Duality.

$$
\begin{aligned}
& R=\max _{y} \min _{x}\left(x^{t} A y\right) . \\
& C=\min _{x} \max _{y}\left(x^{t} A y\right) .
\end{aligned}
$$

Weak Duality: $R \leq C$.
Proof: Better to go second
Note:
In situation R. y plays "Defense". x plays "Offense."
In situation C. x plays "Defense". y plays "Offense."
At Equilibrium (x^{*}, y^{*}), payoff v :
row payoffs (Ay*) all $\geq v \Longrightarrow R \geq v$.
column payoffs $\left(\left(x^{*}\right)^{t} A\right)$ all $\leq v \Longrightarrow v \geq C$.
$\Longrightarrow R \geq C$
Equilibrium $\Longrightarrow R=C$
Strong Duality: There is an equilibrium point! and $R=C$
Doesn't matter who plays first!

Catchme:
 Green with arob: $1 / 8$: Pink with prob. $1 / 2$.

Catcher:

Caught sometimes
With probability $1 / 2$.

Summary and.

Zero sum game: $m \times n$ matrix A
row minimizes. strategy: m-dimensional vector x
... probability distribution over rows.
column maximizes. strategy: vector m-dimensional vector x ... probability distribution over columns.
Payoff (x, y) : $x^{\top} A y$.
Nash equilibrium (x^{*}, y^{*}):
neither player has better response against others.
If there is an equilibrium: no disadvantage in announcing strategy
All equilibrium points all have same payoff
Why? Equilibriums: $x_{1}^{\top} A y_{1}<x_{2}^{\top} A y_{2}$.
$\Longrightarrow \min _{i}\left(A y_{2}\right)_{i}>\min _{i}\left(A y_{1}\right)_{i}$ Since x zero on non-best. Best row is worse under y_{2}.
\Rightarrow Column player has incentive to change.
x_{1}, y_{1} is not equilibrium

Example.

Row solution: $\operatorname{Pr}\left[p_{1}\right]=1 / 2, \operatorname{Pr}\left[p_{2}\right]=1 / 3, \operatorname{Pr}\left[p_{3}\right]=1 / 6$.
Edge solution: $\operatorname{Pr}\left[e_{1}\right]=1 / 2, \operatorname{Pr}\left[e_{2}\right]=1 / 2$

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher's distribution.)
Catcher: raise toll on most congested edge
(Knows catch me's distribution.)

Defense

Where should "catcher" play to catch any path? a cut
Minimum cut allows the maximum toll on any edge!
What should "catch me" do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.
Note: exponentially many strategies for "catch me")

An "asymptotic" game.
"Catch me."
Given: $G=(V, E)$.
Given $a, b \in V$.
Row ("Catch me"): choose path from a to b.
Column("Catcher"): choose edge.
Row pays if column chooses edge on path.
Matrix:
row for each path: p
column for each edge: e
$A[p, e]=1$ if $e \in p$.

Toll/Congestion

Given: $G=(V, E)$.
Given $\left(s_{1}, t_{1}\right) \ldots\left(s_{k}, t_{k}\right)$
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.
Matrix:
row for each routing: r
column for each edge: e
$A[r, e]$ is congestion on edge e by routing r
Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.
Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.
Again: exponential number of paths for route player.

Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium
Best Response
Statement of Duality Theorem

Applications

Jobs to workers

Teachers to classes.
Classes to classrooms.
"The assignment problem"
Min Weight Matching.
Negate values and find maximum weight matching.

Today

Maximum Weight Matching

Undergraduate: saw maximum matching! (hopefully.) Will review.

Vertex Cover

Given a bipartite graph, $G=(U, V, E)$, with edge weights $w: E \rightarrow R$ find an vertex cover function of minimum total value.
A function $p: V \rightarrow R$, where for all edges, $e=(u, v)$ $p(u)+p(v) \geq w(e)$
Minimize $\sum_{v \in U \cup v} p(u)$.

Solution Value: 12.
Solution Value: 12
Solution Value: 9. Solution Value: 8.

Matching.

Given a bipartite graph, $G=(U, V, E)$, with edge weights $w: E \rightarrow R$, ind a maximum weight matching

A matching is a set of edges where no two share an endpoint.

Blue-3. Green-2, Black - 1, Non-edges - 0
Solution Value: 7.
Solution Value: 7.
Solution Value: 8.

Cover is upper bound.

Feasible $p(\cdot)$, for edge $e=(u, v), p(u)+p(v) \geq w(e)$
(u)

For a matching M, each u is the endpoint of at most one edge in M
(4)

$$
\sum_{e=(u, v) \in M} w(e) \leq \sum_{e=(u, v) \in M}(p(u)+p(v)) \leq \sum_{u \in U} p(u)+\sum_{v \in V} p(v)
$$

Holds with equality if
for $e \in M, w(e)=p(u)+p(v)$ (Defn: tight edge.) and perfect matching

Simple example.

2 (b) $y 0$
0 (a) x
1 (b) $y 0$
Blue edge -2 , Others -1 .
Using max incident edge.
Value: 3.
Using max incident edge.

Matching and cover are optimal,
edges in matching have $w(e)=p(u)+p(v)$. Tight edge. all nodes are matched.

Back to Maximum Weight Matching

Want vertex cover (price function) $p(\cdot)$ and matching where.
Optimal solutions to both if
for $e \in M, w(e)=p(u)+p(v)$ (Defn: tight edge.) and perfect matching.

Maximum Matching

Given a bipartite graph, $G=(U, V, E)$, find a maximum sized matching.
Key Idea: Augmenting Alternating Paths
Example:

Start at unmatched node(s),
follow unmatched edge(s),
follow matched
Repeat until an unmatched node.

Maximum Weight Matching

Goal: perfect matching on tight edges.
Algorithm
Init: empty matching, feasible cover function $(p(\cdot)$

Add tight edges to matching.
Use alt./aug. paths of tight edges.
"maximum matching algorithm."
No augmenting path.
Cut, (S, T), in directed graph of tight edges!
All edges across cut are not tight. (loose?)
Nontight edges leaving cut, go from S_{U}, T_{V}
Lower prices in S_{U}, raise prices in S_{V},
all explored edges still tight
matched edges still tight
What's delta? $w(e)<p(u)+p(v) \rightarrow$
What's delta? $w(e)<p(u)+p(v) \rightarrow$
$\delta=\min _{e \in\left(S_{U} \times T_{V}\right)} p(u)+p(v)-w(e)$.

No perfect matching

Can't increase matching size. No alternating path from (a) to (y).
Cut!
Still no augmenting path
Still Cut?
Use directed graph!
Cut in this graph.

Algorithm:
Given matching.
Direct unmatched edges U to V, matched V to U.
Find path between unmatched nodes on left to right. (BFS, DFS)
Until everything matched ... or output a cut

Some details

Add 0 value edges, so that optimal solution contains perfect matching. Beginning "Matcher" Solution: $M=\{ \}$.
Feasible! Value $=0$
Beginning "Coverer" Solution:
$p(u)=$ maximum incident edge for $u \in U, 0$ otherwise
Main Work
breadth first search from unmatched nodes finds cut. Update prices (find minimum delta.)
Simple Implementation:
Each bfs either augments or adds node to S in next cut.
$O(n)$ iterations per augmentation
$O(n)$ augmentations.
$O\left(n^{2} m\right)$ time.

Some thoughts..

Unweighted matching algorithm to weighted.
How?
Use duality.
In this case:
Dual feasible.
Primal infeasible.
Primal only "plays" tight constraints. Best offense.
Terminate when perfect matching
\rightarrow Dual only plays tight constraints
Dual's best offense
Equilibrium.

