Today

Approximation Algorithm.

Today

Approximation Algorithm.
Facility Location.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$. Find maximum weight perfect matching.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V}

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality?

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality?

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality? Same value solutions.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality? Same value solutions. Hungarian algorithm

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality? Same value solutions. Hungarian algorithm !!!

Integer Vertex Solution.

Any "vertex" solution is integer!

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.
d "tight" constraints.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.
d "tight" constraints.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dimension: m

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.
d "tight" constraints.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dimension: m
Only $2 n$ of the form $\sum_{e} x_{e}=1$.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints. d "tight" constraints.

$$
\begin{aligned}
\max & \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e} & =1 \\
x_{e} & \geq 0
\end{aligned}
$$

Dimension: m
Only $2 n$ of the form $\sum_{e} x_{e}=1$.
Must have $m-2 n$ tight constraints of form $x_{e}=0$.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.
d "tight" constraints.

$$
\begin{aligned}
\max & \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e} & =1 \\
x_{e} & \geq 0
\end{aligned}
$$

Dimension: m
Only $2 n$ of the form $\sum_{e} x_{e}=1$.
Must have $m-2 n$ tight constraints of form $x_{e}=0$.
Throw away variables that are 0.

Integer Vertex Solution.

Any "vertex" solution is integer!
Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints. d "tight" constraints.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dimension: m
Only $2 n$ of the form $\sum_{e} x_{e}=1$.
Must have $m-2 n$ tight constraints of form $x_{e}=0$.
Throw away variables that are 0 .
Constraint matrix C with $2 n$ variables. $2 n$ rows.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column. Average degree two bipartite graph.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints. Matrix C has 2 non-zeros in each row and column. Average degree two bipartite graph. Even cycle is linearly dependent:

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints. Matrix C has 2 non-zeros in each row and column. Average degree two bipartite graph. Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints. Matrix C has 2 non-zeros in each row and column. Average degree two bipartite graph. Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows. Each variable in two constraints. Matrix C has 2 non-zeros in each row and column. Average degree two bipartite graph. Even cycle is linearly dependent:
Negate equations for vertices on one side and add them. So need another constraint of form $x_{e}=0$ for each cycle. Now, matrix has degree 1 constraint:

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle. Now, matrix has degree 1 constraint:
or $\sum_{e} x_{e}=1 \Longrightarrow x_{e}=1$.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle. Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.
Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.
Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.
Note:

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle. Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.
Note:
also prove the determinant is 1 or -1

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.
Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.
Note:
also prove the determinant is 1 or -1 for the non-singular matrix.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.
Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.
Note:
also prove the determinant is 1 or -1 for the non-singular matrix.
Plus, Cramer's rule implies integrality.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.
Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.
Note:
also prove the determinant is 1 or -1 for the non-singular matrix.
Plus, Cramer's rule implies integrality.

..and so on.

Constraint matrix C with $2 n$ variables. $2 n$ rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.
So need another constraint of form $x_{e}=0$ for each cycle.
Now, matrix has degree 1 constraint:

$$
\text { or } \sum_{e} x_{e}=1 \Longrightarrow x_{e}=1 \text {. }
$$

This is an integer!!!
And so on.
Note:
also prove the determinant is 1 or -1 for the non-singular matrix.
Plus, Cramer's rule implies integrality.
That's what we did.

Facility location

Set of facilities: F, opening cost f_{i} for facility i

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.
$d_{i j}$ - distance between i and j.

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.
$d_{i j}$ - distance between i and j.
(notation abuse: clients/facility confusion.)

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.
$d_{i j}$ - distance between i and j.
(notation abuse: clients/facility confusion.)
Triangle inequality: $d_{i j} \leq d_{i k}+d_{k j}$.

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.
$d_{i j}$ - distance between i and j.
(notation abuse: clients/facility confusion.)
Triangle inequality: $d_{i j} \leq d_{i k}+d_{k j}$.

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.
$d_{i j}$ - distance between i and j.
(notation abuse: clients/facility confusion.)
Triangle inequality: $d_{i j} \leq d_{i k}+d_{k j}$.

Facility location

Set of facilities: F, opening cost f_{i} for facility i
Set of clients: D.
$d_{i j}$ - distance between i and j.
(notation abuse: clients/facility confusion.)
Triangle inequality: $d_{i j} \leq d_{i k}+d_{k j}$.

Facility Location

Linear program relaxation:

Facility Location

Linear program relaxation:
"Decision Variables".

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i}-facility i open?

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i} - facility i open?
$x_{i j}$ - client j assigned to facility i.

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i} - facility i open?
$x_{i j}$ - client j assigned to facility i.

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i}-facility i open?
$x_{i j}$ - client j assigned to facility i.

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i}-facility i open?
$x_{i j}$ - client j assigned to facility i.

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Facility opening cost.

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i}-facility i open?
$x_{i j}$ - client j assigned to facility i.

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Facility opening cost.
Client Connnection cost.

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i}-facility i open?
$x_{i j}$ - client j assigned to facility i.

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Facility opening cost. Client Connnection cost.
Must connect each client.

Facility Location

Linear program relaxation:
"Decision Variables".
y_{i} - facility i open?
$x_{i j}$ - client j assigned to facility i.

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Facility opening cost. Client Connnection cost.
Must connect each client.
Only connect to open facility.

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& x_{i j}=\frac{1}{2} \text { edges. } \\
& y_{i}=\frac{1}{2} \text { edges. }
\end{aligned}
$$

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& x_{i j}=\frac{1}{2} \text { edges. } \\
& y_{i}=\frac{1}{2} \text { edges. }
\end{aligned}
$$

Facility Cost: $\frac{3}{2}$

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& x_{i j}=\frac{1}{2} \text { edges. } \\
& y_{i}=\frac{1}{2} \text { edges. }
\end{aligned}
$$

Facility Cost: $\frac{3}{2}$ Connection Cost: 3

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$x_{i j}=\frac{1}{2}$ edges.
$y_{i}=\frac{1}{2}$ edges.
Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
x_{i j}=\frac{1}{2} \text { edges. }
$$

$$
y_{i}=\frac{1}{2} \text { edges. }
$$

Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$x_{i j}=\frac{1}{2}$ edges.
$y_{i}=\frac{1}{2}$ edges.
Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7 Make it worse?

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$x_{i j}=\frac{1}{2}$ edges.
$y_{i}=\frac{1}{2}$ edges.
Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7 Make it worse? Sure.

Integer Solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$x_{i j}=\frac{1}{2}$ edges.
$y_{i}=\frac{1}{2}$ edges.
Facility Cost: $\frac{3}{2}$ Connection Cost: 3 Any one Facility:

Facility Cost: 1 Client Cost: 3.7
Make it worse? Sure. Not as pretty!

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?
y_{i} and $x_{i j}$ separately?

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?
y_{i} and $x_{i j}$ separately? Assign to closed facility!

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?
y_{i} and $x_{i j}$ separately? Assign to closed facility!
Round $x_{i j}$ and open facilities?

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?
y_{i} and $x_{i j}$ separately? Assign to closed facility!
Round $x_{i j}$ and open facilities?
Different clients force different facilities open.

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?
y_{i} and $x_{i j}$ separately? Assign to closed facility!
Round $x_{i j}$ and open facilities?
Different clients force different facilities open.
Any ideas?

Round solution?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

Round independently?
y_{i} and $x_{i j}$ separately? Assign to closed facility!
Round $x_{i j}$ and open facilities?
Different clients force different facilities open.
Any ideas?
Use Dual!

The dual.
$\min c x, A x \geq b$

The dual.
$\min c x, A x \geq b \leftrightarrow$

The dual.

$\min c x, A x \geq b \leftrightarrow \max b x, y^{\top} A \leq c$.

The dual.

$\min c x, A x \geq b \leftrightarrow \max b x, y^{\top} A \leq c$.

$$
\begin{gathered}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i},
\end{gathered}
$$

The dual.

$\min c x, A x \geq b \leftrightarrow \max b x, y^{\top} A \leq c$.

$$
\begin{array}{cl}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad & \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D & x_{i j} \leq y_{i},
\end{array}
$$

$$
\begin{aligned}
& \min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
& \forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 ; \alpha_{j} \\
& \forall i \in F, j \in D \quad y_{i}-x_{i j} \geq 0 ; \beta_{i j} \\
& x_{i j}, y_{i} \geq 0
\end{aligned}
$$

The dual.

$\min c x, A x \geq b \leftrightarrow \max b x, y^{\top} A \leq c$.

$$
\begin{aligned}
& \min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
& \forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
& \forall i \in F, j \in D x_{i j} \leq y_{i},
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} & \max \sum_{j} \alpha_{j} \\
\forall j \in D \sum_{i \in F} x_{i j} \geq 1 & ; \alpha_{j}
\end{array} \quad \forall i \sum_{j \in D} \beta_{i j} \leq f_{i} \quad ; y_{i}\right)
$$

Interpretation of Dual?

$$
\begin{array}{rc}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} & \max \sum_{j} \alpha_{j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 & \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, & \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
x_{i j}, y_{i} \geq 0 & \alpha_{j}, \beta_{i j} \geq 0
\end{array}
$$

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \geq 0
\end{aligned}
$$

α_{j} charge to client.

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \geq 0
\end{aligned}
$$

α_{j} charge to client.
maximize price paid by client to connect!

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \geq 0
\end{aligned}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\sum_{j} \alpha_{j}$ total payment.

Interpretation of Dual?

$$
\begin{array}{rc}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} & \max \sum_{j} \alpha_{j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 & \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, & \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
x_{i j}, y_{i} \geq 0 & \alpha_{j}, \beta_{i j} \geq 0
\end{array}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\sum_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.

Interpretation of Dual?

$$
\begin{array}{rc}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} & \max \sum_{j} \alpha_{j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 & \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, & \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
x_{i j}, y_{i} \geq 0 & \alpha_{j}, \beta_{i j} \geq 0
\end{array}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\sum_{j} \alpha_{j}$ total payment. Client j travels or pays to open facility i. Costs client $d_{i j}$ to get to there.

Interpretation of Dual?

$$
\begin{array}{rc}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} & \max \sum_{j} \alpha_{j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 & \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i}, & \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
x_{i j}, y_{i} \geq 0 & \alpha_{j}, \beta_{i j} \geq 0
\end{array}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\Sigma_{j} \alpha_{j}$ total payment. Client j travels or pays to open facility i.

Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i} \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{gathered}
\max \sum_{j} \alpha_{j} \\
\forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
\forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
\alpha_{j}, \beta_{i j} \geq 0
\end{gathered}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\sum_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.
Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.
Willing to pay $\beta_{i j}=\alpha_{j}-d_{i j}$.

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i} \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \geq 0
\end{aligned}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\Sigma_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.
Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.
Willing to pay $\beta_{i j}=\alpha_{j}-d_{i j}$.
Total payment to facility i at most f_{i} before opening.

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i} \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i}
\end{aligned}
$$

$$
\forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j}
$$

$$
\alpha_{j}, \beta_{i j} \geq 0
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\sum_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.
Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.
Willing to pay $\beta_{i j}=\alpha_{j}-\alpha_{i j}$.
Total payment to facility i at most f_{i} before opening.
Complementary slackness:

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i} \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \geq 0
\end{aligned}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\Sigma_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.
Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.
Willing to pay $\beta_{i j}=\alpha_{j}-d_{i j}$.
Total payment to facility i at most f_{i} before opening.
Complementary slackness: $x_{i j} \geq 0$ if and only if $\alpha_{j} \geq d_{i j}$.

Interpretation of Dual?

$$
\begin{array}{r}
\min \sum_{i \in F} y_{i} f_{i}+\sum_{i \in F, j \in D} x_{i j} d_{i j} \\
\forall j \in D \quad \sum_{i \in F} x_{i j} \geq 1 \\
\forall i \in F, j \in D \quad x_{i j} \leq y_{i} \\
x_{i j}, y_{i} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \quad x_{i j} \\
& \alpha_{j}, \beta_{i j} \geq 0
\end{aligned}
$$

α_{j} charge to client.
maximize price paid by client to connect!
Objective: $\Sigma_{j} \alpha_{j}$ total payment.
Client j travels or pays to open facility i.
Costs client $d_{i j}$ to get to there.
Savings is $\alpha_{j}-d_{i j}$.
Willing to pay $\beta_{i j}=\alpha_{j}-d_{i j}$.

Total payment to facility i at most f_{i} before opening.
Complementary slackness: $x_{i j} \geq 0$ if and only if $\alpha_{j} \geq d_{i j}$.
only assign client to "paid to" facilities.

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Use Dual.

1. Find solution to primal, (x, y). and dual, (α, β).
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
3. Removed assigned clients, goto 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.
 $f_{\text {min }}-\min$ cost facility in N_{j}

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.

$f_{\text {min }}-\min$ cost facility in N_{j}
$f_{\text {min }}$

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.
 $f_{\text {min }}-\min$ cost facility in N_{j}

$$
f_{\min } \leq f_{\min } \cdot \sum_{i \in N_{j}} x_{i j}
$$

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.
 $f_{\text {min }}-\min$ cost facility in N_{j}

$$
f_{\text {min }} \leq f_{\text {min }} \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\min } \sum_{i \in N_{j}} y_{i}
$$

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Proof: Step 2 picks client j.
 $f_{\text {min }}-\min$ cost facility in N_{j}

$$
f_{\min } \leq f_{\min } \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\min } \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i} .
$$

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j.
$f_{\text {min }}-\min$ cost facility in N_{j}
$f_{\text {min }} \leq f_{\text {min }} \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\min } \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
For k used in Step 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j.
$f_{\text {min }}-\min$ cost facility in N_{j}
$f_{\text {min }} \leq f_{\text {min }} \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\min } \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
For k used in Step 2.
$N_{j} \cap N_{k}=\emptyset$ for j and k in step 2.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j.
$f_{\text {min }}-$ min cost facility in N_{j}
$f_{\text {min }} \leq f_{\text {min }} \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\text {min }} \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
For k used in Step 2.
$N_{j} \cap N_{k}=\emptyset$ for j and k in step 2.
\rightarrow Any facility in ≤ 1 sum from step 2 .

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j.
$f_{\text {min }}-$ min cost facility in N_{j}
$f_{\text {min }} \leq f_{\text {min }} \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\min } \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
For k used in Step 2.
$N_{j} \cap N_{k}=\emptyset$ for j and k in step 2.
\rightarrow Any facility in ≤ 1 sum from step 2.
\rightarrow total step 2 facility cost is $\leq \sum_{i} y_{i} f_{i}$.

Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most $\sum_{i} f_{i} y_{i}$.
2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Proof: Step 2 picks client j.
$f_{\text {min }}-$ min cost facility in N_{j}
$f_{\text {min }} \leq f_{\text {min }} \cdot \sum_{i \in N_{j}} x_{i j} \leq f_{\text {min }} \sum_{i \in N_{j}} y_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
For k used in Step 2.
$N_{j} \cap N_{k}=\emptyset$ for j and k in step 2.
\rightarrow Any facility in ≤ 1 sum from step 2.
\rightarrow total step 2 facility cost is $\leq \sum_{i} y_{i} f_{i}$.

Connection Cost.

2. For smallest (remaining) α_{j},

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.
Connection Cost of j :

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.
Connection Cost of j :

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.
Connection Cost of $j: \leq \alpha_{j}$.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :

$$
\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j}
$$

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :

$$
\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}}
$$

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :

$$
\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}}
$$

$$
\text { since } \alpha_{j} \leq \alpha_{j^{\prime}}
$$

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :
$\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}}$. since $\alpha_{j} \leq \alpha_{j^{\prime}}$
Total connection cost: at most $3 \sum_{j} \alpha_{j} \leq 3$ times Dual OPT.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$. Connection Cost of j^{\prime} :
$\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}}$. since $\alpha_{j} \leq \alpha_{j^{\prime}}$
Total connection cost: at most $3 \sum_{j} \alpha_{j} \leq 3$ times Dual OPT.
Previous Slide: Facility cost:

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$.
Connection Cost of j^{\prime} :
$\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}}$. since $\alpha_{j} \leq \alpha_{j^{\prime}}$
Total connection cost: at most $3 \sum_{j} \alpha_{j} \leq 3$ times Dual OPT.
Previous Slide: Facility cost:
\leq primal "facility" cost \leq Primal OPT.

Connection Cost.

2. For smallest (remaining) α_{j},
(a) Let $N_{j}=\left\{i: x_{i j}>0\right\}$.
(b) Open cheapest facility i in N_{j}.

Every client j^{\prime} with $N_{j^{\prime}} \cap N_{j} \neq \emptyset$ assigned to i.
Client j is directly connected. Clients j^{\prime} are indirectly connected.

Connection Cost of $j: \leq \alpha_{j}$.
Connection Cost of j^{\prime} :
$\leq \alpha_{j^{\prime}}+\alpha_{j}+\alpha_{j} \leq 3 \alpha_{j^{\prime}}$. since $\alpha_{j} \leq \alpha_{j^{\prime}}$
Total connection cost: at most $3 \sum_{j} \alpha_{j} \leq 3$ times Dual OPT.
Previous Slide: Facility cost:
\leq primal "facility" cost \leq Primal OPT.
Total Cost: 4 OPT.

Twist on randomized rounding.

Client j :

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1$,

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$. Probability distribution!

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i}$

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:

$$
\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{j} .
$$

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:

$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.

and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:

$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.

and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j}$

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost j^{\prime}

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{j}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.
\rightarrow Expected cost is $\leq\left(2 \alpha_{j^{\prime}}+D_{j^{\prime}}\right)$.
Connection cost: $2 \sum_{j} \alpha_{j}+\sum_{j} D_{j}$.
$20 P T(D)$ plus connection cost of primal.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{i}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.
\rightarrow Expected cost is $\leq\left(2 \alpha_{j^{\prime}}+D_{j^{\prime}}\right)$.
Connection cost: $2 \sum_{j} \alpha_{j}+\sum_{j} D_{j}$.
2OPT (D) plus connection cost of primal.
Total expected cost:

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{j}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.
\rightarrow Expected cost is $\leq\left(2 \alpha_{j^{\prime}}+D_{j^{\prime}}\right)$.
Connection cost: $2 \sum_{j} \alpha_{j}+\sum_{j} D_{j}$.
2OPT (D) plus connection cost of primal.
Total expected cost:
Facility cost is at most facility cost of primal.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{j}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.
\rightarrow Expected cost is $\leq\left(2 \alpha_{j^{\prime}}+D_{j^{\prime}}\right)$.
Connection cost: $2 \sum_{j} \alpha_{j}+\sum_{j} D_{j}$.
2OPT (D) plus connection cost of primal.
Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

Twist on randomized rounding.

Client $j: \sum_{i} x_{i j}=1, x_{i j} \geq 0$.
Probability distribution! \rightarrow Choose from distribution, $x_{i j}$, in step 2.
Expected opening cost:
$\sum_{i \in N_{j}} x_{i j} f_{i} \leq \sum_{i \in N_{j}} y_{i} f_{j}$.
and separate balls implies total $\leq \sum_{i} y_{i} f_{i}$.
$D_{j}=\sum_{i} x_{i j} d_{i j} \quad$ Expected connection cost of primal for j.
Expected connection cost $j^{\prime} \quad \alpha_{j}+\alpha_{j^{\prime}}+D_{j}$.
In step 2: pick in increasing order of $\alpha_{j}+D_{j}$.
\rightarrow Expected cost is $\leq\left(2 \alpha_{j^{\prime}}+D_{j^{\prime}}\right)$.
Connection cost: $2 \sum_{j} \alpha_{j}+\sum_{j} D_{j}$.
2OPT (D) plus connection cost of primal.
Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
\rightarrow at most 3OPT .

Primal dual algorithm.

1. Feasible integer solution.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?
Typically. (If dual is maximization.)

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?
Typically. (If dual is maximization.)
Begin with feasible dual.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?
Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?
Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?
Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.
Recall Dual:

Primal dual algorithm.

1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution $\leq \alpha$ times dual value.

Just did it. Used linear program. Faster?
Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.
Recall Dual:

$$
\begin{aligned}
& \max \sum_{j} \alpha_{j} \\
& \forall i \in F \quad \sum_{j \in D} \beta_{i j} \leq f_{i} \\
& \forall i \in F, j \in D \quad \alpha_{j}-\beta_{i j} \leq d_{i j} \\
& \alpha_{j}, \beta_{i j} \leq 0
\end{aligned}
$$

Facility location primal dual.

Phase 1:

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i

Facility location primal dual.

Phase 1: 1 . Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why?

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why?

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.
For client j, connected facility i is opened.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.
For client j, connected facility i is opened. Good.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.
For client j, connected facility i is opened. Good.
Connected facility not open

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.
For client j, connected facility i is opened. Good.
Connected facility not open
\rightarrow exists client j^{\prime} paid i and connected to open facility.

Facility location primal dual.

Phase 1: 1. Initially $\alpha_{j}, \beta_{i j}=0$.
2. Raise α_{j} for every (unconnected) client.

When $\alpha_{j}=d_{i j}$ for some i
raise $\beta_{i j}$ at same rate Why? Dual: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Intution:Paying $\beta_{i j}$ to open i.
Stop when $\sum_{i} \beta_{i j}=f_{i}$.
Why? Dual: $\sum_{i} \beta_{i j} \leq f_{i}$
Intution: facility paid for.
Temporarily open i. Connect all tight $j i$ clients j to i.
3. Continue until all clients connected.

Phase 2:

Make "edge" between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client graph.
For client j, connected facility i is opened. Good.
Connected facility not open
\rightarrow exists client j^{\prime} paid i and connected to open facility.
Connect j to j 's open facility.

Constraints for dual.

Constraints for dual.

$$
\sum_{j} \beta_{i j} \leq f_{i}
$$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.

$$
\alpha_{j}=d_{i j}!
$$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint:

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq \alpha_{i j}$.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.

$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$. Grow $\beta_{i j}$ (and α_{j}).

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}=4.5$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\Sigma_{j} \alpha_{j}=4.5$
Temporarily open all facilities.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\Sigma_{j} \alpha_{j}=4.5$
Temporarily open all facilities.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\Sigma_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\Sigma_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility.
Connect facilities with common client.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq d_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility. Connect facilities with common client. Open independent set.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq \alpha_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility.
Connect facilities with common client.
Open independent set.
Connect to "killer" client's facility.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq \alpha_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility.
Connect facilities with common client.
Open independent set.
Connect to "killer" client's facility.
Cost: $1+3.7$

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq \alpha_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility.
Connect facilities with common client.
Open independent set.
Connect to "killer" client's facility.
Cost: $1+3.7=4.7$.

Constraints for dual.

$$
\begin{aligned}
& \sum_{j} \beta_{i j} \leq f_{i} \\
& \alpha_{i}-\beta_{i j} \leq d_{i j} .
\end{aligned}
$$

Grow α_{j}.
$\alpha_{j}=d_{i j}$!
Tight constraint: $\alpha_{j}-\beta_{i j} \leq \alpha_{i j}$.
Grow $\beta_{i j}$ (and α_{j}).
$\sum_{j} \beta_{i j}=f_{i}$ for all facilities.
Tight: $\sum_{j} \beta_{i j} \leq f_{i}$
LP Cost: $\sum_{j} \alpha_{j}=4.5$
Temporarily open all facilities.
Assign Clients to "paid to" open facility.
Connect facilities with common client.
Open independent set.
Connect to "killer" client's facility.
Cost: $1+3.7=4.7$.
A bit more than the LP cost.

Analysis

Claim: Client only pays one facility.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.

Proof:

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i.

$$
f_{i}+\sum_{j \in \mathcal{S}_{i}} d_{i j} \leq \sum_{j} \alpha_{j} .
$$

Proof:

$f_{i}=\sum_{j \in S_{i}} \beta_{i j}$

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i.

$$
f_{i}+\sum_{j \in \mathcal{S}_{i}} d_{i j} \leq \sum_{j} \alpha_{j} .
$$

Proof:

$f_{i}=\sum_{j \in S_{i}} \beta_{i j}=\sum_{j \in S_{i}} \alpha_{j}-d_{i j}$.

Analysis

Claim: Client only pays one facility.
Independent set of facilities.
Claim: S_{i} - directly connected clients to open facility i.

$$
f_{i}+\sum_{j \in \mathcal{S}_{i}} d_{i j} \leq \sum_{j} \alpha_{j} .
$$

Proof:

$f_{i}=\sum_{j \in S_{i}} \beta_{i j}=\sum_{j \in S_{i}} \alpha_{j}-d_{i j}$. Since directly connected: $\beta_{i j}=\alpha_{j}-d_{i j}$.

Analysis.

Claim: Client j is indirectly connected to i

Analysis.

Claim: Client j is indirectly connected to i
$\rightarrow d_{i j} \leq 3 \alpha_{j}$.

Analysis.

Claim: Client j is indirectly connected to i
$\rightarrow d_{i j} \leq 3 \alpha_{j}$.
Directly connected to (temp open) i^{\prime}

Analysis.

Claim: Client j is indirectly connected to i
$\rightarrow d_{i j} \leq 3 \alpha_{j}$.
Directly connected to (temp open) i^{\prime} conflicts with i.

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i' conflicts with i. exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$. When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}. $\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.
Total distance from j to j^{\prime}.

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.
Total distance from j to j^{\prime}.

$$
d_{j i^{\prime}}+
$$

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.
Total distance from j to j^{\prime}.

$$
d_{j i^{\prime}}+d_{i^{\prime} j^{\prime}}+
$$

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.
Total distance from j to j^{\prime}.

$$
d_{j j^{\prime}}+d_{i^{\prime} j^{\prime}}+d_{j^{\prime} i}
$$

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.
Total distance from j to j^{\prime}.

$$
d_{j i^{\prime}}+d_{i j^{\prime} j^{\prime}}+d_{j^{\prime} \prime} \leq 3 \alpha_{j}
$$

Analysis.

Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j}
$$

Directly connected to (temp open) i^{\prime} conflicts with i.
exists j^{\prime} with $\alpha_{j^{\prime}} \geq d_{i j^{\prime}}$ and $\alpha_{j} \geq d_{i^{\prime} j^{\prime}}$.
When i^{\prime} opens, stops both α_{j} and α_{j}^{\prime}.
$\alpha_{j^{\prime}}$ stopped no later (..maybe earlier..)
$\alpha_{j^{\prime}} \leq \alpha_{j}$.
Total distance from j to j^{\prime}.

$$
d_{j i^{\prime}}+d_{i j^{\prime} j^{\prime}}+d_{j^{\prime} \prime} \leq 3 \alpha_{j}
$$

Putting it together!

Claim: Client only pays one facility.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost:

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual $\left(\alpha_{j}\right)$ pays for facility and own connections.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual. feasible dual upper bounds fractional (and integer) primal.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual. feasible dual upper bounds fractional (and integer) primal.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual. feasible dual upper bounds fractional (and integer) primal. 3 OPT.

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.
3 OPT.
Fast!

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.
3 OPT.
Fast! Cheap!

Putting it together!

Claim: Client only pays one facility.
Claim: S_{i} - directly connected clients to open facility i. $f_{i}+\sum_{j \in S_{i}} d_{i j} \leq \sum_{j} \alpha_{j}$.
Claim: Client j is indirectly connected to i

$$
\rightarrow d_{i j} \leq 3 \alpha_{j} .
$$

Total Cost: direct clients dual (α_{j}) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.
3 OPT.
Fast! Cheap! Safe!

Check: if time.

Check: if time.
Won't see you on Tuesday.

Check: if time.
Won't see you on Tuesday.
Guest Speaker: Tselil Schramm.

Check: if time.
Won't see you on Tuesday.
Guest Speaker: Tselil Schramm.
Semidefinite Programming and Approximation.

