Profit maximization.

Plant Carrots or Peas?

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel. Peas take 2 units of water/bushel.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel. Peas take 2 units of water/bushel.
100 units of water.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel.
Peas take 2 units of water/bushel.
100 units of water.
Peas require 2 yards/bushel of sunny land.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel.
Peas take 2 units of water/bushel.
100 units of water.
Peas require 2 yards/bushel of sunny land.
Carrots require 1 yard/bushel of shadyland.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel.
Peas take 2 units of water/bushel.
100 units of water.
Peas require 2 yards/bushel of sunny land.
Carrots require 1 yard/bushel of shadyland.
Garden has 40 yards of sunny land and 75 yards of shady land.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel.
Peas take 2 units of water/bushel.
100 units of water.
Peas require 2 yards/bushel of sunny land.
Carrots require 1 yard/bushel of shadyland.
Garden has 40 yards of sunny land and 75 yards of shady land.

Profit maximization.

Plant Carrots or Peas?
$2 \$$ bushel of carrots. $4 \$$ for peas.
Carrots take 3 unit of water/bushel.
Peas take 2 units of water/bushel.
100 units of water.
Peas require 2 yards/bushel of sunny land.
Carrots require 1 yard/bushel of shadyland.
Garden has 40 yards of sunny land and 75 yards of shady land.
To pea or not to pea, that is the question!

To pea or not to pea. $4 \$$ for peas.

To pea or not to pea. $4 \$$ for peas. $2 \$$ bushel of carrots.

To pea or not to pea. $4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea!

To pea or not to pea.

 $4 \$$ for peas. $2 \$$ bushel of carrots.x_{1} - to pea! x_{2} to carrot

To pea or not to pea.

 $4 \$$ for peas. $2 \$$ bushel of carrots.x_{1} - to pea! x_{2} to carrot?

To pea or not to pea.

 $4 \$$ for peas. $2 \$$ bushel of carrots.x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$

To pea or not to pea.

 $4 \$$ for peas. $2 \$$ bushel of carrots.x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize

To pea or not to pea.

 $4 \$$ for peas. $2 \$$ bushel of carrots.x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.

To pea or not to pea.

 $4 \$$ for peas. $2 \$$ bushel of carrots.x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards. $3 x_{2} \leq 75$

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.
$3 x_{2} \leq 75$
Can't make negative!

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.
$3 x_{2} \leq 75$
Can't make negative! $x_{1}, x_{2} \geq 0$.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.
$3 x_{2} \leq 75$
Can't make negative! $x_{1}, x_{2} \geq 0$.
A linear program.

To pea or not to pea.

$4 \$$ for peas. $2 \$$ bushel of carrots.
x_{1} - to pea! x_{2} to carrot?
Money $4 x_{1}+2 x_{2}$ maximize $\max 4 x_{1}+2 x_{2}$.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.
$3 x_{1}+2 x_{2} \leq 100$
Peas 2 yards/bushel of sunny land. Have 40 sq yards.
$2 x_{1} \leq 40$
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.
$3 x_{2} \leq 75$
Can't make negative! $x_{1}, x_{2} \geq 0$.
A linear program.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?
Try every point

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?
Try every point if we only had time!

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?
Try every point if we only had time!
How many points?

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?
Try every point if we only had time!
How many points?
Real numbers?

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?
Try every point if we only had time!
How many points?
Real numbers?
Infinite.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?
Try every point if we only had time!
How many points?
Real numbers?
Infinite. Uncountably infinite!

A linear program.

A linear program.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

A linear program.

Optimal point?

A linear program.

Optimal point?

A linear program.

Optimal point?

A linear program.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal point?

A linear program.

Optimal point?

Feasible Region.

Feasible Region.

Feasible Region.

Convex.
Any two points in region connected by a line in region.

Feasible Region.

Convex.
Any two points in region connected by a line in region. Algebraically:

Feasible Region.

Convex.

Any two points in region connected by a line in region.
Algebraically:
If x and x^{\prime} satisfy constraint: $a x \leq b$ and $a x^{\prime} \leq b$,

Feasible Region.

Convex.

Any two points in region connected by a line in region.
Algebraically:
If x and x^{\prime} satisfy constraint: $a x \leq b$ and $a x^{\prime} \leq b$,

$$
x^{\prime \prime}=\alpha x+(1-\alpha) x^{\prime}
$$

Feasible Region.

Convex.

Any two points in region connected by a line in region.
Algebraically:
If x and x^{\prime} satisfy constraint: $a x \leq b$ and $a x^{\prime} \leq b$,

$$
x^{\prime \prime}=\alpha x+(1-\alpha) x^{\prime} \rightarrow a x^{\prime \prime} \leq b
$$

Optimal at pointy part of feasible region!

Optimal at pointy part of feasible region! Vertex of region.

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)! Try every vertex!

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)! Try every vertex! Choose best.

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.
For n variables, m constraints, how many?

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.
For n variables, m constraints, how many?
$n m$? $\binom{m}{n} ? n+m$?

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.
For n variables, m constraints, how many?
$n m$? $\binom{m}{n} ? n+m$?
$\binom{m}{n}$

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.
For n variables, m constraints, how many?
$n m$? $\binom{m}{n} ? n+m$?
$\binom{m}{n}$

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.
For n variables, m constraints, how many?
$n m$? $\binom{m}{n} ? n+m$?
$\binom{m}{n}$
Finite!!!!!!

Optimal at pointy part of feasible region!
Vertex of region.
Intersection of two of the constraints (lines in two dimensions)!
Try every vertex! Choose best.
$O\left(m^{2}\right)$ if m constraints and 2 variables.
For n variables, m constraints, how many?
$n m$? $\binom{m}{n} ? n+m$?
$\binom{m}{n}$
Finite!!!!!!
Exponential in the number of variables.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex.

Simplex: Start at vertex. Move to better neighboring vertex.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor.

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor. This example.

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor. This example. $(0,0)$ objective 0.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .

$$
\begin{aligned}
\max 4 x_{1} & +2 x_{2} \\
2 x_{1} & \leq 40 \\
3 x_{2} & \leq 75 \\
3 x_{1}+2 x_{2} & \leq 100 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:
Add blue equations to get objective function?

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:
Add blue equations to get objective function?
$1 / 2$ times first plus second.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:
Add blue equations to get objective function?
$1 / 2$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$.

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:
Add blue equations to get objective function?
$1 / 2$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 . \rightarrow(0,25)$ objective 50.
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:
Add blue equations to get objective function?
$1 / 2$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!
Objective value: 120.
Can we do better?

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
2 x_{1} \leq 40 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. This example.
$(0,0)$ objective $0 \rightarrow(0,25)$ objective 50 .
$\rightarrow\left(16 \frac{2}{3}, 25\right)$ objective $115 \frac{2}{3}$
$\rightarrow(20,20)$ objective 120.
Duality:
Add blue equations to get objective function?
$1 / 2$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!
Objective value: 120 .
Can we do better? No!
Dual problem: add equations to get best upper bound.

Duality.

$\max x_{1}+8 x_{2}$

$$
\begin{aligned}
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$.

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25.

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25 .
Best possible?

Duality.

$$
\max x_{1}+8 x_{2}
$$

$$
\begin{aligned}
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25 .
Best possible?
For any solution.
$x_{1} \leq 4$ and $x_{2} \leq 3$..

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25.
Best possible?
For any solution.
$x_{1} \leq 4$ and $x_{2} \leq 3$..
...so $x_{1}+8 x_{2} \leq 4+8(3)=28$.
Added equation 1 and 8 times equation 2 yields bound on objective..

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25.
Best possible?
For any solution.
$x_{1} \leq 4$ and $x_{2} \leq 3$..
...so $x_{1}+8 x_{2} \leq 4+8(3)=28$.
Added equation 1 and 8 times equation 2 yields bound on objective..
Better solution?

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25 .
Best possible?
For any solution.
$x_{1} \leq 4$ and $x_{2} \leq 3$..
...so $x_{1}+8 x_{2} \leq 4+8(3)=28$.
Added equation 1 and 8 times equation 2 yields bound on objective..
Better solution?
Better upper bound?

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

One Solution: $x_{1}=1, x_{2}=3$. Value is 25 .
Best possible?
For any solution.
$x_{1} \leq 4$ and $x_{2} \leq 3$..
...so $x_{1}+8 x_{2} \leq 4+8(3)=28$.
Added equation 1 and 8 times equation 2 yields bound on objective..
Better solution?
Better upper bound?

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25 .

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function?

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function? Sure:

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function? Sure: 6 times equation 2 and 1 times equation 3.

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function? Sure: 6 times equation 2 and 1 times equation 3 .

$$
x_{1}+8 x_{2} \leq 6(3)+7=25
$$

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function? Sure: 6 times equation 2 and 1 times equation 3.

$$
x_{1}+8 x_{2} \leq 6(3)+7=25
$$

Thus, the value is at most 25 .

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function? Sure: 6 times equation 2 and 1 times equation 3 .

$$
x_{1}+8 x_{2} \leq 6(3)+7=25
$$

Thus, the value is at most 25 .
The upper bound is same as solution!

Duality.

$$
\begin{aligned}
\max x_{1} & +8 x_{2} \\
x_{1} & \leq 4 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
$x_{1}+8 x_{2} \leq 4+24=28$.
Better way to add equations to get bound on function? Sure: 6 times equation 2 and 1 times equation 3 .

$$
x_{1}+8 x_{2} \leq 6(3)+7=25
$$

Thus, the value is at most 25.
The upper bound is same as solution!
Proof of optimality!

Duality:example

Idea: Add up positive linear combination of inequalities to "get" upper bound on optimization function.

Duality:example

Idea: Add up positive linear combination of inequalities to "get" upper bound on optimization function.
Will this always work?

Duality:example

Idea: Add up positive linear combination of inequalities to "get" upper bound on optimization function.

Will this always work?
How to find best upper bound?

Duality: computing upper bound.

Best Upper Bound.

\[

\]

Adding equations thusly...

Duality: computing upper bound.

Best Upper Bound.

\[

\]

Adding equations thusly...

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+2 y_{3}\right) x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3} .
$$

Duality: computing upper bound.

Best Upper Bound.

\[

\]

Adding equations thusly...

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+2 y_{3}\right) x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3} .
$$

The left hand side should "dominate" optimization function:

Duality: computing upper bound.

Best Upper Bound.

\[

\]

Adding equations thusly...

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+2 y_{3}\right) x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3} .
$$

The left hand side should "dominate" optimization function:
If $y_{1}, y_{2}, y_{3} \geq 0$

Duality: computing upper bound.

Best Upper Bound.

\[

\]

Adding equations thusly...

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+2 y_{3}\right) x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3} .
$$

The left hand side should "dominate" optimization function:
If $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then..

Duality: computing upper bound.

Best Upper Bound.

> Multiplier Inequality

$$
\begin{array}{rlrl}
y_{1} & x_{1} & \leq 4 \\
y_{2} & & x_{2} & \leq 3 \\
y_{3} & & x_{1}+ & 2 x_{2}
\end{array} \leq 7
$$

Adding equations thusly...

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+2 y_{3}\right) x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3} .
$$

The left hand side should "dominate" optimization function:
If $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then..

$$
x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}
$$

Duality: computing upper bound.

Best Upper Bound.

\[

\]

Adding equations thusly...

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+2 y_{3}\right) x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3} .
$$

The left hand side should "dominate" optimization function:
If $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then..

$$
x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}
$$

Find best y_{i} 's to minimize upper bound?

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$ and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then..

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then..
$x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

A linear program.

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

A linear program.
The Dual linear program.

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

A linear program.
The Dual linear program.
Primal: $\left(x_{1}, x_{2}\right)=(1,3)$; Dual: $\left(y_{1}, y_{2}, y_{3}\right)=(0,6,1)$.

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

A linear program.
The Dual linear program.
Primal: $\left(x_{1}, x_{2}\right)=(1,3)$; Dual: $\left(y_{1}, y_{2}, y_{3}\right)=(0,6,1)$.
Value of both is 25 !

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

A linear program.
The Dual linear program.
Primal: $\left(x_{1}, x_{2}\right)=(1,3)$; Dual: $\left(y_{1}, y_{2}, y_{3}\right)=(0,6,1)$.
Value of both is 25 !
Primal is optimal

The dual, the dual, the dual.

Find best y_{i} 's to minimize upper bound?
Again: If you find $y_{1}, y_{2}, y_{3} \geq 0$
and $y_{1}+y_{3} \geq 1$ and $y_{2}+2 y_{3} \geq 8$ then.. $x_{1}+8 x_{2} \leq 4 y_{1}+3 y_{2}+7 y_{3}$

$$
\begin{array}{r}
\min 4 y_{1}+3 y_{2}+7 y_{3} \\
y_{1}+y_{3} \geq 1 \\
y_{2}+2 y_{3} \geq 8 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

A linear program.
The Dual linear program.
Primal: $\left(x_{1}, x_{2}\right)=(1,3)$; Dual: $\left(y_{1}, y_{2}, y_{3}\right)=(0,6,1)$.
Value of both is 25 !
Primal is optimal ... and dual is optimal!

The dual.

In general.

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

The dual.

In general.

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$ $A x \leq b$ $y^{\top} y^{\top} b$ $x \geq 0$ $y \geq 0$	

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

The dual.

In general.

$$
\begin{array}{ll}
\frac{\text { Primal LP }}{\max c \cdot x} & \frac{\text { Dual LP }}{\min y^{\top} b} \\
A x \leq b & y^{\top} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)

The dual.

In general.

$$
\begin{array}{ll}
\frac{\text { Primal LP }}{\max c \cdot x} & \frac{\text { Dual LP }}{\min y^{\top} b} \\
A x \leq b & y^{\top} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)

The dual.

In general.

$$
\begin{array}{ll}
\frac{\text { Primal LP }}{\max c \cdot x} & \frac{\text { Dual LP }}{\min y^{\top} b} \\
A x \leq b & y^{T} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)
Feasible (x, y)

The dual.

In general.

$$
\begin{array}{ll}
\frac{\text { Primal LP }}{\max c \cdot x} & \frac{\text { Dual LP }}{\min y^{\top} b} \\
A x \leq b & y^{T} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)
Feasible (x, y)
$P(x)$

The dual.

In general.

$$
\begin{array}{ll}
\underline{\text { Primal LP }} & \underline{\text { Dual LP }} \\
\text { max } c \cdot x & \min y^{\top} b \\
A x \leq b & y^{\top} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)
Feasible (x, y)

$$
P(x)=c \cdot x
$$

The dual.

In general.

$$
\begin{array}{ll}
\frac{\text { Primal LP }}{\max c \cdot x} & \frac{\text { Dual LP }}{\min y^{\top} b} \\
A x \leq b & y^{T} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)
Feasible (x, y)

$$
P(x)=c \cdot x \leq y^{\top} A x
$$

The dual.

In general.

$$
\begin{array}{ll}
\frac{\text { Primal LP }}{\max c \cdot x} & \frac{\text { Dual LP }}{\min y^{\top} b} \\
A x \leq b & y^{T} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)
Feasible (x, y)

$$
P(x)=c \cdot x \leq y^{\top} A x \leq y^{\top} b \cdot x=D(y)
$$

The dual.

In general.

$$
\begin{array}{ll}
\underline{\text { Primal LP }} & \underline{\text { Dual LP }} \\
\text { max } c \cdot x & \min y^{\top} b \\
A x \leq b & y^{\top} A \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq$ dual (D)
Feasible (x, y)

$$
P(x)=c \cdot x \leq y^{\top} A x \leq y^{\top} b \cdot x=D(y)
$$

Strong Duality: next lecture, previous lectures maybe?

Complementary Slackness

Primal LP
$\max c \cdot x$
$A x \leq b$
$x \geq 0$

Dual LP
$\min y^{\top} b$
$y^{\top} A \geq c$
$y \geq 0$
Given A, b, c, and feasible solutions x and y.

Complementary Slackness

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right)
$$

Complementary Slackness

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$	
$A x \leq b$	
$x \geq 0$	$y^{\top} A \geq c$
	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow
\end{aligned}
$$

Complementary Slackness

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$	
$A x \leq b$	
$x \geq 0$	$y^{\top} A \geq c$
	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}
\end{aligned}
$$

Complementary Slackness

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{T} A x
\end{aligned}
$$

Complementary Slackness

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{T} A x .
\end{aligned}
$$

Complementary Slackness

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow
\end{aligned}
$$

Complementary Slackness

Primal LP	Dual LP
$\max C \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow \\
& \sum_{i} y_{j}\left(b_{j}-(A x)_{j}\right)
\end{aligned}
$$

Complementary Slackness

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow \\
& \sum_{i} y_{j}\left(b_{j}-(A x)_{j}\right)=y b-y^{\top} A x
\end{aligned}
$$

Complementary Slackness

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow \\
& \sum_{i} y_{j}\left(b_{j}-(A x)_{j}\right)=y b-y^{\top} A x \rightarrow b y=y^{\top} A x .
\end{aligned}
$$

Complementary Slackness

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$	
$A x \leq b$	
$x \geq 0$	
	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow \\
& \sum_{i} y_{j}\left(b_{j}-(A x)_{j}\right)=y b-y^{\top} A x \rightarrow b y=y^{\top} A x . \\
& c x=b y .
\end{aligned}
$$

Complementary Slackness

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$	
$A x \leq b$	
$x \geq 0$	
	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow \\
& \sum_{i} y_{j}\left(b_{j}-(A x)_{j}\right)=y b-y^{\top} A x \rightarrow b y=y^{\top} A x .
\end{aligned}
$$

$$
c x=b y
$$

If both are feasible, $c x \leq b y$, so must be optimal.

Complementary Slackness

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$	
$A x \leq b$	
$x \geq 0$	$y^{\top} A \geq c$
	$y \geq 0$

Given A, b, c, and feasible solutions x and y.
Solutions x and y are both optimal if and only if

$$
\begin{aligned}
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0, \text { and } y_{j}\left(b_{j}-(A x)_{j}\right) . \\
& x_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right)=0 \rightarrow \\
& \sum_{i}\left(c_{i}-\left(y^{\top} A\right)_{i}\right) x_{i}=c x-y^{\top} A x \rightarrow c x=y^{\top} A x . \\
& y_{j}\left(b_{j}-(A x)_{j}\right)=0 \rightarrow \\
& \sum_{i} y_{j}\left(b_{j}-(A x)_{j}\right)=y b-y^{\top} A x \rightarrow b y=y^{\top} A x .
\end{aligned}
$$

$c x=b y$.
If both are feasible, $c x \leq b y$, so must be optimal.
In words: nonzero dual variables only for tight constraints!

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex.

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.

Again: simplex

$$
\begin{aligned}
\max 4 x_{1} & +2 x_{2} \\
3 x_{1} & \leq 60 \\
3 x_{2} & \leq 75 \\
3 x_{1}+2 x_{2} & \leq 100 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor.

Again: simplex

$$
\begin{aligned}
\max 4 x_{1} & +2 x_{2} \\
3 x_{1} & \leq 60 \\
3 x_{2} & \leq 75 \\
3 x_{1}+2 x_{2} & \leq 100 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor. Duality:

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor. Duality:
Add blue equations to get objective function?

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex. Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$.

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!
Geometrically and Complementary slackness:

Again: simplex

$$
\begin{array}{r}
\max 4 x_{1}+2 x_{2} \\
3 x_{1} \leq 60 \\
3 x_{2} \leq 75 \\
3 x_{1}+2 x_{2} \leq 100 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!
Geometrically and Complementary slackness:
Add tight constraints to "dominate objective function."

Again: simplex

$$
\begin{aligned}
\max 4 x_{1} & +2 x_{2} \\
3 x_{1} & \leq 60 \\
3 x_{2} & \leq 75 \\
3 x_{1}+2 x_{2} & \leq 100 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!
Geometrically and Complementary slackness:
Add tight constraints to "dominate objective function."
Don't add this equation!

Again: simplex

$$
\begin{aligned}
\max 4 x_{1} & +2 x_{2} \\
3 x_{1} & \leq 60 \\
3 x_{2} & \leq 75 \\
3 x_{1}+2 x_{2} & \leq 100 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Simplex: Start at vertex. Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
$1 / 3$ times first plus second.
Get $4 x_{1}+2 x_{2} \leq 120$. Every solution must satisfy this inequality!
Geometrically and Complementary slackness:
Add tight constraints to "dominate objective function."
Don't add this equation! Shifts.

Example: review.

$$
\begin{array}{ll}
\max x_{1}+8 x_{2} & \min 4 y_{1}+3 y_{2}+7 y_{3} \\
x_{1} \leq 4 & y_{1}+y_{3} \geq 1 \\
x_{2} \leq 3 & y_{2}+2 y_{3} \geq 8 \\
x_{1}+2 x_{2} \leq 7 & x_{1}, x_{2} \geq 0 \\
y_{1}, y_{2}, y_{3} \geq 0 &
\end{array}
$$

"Matrix form"

$$
\begin{aligned}
& \max [1,8] \cdot\left[x_{1}, x_{2}\right]
\end{aligned} \min [4,3,7] \cdot\left[y_{1}, y_{2}, y_{3}\right] .
$$

Matrix equations.

$$
\begin{array}{ll}
\max [1,8] \cdot\left[x_{1}, x_{2}\right] & \min [4,3,7] \cdot\left[y_{1}, y_{2}, y_{3}\right] \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right] & {\left[y_{1}, y_{2}, y_{3}\right]\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right) \geq\left[\begin{array}{l}
1 \\
8
\end{array}\right]} \\
{\left[x_{1}, x_{2}\right] \geq 0} & {\left[y_{1}, y_{2}, y_{3}\right] \geq 0}
\end{array}
$$

We can rewrite the above in matrix form.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right) \quad c=[1,8] \quad b=[4,3,7]
$$

The primal is $A x \leq b, \max c \cdot x, x \geq 0$.
The dual is $y^{T} A \geq c, \min b \cdot y, y \geq 0$.

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP
$\max c \cdot x$
$A x \leq b$
$x \geq 0$

Dual LP
$\min y^{\top} b$
$y^{\top} A \geq c$
$y \geq 0$

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP
$\max c \cdot x$
$A x \leq b$
$x \geq 0$

Dual LP
$\min y^{\top} b$
$y^{\top} A \geq c$
$y \geq 0$
Standard:

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP
$\max c \cdot x$
$A x \leq b$
$x \geq 0$

Dual LP
$\min y^{\top} b$
$y^{\top} A \geq c$
$y \geq 0$
Standard:

Rules for School...

or..."Rules for taking duals" Canonical Form.

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\max c \cdot x$	
$\min y^{T} b$ $x \geq 0$ $y^{T} A \geq c$ $x \geq 0$	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.

Rules for School...

or..."Rules for taking duals" Canonical Form.

$\underline{\text { Primal LP }}$	$\underline{\text { Dual LP }}$
$\operatorname{maxc\cdot x}$	$\min y^{\top} b$ $A x \leq b$
$x \geq 0$	$y^{\top} A \geq c$
	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$
$\geq \leftrightarrow \leq$

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$
$\geq \leftrightarrow \leq$
"inequalities" \leftrightarrow "nonnegative variables"

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$
$\geq \leftrightarrow \leq$
"inequalities" \leftrightarrow "nonnegative variables"
"nonnegative variables" \leftrightarrow "inequalities"

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$
$\geq \leftrightarrow \leq$
"inequalities" \leftrightarrow "nonnegative variables"
"nonnegative variables" \leftrightarrow "inequalities"
Another useful trick: Equality constraints.

Rules for School...

or..."Rules for taking duals" Canonical Form.

Primal LP	Dual LP
$\max c \cdot x$	$\min y^{\top} b$
$A x \leq b$	$y^{\top} A \geq c$
$x \geq 0$	$y \geq 0$

Standard:
$A x \leq b, \max c x, x \geq 0 \leftrightarrow y^{\top} A \geq c, \min b y, y \geq 0$.
$\min \leftrightarrow \max$
$\geq \leftrightarrow \leq$
"inequalities" \leftrightarrow "nonnegative variables"
"nonnegative variables" \leftrightarrow "inequalities"
Another useful trick: Equality constraints. "equalities" \leftrightarrow "unrestricted variables."

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$. Find maximum weight perfect matching.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{V}

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$ Objective function from right hand side.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual.
Variable for each constraint. p_{v} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

$$
p_{v}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality?

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

$$
p_{v}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality?

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge e, $p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{v}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality? Same value solutions.

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{V}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality? Same value solutions. Hungarian algorithm

Maximum Weight Matching.

Bipartite Graph $G=(V, E), w: E \rightarrow Z$.
Find maximum weight perfect matching.
Solution: x_{e} indicates whether edge e is in matching.

$$
\begin{array}{r}
\max \sum_{e} w_{e} x_{e} \\
\forall v: \sum_{e=(u, v)} x_{e}=1 \\
x_{e} \geq 0
\end{array}
$$

Dual.
Variable for each constraint. p_{V} unrestricted.
Constraint for each variable. Edge $e, p_{u}+p_{v} \geq w_{e}$
Objective function from right hand side. $\min \sum_{v} p_{V}$

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Weak duality? Price function upper bounds matching.
$\sum_{e \in M} w_{e} x_{e} \leq \sum_{e=(u, v) \in M} p_{u}+p_{v} \leq \sum_{v} p_{u}$.
Strong Duality? Same value solutions. Hungarian algorithm !!!

Matrix View.

x_{e} variable for $e=(u, v)$.

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$.

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable:

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable: p_{u}.

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable: p_{u}.
Column variable: x_{e}.

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable: p_{u}.
Column variable: x_{e}. Column (dual) constraint:

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable: p_{u}.
Column variable: x_{e}. Column (dual) constraint: $p_{u}+p_{v} \geq 1$.

Matrix View.

x_{e} variable for $e=(u, v)$.

Row equation: $\sum_{e=(u, v)} x_{e}=1$. Row (dual) variable: p_{u}.
Column variable: x_{e}. Column (dual) constraint: $p_{u}+p_{v} \geq 1$.
Exercise: objectives?

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary slackness:

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary slackness:
Only match on tight edges.
Nonzero p_{u} on matched u.

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary slackness:
Only match on tight edges.
Nonzero p_{u} on matched u.
Constraint for u :

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary slackness:
Only match on tight edges.
Nonzero p_{u} on matched u.
Constraint for u :

$$
\sum_{e=(u, v)} x_{e} \leq 1 .
$$

Complementary Slackness.

$$
\begin{aligned}
& \max \sum_{e} w_{e} x_{e} \\
& \forall v: \sum_{e=(u, v)} x_{e}=1 \\
& x_{e} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{gathered}
\min \sum_{v} p_{v} \\
\forall e=(u, v): \quad p_{u}+p_{v} \geq w_{e}
\end{gathered}
$$

Complementary slackness:
Only match on tight edges.
Nonzero p_{u} on matched u.
Constraint for u :
$\sum_{e=(u, v)} x_{e} \leq 1$.
Nonzero p_{u} on matched u.

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}.

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}. Route D_{i} flow for each s_{i}, t_{i} pair,

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}. Route D_{i} flow for each s_{i}, t_{i} pair, so every edge has $\leq \mu c(e)$ flow

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}. Route D_{i} flow for each s_{i}, t_{i} pair, so every edge has $\leq \mu c(e)$ flow with minimum μ.

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}. Route D_{i} flow for each s_{i}, t_{i} pair, so every edge has $\leq \mu c(e)$ flow with minimum μ.

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}.
Route D_{i} flow for each s_{i}, t_{i} pair, so every edge has $\leq \mu c(e)$ flow
with minimum μ.
variables: f_{p} flow on path p.
P_{i}-set of paths with endpoints s_{i}, t_{i}.

Multicommodity Flow.

Given $G=(V, E)$, and capacity function $c: E \rightarrow Z$, and pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ with demands D_{1}, \ldots, D_{k}.
Route D_{i} flow for each s_{i}, t_{i} pair, so every edge has $\leq \mu c(e)$ flow
with minimum μ.
variables: f_{p} flow on path p.
P_{i}-set of paths with endpoints s_{i}, t_{i}.

$$
\begin{gathered}
\min \mu \\
\forall e: \sum_{p \ni e} f_{p} \leq \mu c_{e} \\
\forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
f_{p} \geq 0
\end{gathered}
$$

Take the dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \sum_{p \ni e} f_{p} \leq \mu c_{e} \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& \quad f_{p} \geq 0
\end{aligned}
$$

Modify to make it \geq, which "go with min.

Take the dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \sum_{p \ni e} f_{p} \leq \mu c_{e} \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& \quad f_{p} \geq 0
\end{aligned}
$$

Modify to make it \geq, which "go with min. And only constants on right hand side.

Take the dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \sum_{p \ni e} f_{p} \leq \mu c_{e} \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& \quad f_{p} \geq 0
\end{aligned}
$$

Modify to make it \geq, which "go with min. And only constants on right hand side.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual.

$$
\begin{gathered}
\min \mu \\
\forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
\forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
f_{p} \geq 0
\end{gathered}
$$

Dual.

$$
\begin{array}{ll}
\quad \min \mu \\
\forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 & d_{e} \\
\forall i: \sum_{p \in P_{i}} f_{p}=D_{i} & d_{i} \\
f_{p} \geq 0 &
\end{array}
$$

Introduce variable for each constraint.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
μ

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1$.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . f_{p}$

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.

Dual.

$$
\begin{array}{ll}
\quad \min \mu \\
\forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 & d_{e} \\
\forall i: \sum_{p \in P_{i}} f_{p}=D_{i} & d_{i} \\
f_{p} \geq 0 &
\end{array}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.

Dual.

$$
\begin{array}{ll}
\quad \min \mu \\
\forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 & d_{e} \\
\forall i: \sum_{p \in P_{i}} f_{p}=D_{i} & d_{i} \\
f_{p} \geq 0
\end{array}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!

Dual.

$\min \mu$

$$
\begin{aligned}
& \forall e: \mu c_{e}-\sum_{p \neq e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e) & \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing.

Dual.

$$
\begin{array}{ll}
\quad \min \mu & \\
\forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 & d_{e} \\
\forall i: \sum_{p \in P_{i}} f_{p}=D_{i} & d_{i} \\
f_{p} \geq 0 &
\end{array}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing. Strong Duality.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture.

Dual.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Dual.

 $\min \mu$$$
\begin{aligned}
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness:

Dual.

 $\min \mu$$$
\begin{aligned}
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& \quad f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} c_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
\max & \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} & \leq \sum_{e \in p} d(e) \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

Dual.

 $\min \mu$$$
\begin{aligned}
& \forall e: \mu c_{e}-\sum_{p \ngtr e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=D_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Introduce variable for each constraint.
Introduce constraint for each var:
$\mu \rightarrow \sum_{e} C_{e} d_{e}=1 . \quad f_{p} \rightarrow \forall p \in P_{i} d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Objective: right hand sides. $\max \sum_{i} D_{i} d_{i}$

$$
\begin{aligned}
& \max \sum_{i} D_{i} d_{i} \\
& \forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e) \quad \quad \sum_{e} c_{e} d_{e}=1
\end{aligned}
$$

d_{i} - shortest s_{i}, t_{i} path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths only have toll on congested edges.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
$d_{e_{1}}$	\vdots	\vdots	\vdots	\vdots	\vdots	0
	\cdots	-1	\cdots	$c_{e_{1}}$	0	
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdot	\cdots	-1	\cdots	$c_{e_{k}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		
Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$.						

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k}$. p connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k}$. p connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k}$. p connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{j}.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdot	\cdots	-1	\cdots	$c_{e_{k}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint:

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint: $d_{i}-\sum_{e \in p} d_{e} \leq 0$.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint: $d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Column variable: μ.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdots	-1	\cdots	$c_{e_{k}}$	0	
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint: $d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Column variable: μ. Column (dual) constraint:

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdot	\cdots	-1	\cdots	$c_{e_{k}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint: $d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Column variable: μ. Column (dual) constraint: $\sum_{e} d(e) c(e)=1$.

Matrix View

f_{p} variable for path $e_{1}, e_{2}, \ldots, e_{k} . p$ connects s_{i}, t_{i}.

			f_{p}		μ	rhs
	\cdot	\cdots	0	\cdots	\cdot	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{1}}$	\cdot	\cdots	-1	\cdots	$c_{e_{1}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{2}}$	\cdot	\cdots	-1	\cdots	$c_{e_{2}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
$d_{e_{k}}$	\cdot	\cdots	-1	\cdots	$c_{e_{k}}$	0
	\vdots	\vdots	\vdots	\vdots	\vdots	0
d_{i}	\cdot	\cdot	1	\cdot	\cdots	D_{i}
obj	1	1	1	1		

Row constraint: $c_{e} \mu-\sum_{p \ni e} f_{p} \geq 0$. Row (dual) variable: d_{e}.
Row constraint: $\sum_{p \in P_{i}} f_{p}=D_{i}$. Row (dual) variable: d_{i}.
Column variable: f_{p}. Column (dual) constraint: $d_{i}-\sum_{e \in p} d_{e} \leq 0$.
Column variable: μ. Column (dual) constraint: $\sum_{e} d(e) c(e)=1$.
Exercise: obiectives?

Exponential size.

Multicommodity flow.
$\min \mu$

$$
\begin{aligned}
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& \quad f_{p} \geq 0
\end{aligned}
$$

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1:

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1: We solved anyway!

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1: We solved anyway!
Answer 2:

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1: We solved anyway!
Answer 2: Ellipsoid algorithm.

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1: We solved anyway!
Answer 2: Ellipsoid algorithm.
Find violated constraint \rightarrow poly time algorithm.

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1: We solved anyway!
Answer 2: Ellipsoid algorithm.
Find violated constraint \rightarrow poly time algorithm.
Answer 3: there is polynomial sized formulation.

Exponential size.

Multicommodity flow.

$$
\begin{aligned}
& \quad \min \mu \\
& \forall e: \mu c_{e}-\sum_{p \ni e} f_{p} \geq 0 \\
& \forall i: \sum_{p \in P_{i}} f_{p}=d_{i} \\
& f_{p} \geq 0
\end{aligned}
$$

Dual is.

$$
\begin{array}{r}
\max \sum_{i} D_{i} d_{i} \\
\forall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)
\end{array}
$$

Exponential sized programs?
Answer 1: We solved anyway!
Answer 2: Ellipsoid algorithm.
Find violated constraint \rightarrow poly time algorithm.
Answer 3: there is polynomial sized formulation.
Question: what is it?

See you on Thursday.

