
Today

Approximation Algorithm.

Facility Location.



Today

Approximation Algorithm.

Facility Location.



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .

Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.

Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.
Variable for each constraint.

pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv

unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable.

Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side.

min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality?

Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.

∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality?

Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions.

Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm

!!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0
Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.

Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.

Vertex: intersection of d linearly independent constraints.
d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m

Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.

Must have m−2n tight constraints of form xe = 0.
Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.

Constraint matrix C with 2n variables. 2n rows.



Integer Vertex Solution.
Any “vertex” solution is integer!

Linear programming feasible region: Polytope.
Dimension of space: number of variables.
Vertex: intersection of d linearly independent constraints.

d “tight” constraints.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dimension: m
Only 2n of the form ∑e xe = 1.
Must have m−2n tight constraints of form xe = 0.

Throw away variables that are 0.
Constraint matrix C with 2n variables. 2n rows.



..and so on.

Constraint matrix C with 2n variables. 2n rows.

Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.

Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.

Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.

Even cycle is linearly dependent:
Negate equations for vertices on one side and add them.

So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.

So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.

Now, matrix has degree 1 constraint:
or ∑e xe = 1 =⇒ xe = 1.

This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.

This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!

And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1

for the non-singular matrix.
Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



..and so on.

Constraint matrix C with 2n variables. 2n rows.
Each variable in two constraints.
Matrix C has 2 non-zeros in each row and column.
Average degree two bipartite graph.
Even cycle is linearly dependent:

Negate equations for vertices on one side and add them.
So need another constraint of form xe = 0 for each cycle.
Now, matrix has degree 1 constraint:

or ∑e xe = 1 =⇒ xe = 1.
This is an integer!!!
And so on.

Note:

also prove the determinant is 1 or −1
for the non-singular matrix.

Plus, Cramer’s rule implies integrality.

That’s what we did.



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .

(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.

yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?

xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.

Client Connnection cost.
Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.

Must connect each client.
Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.

Only connect to open facility.



Facility Location

Linear program relaxation:

“Decision Variables”.
yi - facility i open?
xij - client j assigned to facility i .

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Facility opening cost.
Client Connnection cost.
Must connect each client.
Only connect to open facility.



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2

Connection Cost: 3
Any one Facility:

Facility Cost: 1 Client Cost: 3.7
Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1

Client Cost: 3.7
Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse?

Sure. Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure.

Not as pretty!



Integer Solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

facility

client

1 xij =
1
2 edges.

yi =
1
2 edges.

Facility Cost: 3
2 Connection Cost: 3

Any one Facility:
Facility Cost: 1 Client Cost: 3.7

Make it worse? Sure. Not as pretty!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately?

Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?

Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



Round solution?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

Round independently?

yi and xij separately? Assign to closed facility!

Round xij and open facilities?
Different clients force different facilities open.

Any ideas?

Use Dual!



The dual.

mincx ,Ax ≥ b

↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αj −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔

maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αj −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αj −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αj −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αj −βij ≤ dij ; xij

βij ,αj ≥ 0



The dual.

mincx ,Ax ≥ b ↔ maxbx ,yT A≤ c.

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

min ∑
i∈F

yi fi+ ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1 ; αj

∀i ∈ F , j ∈ D yi −xij ≥ 0 ; βij

xij ,yi ≥ 0

max∑
j

αj

∀i ∑
j∈D

βij ≤ fi ; yi

∀i ∈ F , j ∈ D αj −βij ≤ dij ; xij

βij ,αj ≥ 0



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.

maximize price paid by client to
connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.

Client j travels or pays to open facility i .
Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.

Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .

Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.

Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .
only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness:

xij ≥ 0 if and only if αj ≥ dij .
only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Interpretation of Dual?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price paid by client to

connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′
i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Use Dual.

1. Find solution to primal, (x ,y). and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

3. Removed assigned clients, goto 2.



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .

fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin

≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij

≤ fmin ∑i∈Nj
yi ≤ ∑i∈Nj

yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi

k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi

≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi

k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.

Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.

→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Connection Cost.

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j :

≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j :

≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .

Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj

≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .

since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:

≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj 6= /0 assigned to i .

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Twist on randomized rounding.

Client j :

∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1,

xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.

Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution!

→ Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:

∑i∈Nj
xij fi ≤ ∑i∈Nj

yi fi .
and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi

≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij

Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′

αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:

Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Primal dual algorithm.
1. Feasible integer solution.

2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.

3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it.

Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program.

Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.

Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Facility location primal dual.
Phase 1:

1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.

2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.

When αj = dij for some i
raise βij at same rate Why? Dual: αj −βij ≤ dij .

Intution:Paying βij to open i .
Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate

Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why?

Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .

Intution:Paying βij to open i .
Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why?

Dual: ∑i βij ≤ fi
Intution: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.

Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:

Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.

Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened.

Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.

Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open

→ exists client j ′ paid i and connected to open facility.
Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intution:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intution: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in common client
graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



β = .5

α = 1.5

Constraints for dual.

∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi

αi −βij ≤ dij .
Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .

αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .

αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !

Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint:

αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .

Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.

Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi

LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi

LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj

= 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.

Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.

Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.

Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.

Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7

= 4.7.
A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.

A bit more than the LP cost.



β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:

fi = ∑j∈Si
βij = ∑j∈Si

αj −dij .
Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij

= ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis.

Claim: Client j is indirectly connected to i

→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′j .
αj ′ stopped no later (..maybe earlier..)

αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later

(..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)

αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .

Total distance from j to j ′.
dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +

di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +

dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i

≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′ conflicts with
i .

exists j ′ with αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Putting it together!

Claim: Client only pays one facility.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .
Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i

→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:

direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.

plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap!

Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Check: if time.

Won’t see you on Tuesday.

Guest Speaker: Tselil Schramm.

Semidefinite Programming and Approximation.



Check: if time.

Won’t see you on Tuesday.

Guest Speaker: Tselil Schramm.

Semidefinite Programming and Approximation.



Check: if time.

Won’t see you on Tuesday.

Guest Speaker: Tselil Schramm.

Semidefinite Programming and Approximation.



Check: if time.

Won’t see you on Tuesday.

Guest Speaker: Tselil Schramm.

Semidefinite Programming and Approximation.


