
CS270: Lecture 3.

Last Time:

Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)

Toll Problem. (Max)
Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.

Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.

“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



CS270: Lecture 3.

Last Time:
Path Routing Problem. (Min)
Toll Problem. (Max)

Toll ≤ Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

s !

Today: continuous view.

And: Strategic Games

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 1 / 30



Gradient Descent.

Give differentiable f (x), find minimum.

Alg:
While “not good enough”:

x i+1 = x i − εi∇f (x i ).

∇(f (x i ) = 0 =⇒ Optimal.

Constrained: project gradient into affine space.

Projected(∇(f (x i )) = 0 =⇒ Optimal.

Dumber: just move to x (i+1) with smaller f (x (i) in affine subspace.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 2 / 30



Gradient Descent.

Give differentiable f (x), find minimum.

Alg:
While “not good enough”:

x i+1 = x i − εi∇f (x i ).

∇(f (x i ) = 0 =⇒ Optimal.

Constrained: project gradient into affine space.

Projected(∇(f (x i )) = 0 =⇒ Optimal.

Dumber: just move to x (i+1) with smaller f (x (i) in affine subspace.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 2 / 30



Gradient Descent.

Give differentiable f (x), find minimum.

Alg:
While “not good enough”:

x i+1 = x i − εi∇f (x i ).

∇(f (x i ) = 0 =⇒ Optimal.

Constrained: project gradient into affine space.

Projected(∇(f (x i )) = 0 =⇒ Optimal.

Dumber: just move to x (i+1) with smaller f (x (i) in affine subspace.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 2 / 30



Gradient Descent.

Give differentiable f (x), find minimum.

Alg:
While “not good enough”:

x i+1 = x i − εi∇f (x i ).

∇(f (x i ) = 0 =⇒ Optimal.

Constrained: project gradient into affine space.

Projected(∇(f (x i )) = 0 =⇒ Optimal.

Dumber: just move to x (i+1) with smaller f (x (i) in affine subspace.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 2 / 30



Gradient Descent.

Give differentiable f (x), find minimum.

Alg:
While “not good enough”:

x i+1 = x i − εi∇f (x i ).

∇(f (x i ) = 0 =⇒ Optimal.

Constrained: project gradient into affine space.

Projected(∇(f (x i )) = 0 =⇒ Optimal.

Dumber: just move to x (i+1) with smaller f (x (i) in affine subspace.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 2 / 30



Gradient Descent.

Give differentiable f (x), find minimum.

Alg:
While “not good enough”:

x i+1 = x i − εi∇f (x i ).

∇(f (x i ) = 0 =⇒ Optimal.

Constrained: project gradient into affine space.

Projected(∇(f (x i )) = 0 =⇒ Optimal.

Dumber: just move to x (i+1) with smaller f (x (i) in affine subspace.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 2 / 30



Routing and Function minimization.

Simple Version of Routing problem.

Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .

Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e).

Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:

Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .

Why? m edges each with congestion at most copt .
This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why?

m edges each with congestion at most copt .
This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).

→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t .
Minimize congestion.

minimize maxe c(e). Not smooth.

Smoothing functions: minimize maxe c(e).
f (R) = ∑e 2c(e)

f ′(R) = ∑e c(e)2c(e)

Good smoothing?
Thm: Routing R that minimizes f (R) has maxe c(e) = c(R)≤ copt + logm.

Proof:
Max Congestion Optimal routing, R∗, has f (R∗)≤m2copt .
Why? m edges each with congestion at most copt .

This routing has f (R)≥ 2c(R).

→ m2copt ≥ f (R)≥ 2c(R).
→ copt + logm ≥ c(R).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30



Optimization Setup: continued.

R “routes” a F units of flow for one pair (s, t).

∇f (R) = c′(e)2c(e) log2.

With respect to what?
What are the variables?
What choices do we have?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 4 / 30



Optimization Setup: continued.

R “routes” a F units of flow for one pair (s, t).

∇f (R) = c′(e)2c(e) log2.

With respect to what?
What are the variables?
What choices do we have?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 4 / 30



Optimization Setup: continued.

R “routes” a F units of flow for one pair (s, t).

∇f (R) = c′(e)2c(e) log2.

With respect to what?

What are the variables?
What choices do we have?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 4 / 30



Optimization Setup: continued.

R “routes” a F units of flow for one pair (s, t).

∇f (R) = c′(e)2c(e) log2.

With respect to what?
What are the variables?

What choices do we have?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 4 / 30



Optimization Setup: continued.

R “routes” a F units of flow for one pair (s, t).

∇f (R) = c′(e)2c(e) log2.

With respect to what?
What are the variables?
What choices do we have?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 4 / 30



Optimization Setup: continued.

R “routes” a F units of flow for one pair (s, t).

∇f (R) = c′(e)2c(e) log2.

With respect to what?
What are the variables?
What choices do we have?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 4 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.

For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number!

Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
For an s− t path p, x(p) flow along p.

Exponential number! Uh oh?

Constraint: sum of x(p) is 1.

What is c(e) in terms of x(p)?

A[e,p] = 1 if e ∈ p and 0 otherwise.

Now, we have:
c = Ax , minimize maxe c(e) where ∑p x(p) = 1.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 5 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F

=⇒ error divides by two.
F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒

error divides by two.
F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ

=⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential!

∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.

Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



...and smoothing: continued.
Now, we have:

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: minimize ∑e 2c(e).

Minimum gives solution within additive logm of optimal.
Better?: F to 2F =⇒ error divides by two.

F to F/δ =⇒ additive error is δ logm.

Algorithm: reduce potential! ∑e 2c(e).

Best possible: a factor of two off.
Oscillates if move when length of path not smaller by factor of 2.

∑e 2c(e)→ ∑e(1 + ε)c(e).

Approximate Equilibrium: (1 + 2ε)Copt + δ logn/ε.

Convergence time:
Potential drop: ≥ ε ∑e∈p 2c(e)

Move Size: δ .

Time: Poly(1/ε,1/δ ,n,m).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 6 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2?

or (B) ∇(f (x)) = A
−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A).

Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax

=⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p]

=⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p))

= (At )(p) ·
−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Continuous view: calculus.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

A[e,p] - 1 if e ∈ p, 0 otherwise.

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: x that minimizes ∑e 2c(e)

Variables are vector x , indexed by path p.

So what is gradient?

(A) ∇(f (x)) = At
−−−−−→
2c(e) ln2? or (B) ∇(f (x)) = A

−−−−−→
2c(e) ln2?

(A). Produces a vector of same dimension as x !

c = Ax =⇒ ∂c(e)
∂ (x(p)) = A[e,p] =⇒ ∂ ∑e 2c(e)

∂ (x(p)) ∝ ∑e 2c(e) ∂c(e)
∂ (x(p)) = (At )(p) ·

−−→
2c(e)

=⇒ ∇x (f (R)) ∝ At
−−→
2c(e).

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 7 / 30



Projection.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: x that minimizes ∑e 2c(e)

∇x (f (R)) ∝ At
−−→
2c(e).

We also have: ∑p x(p) = F

Affine subspace: so can project!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 8 / 30



Projection.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: x that minimizes ∑e 2c(e)

∇x (f (R)) ∝ At
−−→
2c(e).

We also have: ∑p x(p) = F

Affine subspace: so can project!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 8 / 30



Projection.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: x that minimizes ∑e 2c(e)

∇x (f (R)) ∝ At
−−→
2c(e).

We also have: ∑p x(p) = F

Affine subspace: so can project!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 8 / 30



Projection.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: x that minimizes ∑e 2c(e)

∇x (f (R)) ∝ At
−−→
2c(e).

We also have: ∑p x(p) = F

Affine subspace: so can project!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 8 / 30



Projection.

c = Ax , minimize maxe c(e) where ∑p x(p) = F .

Smooth version: x that minimizes ∑e 2c(e)

∇x (f (R)) ∝ At
−−→
2c(e).

We also have: ∑p x(p) = F

Affine subspace: so can project!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 8 / 30



Picture

s t
c = Ax

e space isocline.

c(e1)

c(e2)

← A = I→

x space feasibility.

x(p1)

x(p2)

F

F

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 9 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.

Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.

Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 10 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:

neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 11 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:

Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.

Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.

No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:

E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .

Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.

Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?

Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...

not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?

More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models

,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance,

coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,

complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..

Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 12 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:

m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1

n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).

“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.

Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)?

no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no.

(R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)?

no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no.

(R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)?

no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

. . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no. . . .

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 13 / 30



Mixed Strategies.

R P S

.33 .33 .33

R

.33

0 1 -1
P

.33

-1 0 1
S

.33

1 -1 0
How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Mixed Strategies.

R P S

.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.

Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 14 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs?

Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff.

Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}

Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:

Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ]

=
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j)

= 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player?

One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!

- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes.

column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω = {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently: Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X ] =
1
9 ∑

(i ,j)
X (i , j) = 0.

Payoff for other player? One payoff!
- row minimizes. column maximizes.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 15 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy?

Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock?

1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper?

1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors?

1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy.

=⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j)

= ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change!

Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0 + 1

3 ×1 + 1
3 × −1 = 0.

Expected payoff of Paper? 1
3 × −1 + 1

3 ×0 + 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1 + 1

3 × −1 + 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 16 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.

PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.
R P S E

R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium?

(E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E).

Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation:

Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.

Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0



Satish Rao (UC Berkeley) CS270: Games February 12, 2017 17 / 30



Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)

Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.

Why play?
Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?

Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.

... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 18 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:

Row: (0, 1
3 ,

1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ).

Column: ( 1
3 ,

1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff?

Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1

= 1
3

Strategy 2: 1
3 ×−1 + 1

2 ×0 + 1
6 ×1 = − 1

6
Strategy 3: 1

3 ×1 + 1
2 ×−1 + 1

6 ×0 = − 1
6

Strategy 4: 1
3 ×0 + 1

2 ×0 + 1
6 ×−1 = − 1

6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3

Strategy 2: 1
3 ×−1 + 1

2 ×0 + 1
6 ×1 = − 1

6
Strategy 3: 1

3 ×1 + 1
2 ×−1 + 1

6 ×0 = − 1
6

Strategy 4: 1
3 ×0 + 1

2 ×0 + 1
6 ×−1 = − 1

6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1

= − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0

= − 1
6

Strategy 4: 1
3 ×0 + 1

2 ×0 + 1
6 ×−1 = − 1

6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6

Strategy 4: 1
3 ×0 + 1

2 ×0 + 1
6 ×−1 = − 1

6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1

= − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 )

=−1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies!

Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one?

Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium: Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: ( 1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0 + 1

2 ×1 + 1
6 × −1 = 1

3
Strategy 2: 1

3 ×−1 + 1
2 ×0 + 1

6 ×1 = − 1
6

Strategy 3: 1
3 ×1 + 1

2 ×−1 + 1
6 ×0 = − 1

6
Strategy 4: 1

3 ×0 + 1
2 ×0 + 1

6 ×−1 = − 1
6

Payoff is 0× 1
3 + 1

3 × (−1
6 ) + 1

6 × (−1
6 ) + 1

2 × (−1
6 ) =−1

6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 19 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).

Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j

= ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)

= ∑
i

∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj

= ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy,

no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i ,j

(xiyj ) ·ai ,j = ∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

i
∑
j

xiai ,jyj = ∑
j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 20 / 30



Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj (At )(j) ·x = (x∗)tAy∗.

1A(i) is i th row.
Satish Rao (UC Berkeley) CS270: Games February 12, 2017 21 / 30



Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj (At )(j) ·x = (x∗)tAy∗.

1A(i) is i th row.
Satish Rao (UC Berkeley) CS270: Games February 12, 2017 21 / 30



Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj (At )(j) ·x = (x∗)tAy∗.

1A(i) is i th row.
Satish Rao (UC Berkeley) CS270: Games February 12, 2017 21 / 30



Best Response

Column goes first:

Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo.

Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0). From Texas.

Example: Roshambo. Value of C?

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 22 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :

row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v

=⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .

column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v

=⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.

=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point!

and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 23 / 30



Proof of Equilibrium.

Later. Let’s see some examples.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 24 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).

Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .

Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.

Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.

Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p

column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e

A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



An “asymptotic” game.

“Catch me.”

Given: G = (V ,E).
Given a,b ∈ V .
Row (“Catch me”): choose path from a to b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
A[p,e] = 1 if e ∈ p.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 25 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:

Use Blue Path.Blue with prob. 1/2.
Green with prob. 1/2.
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught!Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:
Use Blue Path.

Blue with prob. 1/2.
Green with prob. 1/2.
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught!Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:
Use Blue Path.

Blue with prob. 1/2.
Green with prob. 1/2.
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught!

Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:

Use Blue Path.

Blue with prob. 1/2.
Green with prob. 1/2.

Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught!Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:

Use Blue Path.

Blue with prob. 1/2.
Green with prob. 1/2.

Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught!

Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:

Use Blue Path.Blue with prob. 1/2.
Green with prob. 1/2.

Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught!Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



s t

v1

v2

v3

v4

v5

v6
Catchme:

Use Blue Path.Blue with prob. 1/2.
Green with prob. 1/2.

Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught!

Caught, sometimes.
With probability 1/2.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 26 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.

Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense

(Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.

(Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.

(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.

(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path?

a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.

Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?

minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!

Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Example.

Row solution: Pr [p1] = 1/2, Pr [p2] = 1/3, Pr [p3] = 1/6.
Edge solution: Pr [e1] = 1/2, Pr [e2] = 1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 27 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r

column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.

Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.

Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 28 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games

Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium

Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies

Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games

Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.

Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.

Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.

Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 29 / 30



Finding Equilibrium.

...see you Tuesday.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 30 / 30


