endpoint of the edge (s

i

; t

i

), but have not yet rea
hed

the edge (s

i�1

; t

i�1

). Assume also, w.l.o.g., that s

i

; t

i

are again situated as in Figure 4.2; the other


ase is treated in a symmetri
al manner. Then we must have rea
hed s

i

. Consider the value of P

i�1

t

de�ned above. If P

i�1

t

> �, we add to � the edge (s

i

; t

i�1

) of length L

i

and 
ontinue; otherwise,
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we add to � the edge (s

i

; s

i�1

) of length �

i

and 
ontinue. Upon rea
hing (s

1

; t

1

), we add the edge


onne
ting x to (s

1

; t

1

) to 
omplete the path �.

Clearly, � is a well-de�ned path from s = s

k

to x in G

x;e

. Moreover, by our 
hoi
e of � and the

pre
eding analysis (i.e., Claim 4.3), if � is hs

k

= �

0

! �

1

! �

2

! : : : ! �

m

= xi, then for every

edge (�

j�1

; �

j

) 2 � we have

e�(x; �

j

)� e�(x; �

j�1

) +

2�

1� �

(�

�

j

��

�

j�1

) � (2� � 1) � �(�

j�1

; �

j

);

where, with a slight abuse of notation, �

�

j

stands for �

r

where r is the smallest index su
h that

�

j

2 (s

r

; t

r

). (Observe that (�

�

j

��

�

j�1

) � 0, so we may safely add this term for all j.)

Summing up these expressions, we arrive at

e�(x; s

k

) +

2�

1� �

�

k

� (2� � 1) � (the �-length of P )

� (2� � 1)�(x; s

k

): (4.7)

Sin
e 
learly e�(x; s

k

) � �

k

, this 
ompletes the proof of Case (i) of Lemma 4.2.

Proof of Lemma 4.2, Case (ii): In this 
ase, neither x nor x

�

lies on an an
estor edge of the

other. Let (s; t) be the last 
ommon an
estor edge of x and x

�

. As mentioned before, there are

two possibilities. The �rst is that (s; t) separates x and x

�

. The se
ond is that there is a triangle

T = (s; q; t) su
h that (s; q) is an an
estor edge of x but not of x

�

, (t; q) is an an
estor edge of x

�

but not of x, and both (s; q) and (t; q) separate x from x

�

.

We start with the analysis of the �rst possibility. Let P

s

(resp., P

t

) denote the probability that

when x 
ollapses to (s; t), it 
ollapses onto s (resp., t); the probabilities P

�

s

(resp., P

�

t

) are the


orresponding values for x

�

. Also, let � (resp., �

�

) be the expe
ted value of the sum of the weights

of 
ut metri
s removed in the pro
ess of 
ollapsing x (resp., x

�

) to the edge (s; t). By the random

pro
ess de�nition of e�, the 
ollapses of x and of x

�

pro
eed independently of ea
h other; keeping

in mind that e� is preserved on edges, we get

e�(x; x

�

) = �+�

�

+ (P

s

P

�

t

+ P

t

P

�

s

)�(s; t): (4.8)

Moreover, it 
an be easily veri�ed that

P

s

P

�

t

+ P

t

P

�

s

�

1

2

min fP

s

+ P

�

s

; P

t

+ P

�

t

g : (4.9)

Substituting this into (4.8), assuming w.l.o.g. that the minimum is attained at t, and using (4.4),

we get

e�(x; x

�

) �

1

2

( e�(x; s) + �) +

1

2

( e�(x

�

; s) + �

�

) : (4.10)

However, adding the inequality (4.7) times the positive 
onstant � =

1��

1+�

to the inequality

e�(x; s)�� � 0 times the positive 
onstant (

1

2

� �), gives

1

2

( e�(x; s) + �) �

(1� �)(2� � 1)

1 + �

�(x; s) :
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An analogous bound holds for e�(x

�

; s). These two bounds, together with (4.10) and the triangle

inequality �(x; x

�

) � �(x; s) + �(s; x

�

), imply the Lemma when the �rst possibility o

urs.

We now look at the se
ond possibility, i.e., when there is the triangle T = (s; t; q). To 
ompute the

values of �(x

�

; x) and e�(x

�

; x) in the original graph G, it suÆ
es to look instead at the random

pro
ess restri
ted to the graph H obtained by taking the graphs G

x;(s;q)

and G

x

�

;(t;q)

and atta
hing

them to the triangle T = (s; q; t). (This follows by the same reasoning as in Case (i), when we

argued that the values of �(x; s) and e�(x; s) in G 
ould be 
omputed by restri
ting our attention

to G

x;e

.)

The random pro
ess goes as follows: the graph H is �rst 
ollapsed onto T , the vertex q is then


ollapsed onto either s or t, and �nally the resulting fs; tg-
ut is removed. Let us de�ne a new

random pro
ess, whi
h 
ollapsesH onto T as before, but then 
ollapses t onto (s; q) and removes the

resulting fs; qg-
ut. Our 
laim is that the value of e�(x; x

�

) is the same in both pro
esses. Indeed,

the two pro
esses di�er only in the �nal step, and it is simple to 
he
k that, given a triangle, the

random pro
ess generates the same metri
 regardless of whi
h vertex is 
ollapsed onto its opposite

edge.

Now, in this new order that we have introdu
ed, the last 
ommon an
estor edge of x; x

�

is (s; q),

and this edge separates x and x

�

. At this point, the argument for the �rst possibility applies, and

the 
laim follows.

This 
ompletes the veri�
ation of both 
ases in the proof of Lemma 4.2, and hen
e the proof of

Theorem 4.1.

Having proved the main theorem of this se
tion, let us state some 
orollaries and observations.

Mu
h of the 
ompli
ation in the proof arises from the need to a

ount for both the 
uts removed

and the 
ollapses made at ea
h step. Let us 
onsider for the moment the important spe
ial situation

in whi
h no 
uts are removed, i.e., when the input series-parallel graph G has the property that for

all x, for all an
estor edges (s; t) of x we have �(x; s)+�(x; t) = �(s; t). (Observe that this property


an be restated in a simpler form: for all x, we have �(x; a) + �(x; b) = �(a; b), where a, b are the

terminals of G. We shall point out an interesting appli
ation of these graphs in Se
tion 5.4.)

For su
h graphs a stronger version of Lemma 4.2 is true: namely, e�(x; x

�

) �

1

2

�(x; x

�

). Moreover,

the proof is mu
h simpler than in the general setting. To see this, 
onsider �rst Case (i) (when

x

�

= s lies on an an
estor edge of x); in this 
ase we a
tually have that e�(x; s) = �(x; s), and this

follows dire
tly from the de�nition of e� using indu
tion on the 
omposition of G. Indeed, assume

that x is atta
hed to (s

1

; t

1

), and the 
laim has already been established for s

1

; t

1

. By de�nition of

e�,

e�(x; s) =

�(x; s

1

)

�(s

1

; t

1

)

� e�(t

1

; s) +

�(x; t

1

)

�(s

1

; t

1

)

� e�(s

1

; s) :

By the indu
tive hypothesis,

e�(t

1

; s) = �(t

1

; s) = �(t

1

; s

1

) + �(s

1

; s) ; e�(s

1

; s) = �(s

1

; s) :

Combining the equations, we get e�(x; s) = �(x; s) as 
laimed. Case (ii) of Lemma 4.2 
an now be

strengthened to e�(x; x

�

) �

1

2

�(x; x

�

). This follows from (4.10), keeping in mind that � = �

�

= 0

and using the stronger version of Case (i) given above. Thus, we 
an 
on
lude:
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Lemma 4.4 For the spe
ial series-parallel graphs des
ribed above,

1

2

� � e� � �.

Returning now to the gap 
 in multi
ommodity 
ow instan
es, Theorems 3.2 and 4.1 imply:

Corollary 4.5 Let G = (V;E) be a graph with no K

4

-minor. Then, for every assignment of edge


apa
ities C and demands D in G, the gap 
 = MinCut=MaxFlow is less than 14.

With the aid of a little graph-theoreti
 ma
hinery, this 
orollary 
an be generalized as follows. The

proof is somewhat orthogonal to our main development, and 
an be found in a separate paper [28℄.

Theorem 4.6 Let G = (V;E) be a graph, and let the set of demand pairs be a subset of pairs

from U , for some U � V . If G 
ontains no K

4

-minor w.r.t. U , then for every assignment of edge


apa
ities C and demands D in G, the gap 
 = MinCut=MaxFlow is less than 28.

4.1.1 Approximating the sparsest 
ut in series-parallel graphs

The iterative pro
edure used in the above proof 
an be exploited to �nd a near-optimal sparsest 
ut

in series-parallel graphs in polynomial time. Previously, this result was known only for the spe
ial


ase of uniform demands [32, 30, 22℄. Observe that Corollary 4.5 alone does not immediately imply

the existen
e of a polynomial time pro
edure for �nding a good 
ut.

Theorem 4.7 There is a polynomial time 14-approximation algorithm for the Sparsest Cut problem

on series-parallel graphs.

Proof Sket
h: To approximate the MinCut in a series-parallel graph, we �rst solve the 
orre-

sponding multi
ommodity 
ow problem, and �nd the metri
 � minimizing

C��

D��

(see the dis
ussion

following Theorem 3.2). By Theorem 4.1, we 
an �nd in polynomial time an `

1

-metri
 e� that

14-approximates �. Re
all the manner in whi
h e� is built (see equation (4.3) and the des
ription

following it): at ea
h step, it is a positive linear 
ombination of three `

1

-metri
s e�

1

; e�

2

and e�

3

.

Consequently, at least one of these metri
s must yield a value

C�e�

i

D�e�

i

whi
h is at most

C�e�

D�e�

. Choosing

this minimizing metri
 and 
ontinuing with the 
orresponding subgraph, we will eventually rea
h

a point where the remaining metri
 is a 
ut metri
. This 
ut a
hieves the desired approximation

ratio.

4.2 Embedding graphs with few edges

Re
all that for a graph G = (V;E), the Euler 
hara
teristi
 �(G) is de�ned as jEj � jV j+ 1. It is

easy to see that, for ea
h 
 2 Z

+

, the family of graphs F




= fG j�(G) � 
 g is minor-
losed. The

following theorem shows that graphs with low �(G) 
an be embedded with low distortion into `

1

:

Theorem 4.8 A metri
 supported on an arbitrary graph G 
an be embedded into `

1

with distortion

O(log�(G)), where �(G) is the Euler 
hara
teristi
 of G.
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Proof: The embedding will be similar in 
avor to that of Theorem 4.1, though mu
h simpler. As

before, we assume that G is 2-
onne
ted; if not, we 
an apply the argument to ea
h of its blo
ks.

We also assume that G is not a 
y
le, sin
e the 
y
le metri
 embeds isometri
ally into `

1

, as 
an

be dedu
ed from Proposition 3.1 (or for a dire
t proof see [26, Prop.5.10℄).

De�ne an isolated path to be a maximal path in G, ea
h of whose internal verti
es has degree 2.

Hen
e ea
h of its endpoints has degree at least 3. Call an isolated path B tight if its length is equal

to the distan
e between its endpoints. We �rst de
ompose d

G

, the shortest-path metri
 of G, into

two simpler metri
s: e�, whi
h is the shortest-path metri
 of a graph G

0

with the same verti
es and

edges as G but whi
h has only tight isolated paths, and e�

0

, whi
h is a sum of 
ut metri
s.

For this, let us 
onsider a weighted 
y
le C, assuming that the weight of any edge is just its

shortest-path length. Let e = (u; v) be an edge on C. Sin
e C is `

1

-embeddable, the metri
 d

C


an

be written as a positive linear 
ombination of 
ut metri
s. Let d

0

be the sum of all those 
uts that

separate u and v, and d

1

be the sum over the remaining 
uts; 
learly, d

C

= d

0

+ d

1

. Observe that

the sum of d

0

-lengths of all the edges in E(C)� feg is ne
essarily exa
tly equal to the length of e,

or, in other words, the length of the path P = C � feg under d

0

is equal to the length of e; note

also that d

0

(e) = d

C

(e). Con
erning d

1

, observe that no 
ut metri
 Æ

S

in d

1

separates u and v, so

we may assume w.l.o.g. that the 
orresponding set S satis�es S � V (C)� fu; vg.

All this leads to a de
omposition of G into G

0

plus an `

1

metri
. Suppose G has isolated paths that

are not tight. To the endpoints u and v of ea
h isolated path B, add an edge e = (u; v) of length

d(u; v); this forms a 
y
le with B. The shortest path metri
 of ea
h su
h 
y
le 
an be de
omposed

into d

0

and d

1

as above. Ea
h of the 
ut metri
s in d

1

naturally extends to the whole of G, and

hen
e d

1

, being their weighted sum, also extends to an `

1

-embeddable metri
 on G. Call this e�

0

.

By the pre
eding dis
ussion, d

G

= d

G

0

+ e�

0

, where G

0

has the same verti
es and edges as G, but all

isolated paths in G

0

are now tight (as in d

0

). This is the desired de
omposition.

Sin
e this phase involved no distortion, it suÆ
es for the proof of the theorem to show that any

graph G with tight isolated paths 
an be embedded into `

1

with distortion O(log�(G)). We will

denote the length of an isolated path B by d(B).

Let

e

G be a minor (multigraph) of G obtained by the following random pro
edure: for ea
h isolated

path B with endpoints u

B

and v

B

, 
hoose a value r

B

uniformly and independently from the interval

[0; d(B)℄, and 
ollapse all verti
es in B at distan
e less than r

B

from v

B

to this endpoint, and all

the other verti
es in B to u

B

. The length of the newly 
reated edge (u

B

; v

B

) 2 E(

e

G) is de�ned

as d(B) = d

G

(u

B

; v

B

), so that the distan
e between u

B

and v

B

remains un
hanged. Clearly, the

minimum degree of

e

G is now at least 3. De�ne e�(�; �) = E

�

d

e

G

(�; �)

�

; being a 
onvex 
ombination of

metri
s, e� is a metri
 as well. We 
laim that e� 
losely approximates d:

Claim 4.9 For any two verti
es x; y of G, the expe
ted distan
e e� between x and y in

e

G satis�es

1

4

d(x; y) � e�(x; y) � d(x; y):

Proof: Let us start with two simple observations. Firstly, if neither x nor y is an internal vertex of

an isolated path, the distan
e between them remains the same, i.e., e�(x; y) = d(x; y). Furthermore,

a simple 
al
ulation (involving the probability that x and y are 
ollapsed to di�erent endpoints of
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B) shows that the same is true for any x and y belonging to the same isolated path B. Thus e�

preserves the lengths of all the edges of G, and sin
e d is the shortest-path distan
e in G, we infer

that e� is dominated by d.

Consider now the 
ase when the verti
es x; y lie on di�erent isolated paths B and B

0

. Let s; t be

the endpoints of B, and q; r the endpoints of B

0

. De�ne P

s

and P

t

to be the probabilities that x is


ontra
ted to s and t respe
tively. P

q

and P

r

are de�ned similarly, with respe
t to y. Clearly,

P

s

=

d(x; t)

d(s; t)

; and P

t

=

d(x; s)

d(s; t)

:

The expressions for P

q

and P

r

are analogous. By the de�nition of e�,

e�(x; y) = P

s

P

q

� d(s; q) + P

s

P

r

� d(s; r) + P

t

P

q

� d(t; q) + P

t

P

r

� d(t; r)

= P

s

� [P

q

d(s; q) + P

r

d(s; r)℄ + P

t

� [P

q

d(t; q) + P

r

d(t; r)℄ : (4.11)

A s
aled version of (4.9) together with the triangle inequality implies that

P

q

d(s; q) + P

r

d(s; r) �

1

2

min fP

q

[d(s; q) + d(s; r)℄ + d(s; r) ; P

r

[d(s; q) + d(s; r)℄ + d(s; q)g

�

1

2

min fP

q

d(q; r) + d(s; r) ; P

r

d(q; r) + d(s; q)g

=

1

2

min fd(y; r) + d(s; r) ; d(y; q) + d(s; q)g

=

1

2

d(s; y):

Similarly, P

q

d(t; q) + P

r

d(t; r) �

1

2

d(t; y). Substituting these inequalities into (4.11), and using the

s
aled version of (4.9) again, we 
on
lude that

d(x; y) �

1

2

fP

s

d(s; y) + P

t

d(t; y)g �

1

2

�

1

2

d(x; y) :

This 
ompletes the proof of the 
laim.

Thus d is 4-approximated by e�. To 
on
lude the proof of the theorem, we show that e� 
an be

embedded into `

1

with small distortion. Note that e� is a 
onvex 
ombination of semimetri
s, all of

whi
h are supported on G

0

, the graph obtained from G by repla
ing ea
h isolated path by an edge.

The distortion of embedding e� into `

1

is no more than that of d

G

0

, so it suÆ
es to bound the latter.

But G

0

has very few verti
es. On the one hand, it has minimum degree � 3; on the other hand,

it is a minor of G, and sin
e taking minors 
annot in
rease the Euler number, �(G) � �(G

0

). Let

n

0

= jV (G

0

)j, andm

0

= jE(G

0

)j. By a degree argument, m

0

�

3

2

n

0

, implying �(G) � �(G

0

) �

1

2

n

0

+1.

Consequently, G

0

has at most 2�(G) � 2 verti
es, and hen
e d

G

0


an be embedded into `

1

(e.g.,

using Bourgain's te
hnique [9℄) with distortion O(log�(G)).

5 Embeddings via tree metri
s

The algorithms for `

1

-embeddings des
ribed in the previous se
tion were based on 
onstru
ting an

approximating set of 
ut metri
s. A di�erent approa
h for embedding a metri
 (V; �) into `

1

is
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to spe
ify a probability distribution over trees 
ontaining V , su
h that the expe
ted tree distan
e

between any two verti
es x and y in V approximates �(x; y) well. Sin
e trees 
an be embedded

isometri
ally into `

1

, this also gives an `

1

-embedding. Of parti
ular interest are embeddings into

distributions over dominating trees, in whi
h the distan
e fun
tion in ea
h tree dominates �. Find-

ing low-distortion embeddings of this kind has 
onsequen
es for the design of many approximation

algorithms (e.g., [4, 3, 19, 36, 10, 12℄) and online algorithms (e.g., [4, 6℄). Formally:

De�nition 5.1 A metri
 d

G

supported on a graph G is �-probabilisti
ally approximated by a

distribution D over (dominating) trees if

(1) ea
h tree T in the distribution D has V (G) � V (T );

(2) for all x; y 2 V and T in the distribution, d

T

dominates d

G

, i.e., d

G

(x; y) � d

T

(x; y);

(3) for all x; y 2 V , the expe
ted distan
e E

D

[d

T

(x; y)℄ � � � d

G

(x; y).

In this paper we will use only spanning subtrees of G, and thus (1) and (2) will automati
ally be

satis�ed. Sin
e the expansion is always maximal on the edges of G, 
ondition (3) 
an be repla
ed

by the more 
onvenient

(3

0

) for all edges e = (x; y) 2 E(G), the expe
ted distan
e E

D

[d

T

(x; y)℄ � � � d

G

(x; y).

We shall also refer to this approximation as an embedding of d

G

with distortion � into a tree

distribution D.

Distributions over trees were �rst studied by Karp, who showed that distan
es in the unweighted


y
le C

n


an be 2(1 �

1

n

)-probabilisti
ally approximated by a distribution over its subtrees [21℄.

The distribution is very simple: ea
h possible spanning tree of G is output with probability 1=n.

This is in sharp 
ontrast to the deterministi
 
ase, where it 
an be shown that any tree (not

ne
essarily a subtree) approximating the 
y
le has 
(n) distortion [31℄. This line of enquiry was

further developed in several papers [1, 4, 5, 24, 11℄, where distributions over arbitrary dominating

trees were 
onsidered. The state-of-the-art results show that any graph with n verti
es 
an be

embedded into tree distributions with distortion O(log n log logn) [5℄. In the spe
ial 
ase where

the graph ex
ludes a K

s;s

-minor, a distortion of O(s

3

log n) 
an be a
hieved [24℄. In line with our

general approa
h, we now study the embeddability of outerplanar and series-parallel graphs into

tree distributions.

5.1 Tree embeddings for outerplanar graphs

The �rst result of this se
tion shows that any metri
 supported on a K

2;3

-free graph 
an be embed-

ded into a tree distribution with distortion at most 8. Of 
ourse, we already know by Proposition 3.1

that su
h metri
s are isometri
ally embeddable into `

1

. However, that result says nothing about the

stronger requirement that the embedding be a distribution over dominating trees. Both the main

result of this se
tion and the method used play an essential part in later, more diÆ
ult 
onstru
tions

(see, e.g., Se
tion 5.4, and the re
ent [13℄).

As usual, it suÆ
es to embed only the bi
onne
ted 
omponents of the K

2;3

-free graph, whi
h are

either K

4

or outerplanar. It is easy to verify that approximating any metri
 on n points by its

minimum-weight spanning tree in
urs a distortion of at most (n� 1), so any 4-point metri
 
an be
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embedded into a tree with distortion 3. Thus, it suÆ
es to bound the distortion for 2-
onne
ted

outerplanar graphs. As always, we assume w.l.o.g. that the length of any edge is equal to the

distan
e between its endpoints.

We start with a 
omposition pro
edure for outerplanar graphs whi
h will form the basis for the em-

bedding. Given su
h a graph G, one 
an de�ne a sequen
e of outerplanar graphs G

0

; G

1

; : : : ; G

t

=

G, where G

0

is a path or a 
y
le, and the graph G

i

is obtained by atta
hing a path P

i

either to a

single vertex u

i

on the outer fa
e of G

i�1

, or to the endpoints of an edge e

i

= (u

i

; v

i

) lying on the

outer fa
e of G

i�1

. In the latter 
ase, sin
e the length of any edge is equal to the distan
e between

its endpoints in G, the path P

i

is at least as long as e

i

. This implies that the shortest-path metri


of the graph G

i


oin
ides with the metri
 indu
ed by d

G

on V (G

i

). Clearly, the 
omposition of G

is 
ompletely spe
i�ed by G

0

and the sequen
e of paths fP

i

g.

Given an outerplanar graph G with a spe
i�ed 
omposition pro
edure, the path P

i

is 
alled sla
k

if either P

i

is atta
hed to a single vertex, or P

i

is atta
hed to an edge e

i

and the length of P

i

is

at least twi
e the length of e

i

. A 
omposition is 
alled sla
k if all the paths P

i

in it are sla
k. We

shall �rst provide an embedding pro
edure for an outerplanar graph G assuming that G has a sla
k


omposition, and then show how to extend this to all outerplanar graphs.

Lemma 5.2 Given an outerplanar graph G and a sla
k 
omposition for it, G 
an be embedded into

a tree distribution D with distortion at most 4.

Proof: The embedding is indu
tive and follows the 
omposition. At stage i, we shall 
onstru
t

a random spanning tree T

i

of G

i

from a random spanning tree T

i�1

of G

i�1

, while maintaining

property (3

0

) for T

i

with � = 4; i.e., with E [d

T

i

(x; y)℄ � 4d

G

i

(x; y) for all edges (x; y) 2 G

i

.

In the base 
ase, if G

0

is a path, we do nothing. If it is a 
y
le, we randomly pi
k an edge e of G

0

with probability proportional to its length, and delete it to get a random subtree of G

0

. Let the

length of e be l, and the length of G

0

be L. The expe
ted distan
e between the endpoints of e in

T

0

is

�

l

L

�

� (L� l) +

�

L� l

L

�

� l � 2l; (5.12)

satisfying property (3

0

).

At stage i, we look at P

i

. If it is atta
hed to a single vertex u

i

, we atta
h it to T

i�1

at u

i

to get T

i

.

Clearly, property (3

0

) 
ontinues to hold for T

i

. On the other hand, if P

i

is atta
hed to an edge e

i

,

we randomly pi
k an edge e from P

i

(again with probability proportional to the length of e) and

set T

i

= T

i�1

[ (P

i

�feg). It is 
lear that T

i

is a spanning tree of G

i

. Let us show that property (3

0

)

is maintained. By the indu
tion hypothesis, this is true for edges (x; y) of G

i�1

, sin
e

E [d

T

i

(x; y)℄ = E [d

T

i�1

(x; y)℄ � 4d

G

i�1

(x; y) = 4d

G

i

(x; y):

Consider an edge e = (x; y) 2 P

i

; denote its length by l, and the length of P

i

by L

i

. Furthermore,

assuming that P

i

is atta
hed at the edge (u

i

; v

i

), denote d

G

i�1

(u

i

; v

i

) by d. The expe
ted distan
e

between x and y in T

i

is at most

�

l

L

i

�

� (4d + L

i

� l) +

�

L

i

� l

L

i

�

� l =

�

l

L

i

�

� (4d+ 2(L

i

� l)) � l

�

4

�

d

L

i

�

+ 2

�

:
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Sin
e the 
omposition is sla
k, we have d=L

i

� 1=2, and hen
e the expression above is at most 4l,

as required.

While it might be the 
ase that an outerplanar graph G does not have a sla
k 
omposition, we now

show that G 
an always be 
onverted into a graph H whi
h does have a sla
k 
omposition, at the


ost of a small distortion.

Lemma 5.3 Given an outerplanar graph G = (V;E), there is an outerplanar graph H = (V;E

0

)

(in fa
t, a subgraph of G) with a sla
k 
omposition su
h that d

G

� d

H

�

1

2

d

G

.

Proof: The graph H will be a subgraph of G, with edge lengths no longer than in G and no

shorter than half those in G. Let hG

0

= P

0

; P

1

; : : : ; P

t

i be the 
omposition de�ning G. Our goal is

to produ
e a sla
k 
omposition hH

0

= Q

0

; Q

1

; : : : ; Q

t

0

i for H, thereby de�ning H in the pro
ess.

The 
omposition sequen
e for H is initially set to be the same as that for G; we then 
onsider the

lowest unmarked path Q

i

, and while pro
essing and marking the path Q

i

, we modify possibly both

the pre
eding (marked) and forth
oming (unmarked) paths. We maintain the following invariants

during this pro
ess: H is always a 
onne
ted spanning subgraph of G; at ea
h stage, the distan
es

may only de
rease; �nally, the edge lengths never de
rease by more than a fa
tor of 2 from their

original values.

To begin, Q

0

is marked. For ea
h i > 0, if the path Q

i

is atta
hed to a single vertex, we mark it

and go on. Otherwise, Q

i

is atta
hed to some edge e

i

= (u

i

; v

i

) lying on some Q

k

with 0 � k < i.

If Q

i

is sla
k at this point, we again mark it and 
ontinue. So assume that the 
urrent length of

Q

i

is less than twi
e the 
urrent length of the edge e

i

= (u

i

; v

i

). We then do the following:

1. Modify Q

i

: De
rease the lengths of all the edges inQ

i

by a fa
tor of 1 � length(Q

i

)=length(e

i

) <

2, so that the 
urrent length of Q

i

be
omes exa
tly the 
urrent length of e

i

. Remove Q

i

from the

sequen
e for H. Note that the lengths of edges in Q

i

are halved in the worst 
ase. They will never

be 
hanged again (ex
ept that the edges may possibly be removed later).

2. Modify Q

k

: Re
all that Q

i

was atta
hed to the ends of e

i

lying on some previously marked

path Q

k

with k < i. Sin
e now length(e

i

) = length(Q

i

), repla
e e

i

in Q

k

by the entire res
aled

path Q

i

to get Q

0

k

. This does not 
hange any 
urrent distan
es in the graph.

3. Modify Q

j

, j > i: Observe that shrinking the path Q

i

may have resulted in some edges

being longer than the 
urrent distan
e between their endpoints in the forth
oming (but not the

pre
eding) paths. To over
ome this problem, 
onsider any su
h edge e 2 Q

j

. If there is a path Q

j

0

,

with j

0

> j, that is atta
hed to the endpoints of e (and there 
an be only one su
h path), repla
e

e in Q

j

with Q

j

0

and remove Q

j

0

from the sequen
e. If there is no su
h Q

j

0

, deleting e splits Q

j

into two paths, ea
h atta
hed to a single point, and we repla
e the old Q

j

in the 
omposition with

these two new paths. Again, note that this does not alter any 
urrent distan
es. We do not mark

any paths in this modi�
ation.

The main properties of the above pro
edure are as follows. At ea
h time step, we have 
onne
ted

spanning subgraphs of G. The edges surviving upon termination were modi�ed at most on
e, and

their lengths were de
reased at that time by at most a fa
tor of 2. No edge-length (and hen
e no
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distan
e between any pair of verti
es) is ever in
reased. The �nal sequen
e is sla
k. The pro
ess

terminates when we have marked all the paths, i.e., in at most jEj steps.

Let H be the graph spe
i�ed by the resulting sla
k sequen
e. It is a 
onne
ted spanning subgraph of

G, with edge lengths at least half those in G. This immediately implies the lower bound d

H

�

1

2

d

G

.

The upper bound d

H

� d

G

follows from the fa
t that none of the steps above 
aused distan
es to

in
rease.

Now the overall pro
edure for embedding an outerplanar graph G is as follows. First, we obtain

the graph H with a sla
k 
omposition as in Lemma 5.3, in
urring a distortion of at most 2. The

graph H (with the edge lengths doubled in order to dominate G) is then embedded into a tree

distribution with distortion at most 4 using Lemma 5.2, giving a total distortion of at most 8.

Furthermore, note that all the trees in the distribution are dominating subtrees of H with doubled

edge lengths, and thus also dominating subtrees of G. For ea
h su
h tree T , restoring the length of

an edge e 2 T to d

G

(e) 
an only de
rease the distortion without 
hanging the domination property.

Hen
e we get the main result of this se
tion:

Theorem 5.4 For any metri
 d

G

supported on a K

2;3

-free graph G, there is an embedding of d

G

into a tree distribution D with distortion at most 8. Moreover, the embedding uses only subtrees

of G with their original edge lengths.

5.2 Tree embeddings for graphs with few edges

Theorem 5.5 Any graph G with Euler 
hara
teristi
 �(G) 
an be embedded into a dominating tree

distribution with distortion O(log�(G) log log�(G)).

Proof: The proof is very similar to that of Theorem 4.8. Re
all that an isolated path in G is

a path with endpoints of degree � 3, and all internal nodes of degree 2. For every isolated path

B = hv

1

; v

2

; : : : ; v

k

i in G, we add to G a new edge e

B

between the endpoints of B, of length

d

G

(v

1

; v

k

), thus leaving the original metri
 una�e
ted. Now, for ea
h su
h B, independently of

other isolated paths, 
hoose an edge e in B with probability proportional to the length of e, and

delete it. We get a distribution over graphs G

0

, where ea
h G

0


onsists of the same \
ore" (in
luding

all the newly added edges), and the \hairs" (the remnants of the isolated paths).

Ea
h G

0

dominates G, and the expe
ted expansion of any edge in B introdu
ed by the above step

is at most 2 (by an analysis very similar to (5.12)), implying that the distortion in
urred by this

distribution over G

0

-metri
s is at most 2.

Finally, we have to embed ea
h G

0

into a dominating tree distribution. It suÆ
es to embed the


ore, sin
e ea
h hair is already a tree and 
an simply be atta
hed to the random tree approxi-

mating the 
ore. As in the proof of Theorem 4.8, we 
on
lude that the number of verti
es in the


ore is O(�(G)), and hen
e it 
an be embedded it into a distribution over trees with distortion

O(log�(G) log log�(G)) by the general result of [5℄. This 
ompletes the proof.
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5.3 Lower bounds for series-parallel graphs

In view of the results of the previous se
tions, Theorems 5.4 and 5.5 may inspire hope that embed-

dings into tree distributions with 
onstant distortion exist for other minor-
losed families, su
h as

series-parallel graphs. Our next result shows that this is not so; we prove a lower bound of 
(log n)

on the distortion for embedding series-parallel graphs into dominating tree distributions. This re-

sult extends those of Alon et al. [1℄ and Konjevod et al. [24℄, who gave a te
hni
ally more involved

lower bound for the n-vertex grid, and shows that approximating graph metri
s by distributions

over tree metri
s already breaks down for families of graphs that are mu
h simpler than grids.

Theorem 5.6 There exists an in�nite family of series-parallel graphs fG

k

g su
h that any �-

approximation of the shortest-path metri
 of G

k

by a distribution over dominating trees has � =


(log jV (G

k

)j).

The proof makes use of the following fa
t from [31℄:

Theorem 5.7 ([31℄) The distortion of any embedding of the unit-weighted 
y
le C

n

into an (ar-

bitrary) tree is at least n=3� 1.

Proof of Theorem 5.6: The graphs G

k

are de�ned re
ursively. G

0

is a single unit-weighted

edge between terminals s

0

and t

0

. Indu
tively, H

i+1


onsists of two 
opies of G

i

in series, and G

i+1


onsist of two 
opies of H

i+1

in parallel between terminals s

i+1

and t

i+1

(see Figure 5.3). The

graph G

k

has n = 4

k

edges and �(n) verti
es. Observe that for any G

i

with terminals s

i

and t

i

,

both the distan
e between the terminals and the size of a minimum s

i

-t

i


ut are 2

i

.

Following a standard framework for establishing lower bounds for probabilisti
 
onstru
tions (see,

e.g., [37, 1, 24℄), it suÆ
es to 
ome up with a distribution D over the edges of G

k

, su
h that any

tree T with V (G

k

) � V (T ) and d

T

� d

G

k

has a large expe
ted expansion, i.e., E

e2D

[d

T

(u

e

; v

e

)℄ �


(log jV (G

k

)j), where u

e

; v

e

denote the endpoints of edge e. More 
on
retely, it suÆ
es to show

that for any tree metri
 d

T

� d

G

k

on V (G) we have

X

e2E(G

k

)

d

T

(u

e

; v

e

) = 
(k) �

X

e2E(G

k

)

d

G

k

(u

e

; v

e

) = 
(k) � 4

k

;

sin
e then the same must also hold for any distribution over dominating tree metri
s, implying an

expansion of 
(k) = 
(log jV (G

k

)j).

Let T be a tree 
ontaining the verti
es of G

k

whi
h dominates distan
es in G

k

. For ea
h i 2 [1; ::; k℄,

assign 
olor i to all edges of G

k

whi
h su�er an expansion of at least 2

i+1

=3 � 1 in T . As a result,

ea
h edge in G

k

has at least one 
olor assigned to it, while some edges have multiple 
olors. Let

S

i

� E(G

k

) be the set of all edges that are assigned 
olor i.

How large is S

k

? Observe that any 
y
le whi
h goes around the graph G

k

(i.e., a simple 
y
le whi
h

in
ludes the terminals s

k

and t

k

) has length 2

k+1

, and therefore, by Theorem 5.7, 
ontains an edge


olored k. Thus S

k

hits all su
h 
y
les, and 
onsequently it must separate the terminals of at least

one of the four 
opies of G

k�1

that form G

k

. Hen
e jS

k

j � 2

k�1

.
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s
3

t
3

Figure 5.3: The graph G

3

How large is S

k�1

? Consider the four 
opies of G

k�1

forming G

k

. Arguing as before, we 
on
lude

that ea
h of these 
opies must 
ontain at least 2

k�2

edges of 
olor k� 1. Hen
e, the size of S

k�1

is

at least 4 � 2

k�2

. Arguing in the same vein for ea
h i, we get that jS

i

j � 4

k�i

2

i�1

= 2

2k�1�i

.

For ea
h e 2 E(G

k

), let C

e

be the set of 
olors assigned to e. The expansion of e is at least

max

i2C

e

�

2

i+1

=3� 1

�

�

1

2

X

i2C

e

�

2

i+1

=3� 1

�

:

Therefore,

X

e2E(G

k

)

d

T

(u

e

; v

e

) �

1

2

X

e

X

i2C

e

�

2

i+1

=3� 1

�

=

1

2

k

X

i=1

jfe j i 2 C

e

gj �

�

2

i+1

=3� 1

�

=

=

1

2

k

X

i=1

jS

i

j �

�

2

i+1

=3� 1

�

�

1

2

k

X

i=1

2

2k�i�1

�

�

2

i+1

=3 � 1

�

>

�

k

6

�

1

4

�

4

k

:

Remark 5.8 After the preliminary version of this paper appeared, we were informed by Yair Bartal

that Theorem 5.6 for the same family of graphs 
an also be inferred | albeit mu
h less dire
tly

| from the result of Imase and Waxman [20℄ 
ombined with the general framework of Bartal [4℄.

To see this, note that the Steiner tree problem is trivially 1-
ompetitive on trees, and hen
e an

�-probabilisti
 approximation of G

k

by trees implies an �-
ompetitive ratio on the graphs G

k

[4,

Theorem 4℄. However, [20℄ establishes an 
(k) lower bound for the 
ompetitive ratio for the Steiner

problem on G

k

, and hen
e � = 
(k).

5.4 An alternative embedding for series-parallel graphs

In light of the lower bound of the previous se
tion, we 
annot hope to embed general series-

parallel graphs into tree distributions with 
onstant distortion. However, by adding an extra

ingredient (spe
i�
ally, a 
ut-metri
 embedding of 
ertain spe
ial series-parallel graphs whi
h we


all \bundles") to the tree metri
 te
hnology, we will be able to 
ome up with an alternative
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embedding of series-parallel graphs into `

1

with 
onstant distortion whi
h is quite di�erent from

that of Se
tion 4.1.

The new embedding pro
eeds along the same lines as the embedding of outerplanar graphs in

Se
tion 5.1. Given a series-parallel graph G, it �rst performs prepro
essing and random edge

deletion steps similar to those in Lemmas 5.3 and 5.2 to get a spe
ial tree-like series-parallel graph

whi
h we 
all a \tree of bundles" (i.e., a graph whose 2-
onne
ted 
omponents are bundles). This

in
urs a distortion of at most 8. The bundles are then embedded using the 
ut-metri
 te
hnique

with distortion 2, yielding an embedding with total distortion at most 16 for general series-parallel

graphs. Although it has a marginally worse performan
e guarantee (at least in terms of the 
onstant

bounds we have established here), this se
ond algorithm is 
on
eptually simpler, and arguably

more instru
tive than that of Theorem 4.1. Sin
e mu
h of the 
onstru
tion is similar to that for

outerplanar graphs given in Se
tion 5.1, we shall omit the re
urring details and emphasize the

di�eren
es.

As in Se
tion 4.1, the 
onstru
tion is based on the 
omposition pro
edure for G. The 
ompositions

allowed here are slightly less restri
tive than before, in that we add paths of arbitrary lengths

between the ends of some existing edge at ea
h stage, rather than a single vertex (i.e., a path of

length 2). Hen
e the 
omposition 
onsists of a sequen
e of graphs G

i

, where G

0

= P

0

is a path,

and G

i

is obtained by atta
hing a path P

i

to already existing edge e

i

= (u

i

; v

i

). We require that

the length of P

i

be no less than the length of e

i

= (u

i

; v

i

), and that the lengths of all edges are

equal to the a
tual distan
e between their endpoints in G. We shall further relax the 
omposition

by permitting P

i

to be atta
hed to just a single vertex; su
h a path will be 
alled free.

Call a (non-free) path sla
k if its length L

i

is at least twi
e d

i

, the length of the edge e

i

= (u

i

; v

i

).

Similarly, a path is 
alled taut if L

i

= d

i

. (Note that it is possible for a path to be neither taut nor

sla
k.) We say a 
omposition is sla
k-taut if ea
h (non-free) path is either sla
k or taut. The �rst

observation is that we 
an de�ne a prepro
essing step similar to that in Lemma 5.3 for series-parallel

graphs, whi
h outputs a series-parallel graph with a sla
k-taut 
omposition.

Lemma 5.9 Given a 2-
onne
ted series-parallel graph G = (V;E), there is a series-parallel graph

H = (V;E

0

) with a sla
k-taut 
omposition su
h that d

G

� d

H

�

1

2

d

G

.

The 
onstru
tion of H and the proof of its 
orre
tness are very similar to those of Lemma 5.3. One

small di�eren
e is that whenever we redu
ed the length of P

i

in the sequen
e de�ning an outerplanar

graph, we 
ould always remove the edge (u

i

; v

i

) to whi
h P

i

was atta
hed. For series-parallel graphs,

many paths 
an be atta
hed to the same edge, so we 
annot remove it. However, sin
e the redu
ed

path P

i

is taut, leaving e

i

in pla
e satis�es the sla
k-tautness 
ondition. Another small di�eren
e is

that now we 
annot remove a (forth
oming) edge whi
h has be
ome longer than the a
tual distan
e

between its endpoints: this 
ould 
ontradi
t the te
hni
al requirement that paths must be atta
hed

to edges. To over
ome this diÆ
ulty, we do not a
tually remove su
h an edge, but only mark it as

\to be removed" and never tou
h it again until the end; then it is removed.

Before stating the next lemma, let us formally de�ne a bundle as a series-parallel graph su
h that

all simple paths between its terminals are of the same length. Note that a bundle has a well-de�ned

length, whi
h is the distan
e between its terminals. Figure 5.4 shows an example of a bundle with

terminals s and t.
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ts
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Figure 5.4: A bundle: all non-labeled edges have unit length.

Consider the sla
k-taut 
omposition of H in Lemma 5.9. Observe that if P

j

is a taut path atta
hed

to a pre
eding path P

i

, and P

i

is part of a bundle, then P

j

also be
omes a part of the same bundle.

In this way we obtain the maximal bundles of the graph H. Note that if a maximal bundle B

0

is atta
hed to two verti
es on some other maximal bundle B (and in parti
ular, B

0


annot be


onsidered a sub-bundle of B), then B

0

must be at least twi
e as long as the distan
e between its

terminals. This view allows us to de�ne another sla
k 
omposition for H, in whi
h we atta
h sla
k

(maximal) bundles at ea
h step (instead of adding sla
k paths).

Lemma 5.10 Given a series-parallel graph H and a sla
k-taut 
omposition for it, H 
an be em-

bedded into a distribution over spe
ial subgraphs with distortion at most 4. The spe
ial subgraphs

in this distribution have the property that all their maximal 2-
onne
ted 
omponents are bundles.

The proof is similar to that of Lemma 5.2. Consider the sla
k 
omposition, where a sla
k bundle

is atta
hed at ea
h step. This is analogous to the sla
k 
omposition for outerplanar graphs, and

we shall use it in a similar way. Spe
i�
ally, when adding a bundle of length L, we 
hoose a

value r 2 [0; L℄ uniformly at random and 
ut all the edges that 
ross a point at distan
e r from

a �xed terminal of the bundle. The analysis of edge expansion is identi
al to that in the proof of

Lemma 5.2. Sin
e by 
utting a bundle we 
reate smaller bundles and some free paths, we obtain a

\tree of bundles" at the end of the pro
edure.

The �nal step of the embedding has no outerplanar analog. Noti
e that bundles are pre
isely the

spe
ial series-parallel graphs dis
ussed in Lemma 4.4. Thus they 
an be embedded into `

1

with

distortion at most 2 using the 
ut-metri
 te
hnique.

Combining Lemmas 4.4, 5.9, and 5.10, we arrive at the main result of this se
tion:

Theorem 5.11 The pro
edure des
ribed in this se
tion produ
es an embedding of series-parallel

graphs into `

1

with distortion at most 16.
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A Appendix: Proof of equation (3.2)

Equation (3.2) follows from a general result 
on
erning positive real ve
tors. Let v; u 2 R

k

be two

positive ve
tors. De�ne

H(v; u) = max

i

u

i

v

i

� max

j

v

j

u

j

:

If S � R

k

is a 
losed set of positive ve
tors, de�ne H(v; S) as min

u2S

H(v; u).

Claim A.1 If K � R

k

is a 
losed 
onvex 
one, then

H(v;K) = max

(C;D)

D � v

C � v

; (A.1)

where the maximum is taken over all non-negative ve
tors D;C 2 R

k

for whi
h

D�u

C�u

� 1 for any

u 2 K.

In the sequel, we use �(v;K) to refer to the expression on the right hand side of (A.1). Before we

prove Claim A.1, let us explain how it implies (3.2).

A metri
 (V; �) on jV j = n points 
an be viewed as a positive ve
tor in R

(

n

2

)

, in whi
h the value

of the ij-th 
oordinate (for i < j) is �(i; j). Sin
e the set of l

1

-embeddable metri
s on a set V
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oin
ides with the set of non-negative 
ombinations of 
ut metri
s on V , they form a 
losed 
onvex


one in R

(

jV j

2

)

, 
alled the 
ut 
one (see, e.g., [15℄ for more details). Denote the 
ut 
one on V by

M

1

(V ).

Note that if v

�

is the ve
tor 
orresponding to a metri
 (V; �), then H(v

�

;M

1

(V )) = 


1

(�). There-

fore, applying Claim A.1 to K =M

1

(V ) and v = v

�

, we obtain (3.2).

Proof of Claim A.1: One dire
tion of the 
laim is easy: for any u 2 K and D;C as above,

D � v

C � v

� max

i

u

i

v

i

� max

j

v

j

u

j

�

D � u

C � u

� H(v; u) :

Taking the \
losest" u 2 K to v, we 
on
lude that �(v;K) � H(v;K).

For the other dire
tion, let B

Æ

(v) � R

k

be the set of all positive ve
tors x 2 R

k

su
h that H(v; x) �

Æ. Clearly,

B

Æ

(v) = fx 2 R

k

j 8

r;q2[1::k℄

Æ � v

r

x

q

� v

q

x

r

� 0g :

Observe that B

Æ

(v) is a 
losed 
onvex 
one 
ontaining v. By de�nition, H(v;K) is the smallest Æ

su
h that B

Æ

(v) \K 6= ;. For this 
riti
al Æ, we 
laim that there exists a ve
tor l 2 R

k

su
h that

1. l � B

Æ

(v) � 0;

2. l �K � 0;

3. l is a non-negative 
ombination of ve
tors �

rq

2 R

k

, r; q 2 [1::k℄; r 6= q, where �

rq

has �v

q

in the r-th 
oordinate, Æv

r

in the q-th 
oordinate, and 0 in all other 
oordinates.

Indeed, the dual 
one

B

�

Æ

= fy 2 R

k

j 8

x2B

Æ

hx; yi � 0g

is the 
onvex hull of ve
tors f�

rq

g, and thus the normal ve
tor to any supporting hyperplane of

B

Æ

(v) separating it from K has the required properties.

Let l

+

and l

�

be two non-negative ve
tors in R

k

with l

+

� l

�

= l, formed by taking the positive and

the negative 
oordinates of l respe
tively. By the �rst two properties of l, for any u 2 K,

l

+

�u

l

�

�u

� 1,

while

l

+

�v

l

�

�v

� 1. In the rest of the argument, l

+

will play the role of D, while l

�

will play the role

of C.

Given an arbitrary form (

P

i

d

i

x

i

) = (

P

i




i

x

i

) de�ned over non-negative x 2 R

k

with non-negative


oeÆ
ients d

i

and 


i

, let us de�ne a new form

�

P

i

d

i

x

i

P

i




i

x

i

�

#

=

P

i

(d

i

�min(d

i

; 


i

))x

i

P

i

(


i

�min(d

i

; 


i

))x

i

:

Observe that if the value of the original form is � 1, then the value of the new form ex
eeds that

of the old one. Using this observation and the fa
t that l =

P

�

rq

�

rq

for some non-negative �

rq

's,

we 
an infer that

�(v;K) �

l

+

� v

l

�

� v

=

 

P

rq

�

rq

�

+

rq

� v

P

rq

�

rq

�

�

rq

� v

!

#

�

P

rq

�

rq

�

+

rq

� v

P

rq

�

rq

�

�

rq

� v

= Æ = H(v;K) ;
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whi
h establishes the 
laim.
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