Today
Experts/Multiplicative Weights.
Experts/Zero-Sum Games Equilibrium.
Boosting and Experts.
Routing and Experts.
Infallible expert.
One of the experts is infallible!
Your strategy?
Choose any expert that has not made a mistake!
How long to find perfect expert?
Maybe..never! Never see a mistake.
Better model?
How many mistakes could you make? Mistake Bound.
(A) 1
(B) 2
(C) logn
(D) $n-1$
Adversary designs setup to watch who you choose, and make that
expert make a mistake.
$n-1$!

The multiplicative weights framework.
Concept Alert.
Cole.
Note.
Adversary:
makes you want to look bad.
'You could have done so well...
but you didn't ha...ha... ha.
Technical Term: Regret.
Analysis of Algorithms: do as well as possible!
Minimize Regret $=$ L Loss.

Experts framework.

n experts.
Every day, each offers a prediction.
"Rain" or "Shine."

	Day 1	Day 2	Day 3	\cdots	Day T
Expert 1	Shine	Rain	Shine	\cdots	
Expert 2	Shine	Shine	Shine	\cdots	
Expert 3	Rain	Rain	Rain	\cdots	
\vdots	\vdots	\vdots	Shine	\cdots	

Rained! Shined! Shined!
Whose advice do you follow?
"The one who is correct most often."
Sort of.
How well do you do?

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.
Mistake Bound: $n-1$
Lower bound: adversary argument
Upper bound: every mistake finds fallible expert.
Better Algorithm?
Making decision, not trying to find expert!
Algorithm: Go with the majority of previously correct experts.
What you would do anyway!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) $\log n$
(D) $n-1$

At most $\log n$!
When alg makes a mistake
|"perfect" experts| drops by a factor of two.
Initially n perfect experts
mistake $\rightarrow \quad<n / 2$ perfect experts
mistake $\rightarrow \quad \leq n / 4$ perfect experts
mistake $\rightarrow \quad \leq 1$ perfect expert
≥ 1 perfect expert \rightarrow at most $\log n$ mistakes

Analysis: continued.

$$
\begin{aligned}
& \frac{1}{2^{m}} \leq \sum_{i} w_{i} \leq\left(\frac{3}{4}\right)^{M} n . \\
& m \text { - best expert mistakes } M \text { algorithm mistakes. } \\
& \frac{1}{2^{m}} \leq\left(\frac{3}{4}\right)^{M} n .
\end{aligned}
$$

Take $\frac{1}{2 m}={ }^{(3)}{ }^{m}$. both sides

$-m \leq-M \log (4 / 3)+\log n$.
Solve for M.
$M \leq(m+\log n) / \log (4 / 3) \leq 2.4(m+\log n)$
Multiply by $1-\varepsilon$ for incorrect experts...

$$
(1-\varepsilon)^{m} \leq\left(1-\frac{\varepsilon}{2}\right)^{M} n
$$

Massage...
$M \leq 2(1+\varepsilon) m+\frac{2 \ln n}{\varepsilon}$
Approaches a factor of two of best expert performance!

Imperfect Experts

Goal?
Do as well as the best expertl
Algorithm. Suggestions?
Go with majority?
Penalize inaccurate experts?
Best expert is penalized the least.

1. Initially: $w_{i}=1$.
2. Predict with weighted majority of experts.
3. $w_{i} \rightarrow w_{i} / 2$ if wrong

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?
(A) A correct even days, B correct odd days
(B) A correct first half of days, B correct second

Best expert peformance: $T / 2$ mistakes.
Pattern (A): T-1 mistakes.
Factor of (almost) two worse!

Analysis: weighted majority

Goal: Best expert makes m mistakes.

1. Initially: $w_{i}=1$

Potential function: $\sum_{i} w_{i}$. Initially n.
For best expert, $b, w_{b} \geq \frac{1}{2^{m}}$
Each mistake:
total weight of incorrect experts reduced by
otal weight of incorrect expe
$-1 ? \quad-2 ? ~ f a c t o r ~ o f ~$
$\frac{1}{2}$?
Predict with weighted majority of experts.
3. $w_{i} \rightarrow w_{i} / 2$ if wrong
each incorrect expert weight multiplied by $\frac{1}{2}!$
factor of $\frac{1}{2}$? factor of $\frac{3}{4}$?
mistake $\rightarrow \geq$ half weight ${ }^{4}$ with incorrect experts
($\geq \frac{1}{2}$ total.
Mistake \rightarrow potential function decreased by $\frac{3}{4}$
We have
$\frac{1}{2^{m}} \leq \sum_{i} w_{i} \leq\left(\frac{3}{4}\right)^{M}{ }^{m}$.
where M is number of algorithm mistakes.

Randomization!!!!

Better approach?

Use?
Randomization!
That is, choose expert i with prob $\propto w_{i}$
Bad example: A,B,A,B,A..
After a bit, A and B make nearly the same number of mistakes.
Choose each with approximately the same probabilty
Make a mistake around $1 / 2$ of the time.
Best expert makes $T / 2$ mistakes.
Roughly optimal!

Randomized analysis.

> Some formulas: For $\varepsilon \leq 1, x \in[0,1]$, $\begin{aligned} & (1+\varepsilon)^{x} \leq(1+\varepsilon x) \\ & (1-\varepsilon)^{x} \leq(1-\varepsilon x) \\ & \text { For } \varepsilon \in\left[0, \frac{1}{2}\right] \text {, } \\ & \quad-\varepsilon-\varepsilon^{2} \leq \ln (1-\varepsilon) \leq-\varepsilon \\ & \varepsilon-\varepsilon^{2} \leq \ln (1+\varepsilon) \leq \varepsilon\end{aligned}$

Proof Idea: $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$

Gains

Why so negative?

Each day, each expert gives gain in $[0,1]$.
Multiplicative weights with $(1+\varepsilon)^{g_{i}^{t}}$.

$$
G \geq(1-\varepsilon) G^{*}-\frac{\log n}{\varepsilon}
$$

where G^{*} is payoff of best expert.
Scaling:
Not $[0,1]$, say $[0, \rho]$.

$$
L \leq(1+\varepsilon) L^{*}+\frac{\rho \log n}{\varepsilon}
$$

Randomized algorithm
Expert i loses $\ell_{i}^{t} \in[0,1]$ in round t.

1. Initially $w_{i}=1$ for expert i.
2. Choose expert i with prob $\frac{w_{i}}{w}, W=\sum_{i} w_{i}$
3. $w_{i} \leftarrow w_{i}(1-\varepsilon)_{i}^{t}$
$W(t)$ sum of w_{i} at time $t . W(0)=n$
Best expert, b, loses L^{*} total. $\rightarrow W(T) \geq W_{b} \geq(1-\varepsilon)^{L^{*}}$.
$L_{t}=\sum_{i} \frac{w_{i} f_{i}}{W}$ expected loss of alg. in time t.
Claim: $W(t+1) \leq W(t)\left(1-\varepsilon L_{t}\right)$ Loss \rightarrow weight loss.
Proof:
$\stackrel{\text { Proof: }}{W(t+1)}=\sum_{i}(1-\varepsilon)^{t} w_{i} \leq \sum_{i}\left(1-\varepsilon t_{i}^{t}\right) w_{i}=\sum_{i} w_{i}-\varepsilon \sum_{i} w_{i} t_{i}^{t}$
$=\sum_{i} w_{i}\left(1-\varepsilon \frac{\sum_{i} w_{i} t_{i}^{t}}{\sum_{i} w_{i}}\right)$
$=W(t)\left(1-\varepsilon L_{t}\right)$

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day. Perfect Expert: $\log n$ mistakes.
Imperfect Expert: best makes m mistakes.
Deterministic Strategy: $2(1+\varepsilon) m+\frac{\log n}{\varepsilon}$
Real numbered losses: Best loses L^{*} total.
Randomized Strategy: $(1+\varepsilon) L^{*}+\frac{\log \eta}{\varepsilon}$
Strategy:
Choose proportional to weights
multiply weight by $(1-\varepsilon)^{\text {loss }}$
Multiplicative weights framework!
Applications next

Analysis
$(1-\varepsilon)^{L^{*}} \leq W(T) \leq n \Pi_{t}\left(1-\varepsilon L_{t}\right)$
Take logs
$\left(L^{*}\right) \ln (1-\varepsilon) \leq \ln n+\sum \ln \left(1-\varepsilon L_{t}\right)$
Use $-\varepsilon-\varepsilon^{2} \leq \ln (1-\varepsilon) \leq-\varepsilon$
$-\left(L^{*}\right)\left(\varepsilon+\varepsilon^{2}\right) \leq \ln n-\varepsilon \Sigma L^{\prime}$
And
$\Sigma_{t} L_{t} \leq(1+\varepsilon) L^{*}+\frac{\ln n}{\varepsilon}$
$\Sigma_{t} L_{t}$ is total expected loss of algorithm.
Within $(1+\varepsilon)$ ish of the best expert!
No factor of 2 loss!

Two person zero sum games.
$m \times n$ payoff matrix A.
Row mixed strategy: $x=\left(x_{1}, \ldots, x_{m}\right)$.
Column mixed strategy: $y=\left(y_{1}, \ldots, y_{n}\right)$.
Payoff for strategy pair (x, y) :

$$
p(x, y)=x^{t} A y
$$

That is,

$$
\sum_{i} x_{i}\left(\sum_{j} a_{i, j} y_{j}\right)=\sum_{j}\left(\sum_{i} x_{i} a_{i, j}\right) y_{j} .
$$

Recall row minimizes, column maximizes.
Equilibrium pair: $\left(x^{*}, y^{*}\right)$?

$$
\left(x^{*}\right)^{t} A y^{*}=\max _{y}\left(x^{*}\right)^{t} A y=\min _{x} x^{t} A y^{*} .
$$

(No better column strategy, no better row strategy.)

Equilibrium.

Equilibrium pair: $\left(x^{*}, y^{*}\right)$?

$$
p(x, y)=\left(x^{*}\right)^{t} A y^{*}=\max _{y}\left(x^{*}\right)^{t} A y=\min _{x} x^{t} A y^{*} .
$$

(No better column strategy, no better row strategy.)
No row is better:
$\min _{i} A^{(i)} \cdot y=\left(x^{*}\right)^{t} A y^{*} .{ }^{1}$
No column is better:
$\max _{j}\left(A^{t}\right)^{(j)} \cdot x=\left(x^{*}\right)^{t} A y^{*}$.

${ }^{1} A^{(i)}$ is ith row.

Proof of Equilibrium.
Later. Well in just a minute.....
Aproximate equilibrium ...
$C(x)=\max _{y} x^{t} A y$
$R(y)=\min _{x} x^{t} A y$
Always: $R(y) \leq C(x)$
Strategy pair: (x, y)
Equilibrium: (x, y)
$R(y)=C(x) \rightarrow C(x)-R(y)=0$
Approximate Equilibrium: $C(x)-R(y) \leq \varepsilon$.
With $R(y)<C(x)$
\rightarrow "Response y to x is within ε of best response
\rightarrow "Response x to y is within ε of best response"

Best Response

Column goes first:

Find y, where best row is not too low.
$R=\max _{y} \min _{x}\left(x^{t} A y\right)$.
Note: x can be $(0,0, \ldots, 1, \ldots 0)$
Example: Roshambo. Value of R ?
Row goes first:
Find x, where best column is not high.

$$
C=\min _{x} \max _{y}\left(x^{t} A y\right) .
$$

Agin: y of form ($0,0, \ldots, 1, \ldots 0$).
Example: Roshambo. Value of C ?

Proof of approximate equilibrium

How?
(A) Using geometry
(B) Using a fixed point theorem
(C) Using multiplicative weights
(D) By the skin of my teeth.
(C) ..and (D).

Not hard. Even easy. Still, head scratching happens.

Duality.

$R=\max _{x} \min _{x}\left(x^{t} A y\right)$
 $C=\min _{x} \max _{y}\left(x^{t} A y\right)$

Weak Duality: $R \leq C$
Proof: Better to go second.
At Equilibrium (x^{*}, y^{*}), payoff v :
ow payoffs $\left(A y^{*}\right)$ all $\geq v \Longrightarrow R>v$.
column payoffs $\left(\left(x^{*}\right)^{t} A\right)$ all $\leq v \Longrightarrow v>C$.
$\Longrightarrow R \geq C$
Equilibrium $\Longrightarrow R=C$!
Strong Duality: There is an equilibrium point! and $R=C$!
Doesn't matter who plays first!

Games and experts

$$
\begin{aligned}
& \text { Again: find }\left(x^{*}, y^{*}\right) \text {, such that } \\
& \left(\max _{y} x^{*} A y\right)-\left(\min _{x} x^{*} A y^{*}\right) \leq \varepsilon \\
& C\left(x^{*}\right)-R\left(y^{*}\right) \leq \varepsilon
\end{aligned}
$$

Experts Framework

n Experts, T days, L^{*}-total loss of best expert.
Multiplicative Weights Method yields loss L where
$L \leq(1+\varepsilon) L^{*}+\frac{\log n}{\varepsilon}$

Games and Experts.

Assume: A has payoffs in $[0,1]$.
For $T=\frac{\log n}{\varepsilon^{2}}$ days:

1) m pure row strategies are experts.

Use multiplicative weights, produce row distribution.
Let x_{t} be distribution (row strategy) on day t.
2) Each day, adversary plays best column response to x_{t}. Choose column of A that maximizes row's expected loss. Let y_{t} be indicator vector for this column.

Comments

For any ε, there exists an ε-Approximate Equilibrium
Does an equilibrium exist? Yes.
Something about math here?
Limit of a sequence on some closed set...hmmm..
Later: will use geometry, linear programming.
Complexity?
$T=\frac{\ln n}{\varepsilon^{2}} \rightarrow O\left(n m \frac{\log n}{\varepsilon^{2}}\right)$. Basically linear
Versus Linear Programming: $O\left(n^{3} m\right)$ Basically quadratic. (Faster linear programming: $O(\sqrt{n+m})$ linear system solves.) Still much slower ... and more complicated.
Dynamics: best response, update weight, best response. Also works with both using multiplicative weights.
"In practice."

Approximate Equilibrium!

Experts: x_{t} is strategy on day t, y_{t} is best column against x_{t}.
Let $y^{*}=\frac{1}{T} \sum_{t} y_{t}$ and $x^{*}=\operatorname{argmin}_{x_{t}} x_{t} A y_{t}$.
Claim: $\left(x^{*}, y^{*}\right)$ are 2ε-optimal for matrix A
Column payoff: $C\left(x^{*}\right)=\max _{y} x^{*} A y$. Loss on day $t, x_{t} A y_{t} \geq C\left(x^{*}\right)$ by the choice of x^{*} Thus, algorithm loss, L, is $\geq T \times C\left(x^{*}\right)$.
Best expert: L^{*} - best row against all the columns played. best row against $\sum_{t} A y_{t}$ and $T \times y^{*}=\sum_{t} y_{t}$
\rightarrow best row against $T \times A y^{*}$.
$\rightarrow L^{*} \leq T \times R\left(y^{*}\right)$
Multiplicative Weights: $L \leq(1+\varepsilon) L^{*}+\frac{\ln n}{\varepsilon}$
$T \times C\left(x^{*}\right) \leq(1+\varepsilon) T \times R\left(y^{*}\right)+\frac{\ln n}{\varepsilon} \rightarrow C\left(x^{*}\right) \leq(1+\varepsilon) R\left(y^{*}\right)+\frac{\ln n}{\varepsilon T}$
$\rightarrow C\left(x^{*}\right)-R\left(y^{*}\right) \leq \varepsilon R\left(y^{*}\right)+\frac{\ln n}{\varepsilon T}$.
$T=\frac{\ln n}{\varepsilon^{2}}, R\left(y^{*}\right) \leq 1$
$\rightarrow C\left(x^{*}\right)-R\left(y^{*}\right) \leq 2 \varepsilon$.
Approximate Equilibrium: slightly different Experts: x_{t} is strategy on day t, y_{t} is best column against x_{t}.
Let $x^{*}=\frac{1}{T} \sum_{t} x_{t}$ and $y^{*}=\frac{1}{T} \sum_{t} y_{t}$.
Claim: $\left(x^{*}, y^{*}\right)$ are 2ε-optimal for matrix A.
Column payoff: $C\left(x^{*}\right)=\max _{y} x^{*} A y$.
Let y_{r} be best response to $C\left(x^{*}\right)$
Day $t, x_{t} A y_{t} \geq x_{t} A y_{r}-y_{t}$ is best response to x_{t}.
Algorithm loss: $\sum_{t} x_{t} A y_{t} \geq \sum_{t} x_{t} A y_{r}$ $L \geq T \times C\left(x^{*}\right)$
Best expert: L^{*} - best row against all the columns played
best row against $\sum_{t} A y_{t}$ and $T y^{*}=\sum_{t} y_{t}$
\rightarrow best row against TAy*
$\rightarrow L^{*} \leq T \times R\left(y^{*}\right)$.
Multiplicative Weights: $L \leq(1+\varepsilon) L^{*}+\frac{\ln n}{\varepsilon}$
$T C\left(x^{*}\right) \leq(1+\varepsilon) T R\left(y^{*}\right)+\frac{\ln n}{\varepsilon} \rightarrow C\left(x^{*}\right) \leq(1+\varepsilon) R\left(y^{*}\right)+\frac{\ln n}{\varepsilon T}$
$\rightarrow C\left(x^{*}\right)-R\left(y^{*}\right) \leq \varepsilon R\left(y^{*}\right)+\frac{\ln n}{\varepsilon T}$.
$T=\frac{\ln n}{\varepsilon^{2}}, R\left(y^{*}\right) \leq 1 \rightarrow C\left(x^{*}\right)-R\left(y^{*}\right) \leq 2 \varepsilon$.

