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Give differentiable f(x), find minimum.

Alg:
While “not good enough™:
xH = xI — g VI(x').

V(f(x')=0 = Optimal.
Constrained: project gradient into affine space.
Projected(V(f(x')) =0 = Optimal.

Dumber: just move to x(+") with smaller f(x() in affine subspace.
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Potential drop: > €Y g, 2°(®)
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Projection.

¢=Ax, minimize maxec(e) where ¥, x(p)=F

Smooth version: x that minimizes ¥, 2°(¢)
Vx(f(R)) o o A120(E)

We also have: Y, x(p) = F

Affine subspace: so can project!
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Picture

c=Ax
e space isocline. x space feasibility.
c(ez) x(p2)
—A=]— F
c(er) x(p1)
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Strategic Games.

N players.

Each player has strategy set. {Ss,...,Sn}-

Vector valued payoff function: u(sy,...,sn) (€.g., € RN).
Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.

Payoff:
Cc D
C | (3,3) | (0,5)
D | (50 | (1,1)
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Famous because?

C D
C | (33) | (0,5
D | (50 | (.1.1)
What is the best thing for the players to do?
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Famous because?

c D
c | @33) | (05)
D | (50) | (1.1)

What is the best thing for the players to do?
Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.
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Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.

Companies compete, don’t cooperate.

No Monopoly:

E.G., OPEC, Airlines, .

Should defect.

Why don’t they?

Free market economics ...not so much?

More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.
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Payoff function: u(i,j) = (—a, a) (or just a).
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Mixed Strategies.

R P S
33 ].33 | .33
R|[.33] 0 1 -1
P| .33 | -1 0 1
S|.33| 1 -1 0

How do you play?
Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.
Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.
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Payoffs:

Equilibrium.
R P S

.33 | .33 | .33
R | .33 1 -1
P|.33| -1 1
S|3]1|-1]0
Payoffs?
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Payoffs:

Equilibrium.
R P S

33 ] .33] .33
R .33 1| -1
P| .33 | -1 1
S| .33 1 -1 0

Payoffs? Can't just look it up in matrix!.
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Payoffs:

Equilibrium.
R P S

33 ] .33] .33
R .33 1| -1
P| .33 | -1 1
S| .33 1 -1 0

Payoffs? Can't just look it up in matrix!.

Average Payoff.
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Payoffs:

Equilibrium.
R P S

.33 | .33 | .33
R|.33 1 -1
P|.383 ] -1 1
S |33 1 -1 0

Payoffs? Can't just look it up in matrix!.

Average Payoff. Expected Payoff.
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Payoffs: IFE{qulbrluSm.

.33 | .33 | .33
R|.33 1 -1
P|.383 ] -1 1
S |33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Q= {(i,j):i,j€[1,..,3]}
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Payoffs:

Equilibrium.
R P S

.33 | .33 | .33
R|.33 1 -1
P|.383 ] -1 1
S |33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Q= {(i,j):i,j€[1,..,3]}

Random variable X (payoff).
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Payoffs: IFE{qulbrluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.

Sample space: Q= {(i,j):i,j€[1,..,3]}
Random variable X (payoff).

EX]= (Z)X(i,f)Pf[(iJ)]-
L)
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Payoffs: IFE{quFlbrluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.

Sample space: Q= {(i,j):i,j€[1,..,3]}
Random variable X (payoff).

E[X]= Y X(i./)Pri(i.j))-
(i)
Each player chooses independently:
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Payoffs: IFE{quFlbrluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.

Sample space: Q= {(i,j):i,j€[1,..,3]}
Random variable X (payoff).

EX]= (Z)X(i,/)Pf[(iJ)]-
L)

Each player chooses independently: Pr{(i,j)] = 3 x § = §.
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Payoffs: IFE{quFlbrluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.
Sample space: Q= {(i,j):i,j€[1,..,3]}
Random variable X (payoff).
ELX] = Y X(.)Prl(i.j))-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.

E[X]
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Payoffs: IFE{quFlbrluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.
Sample space: Q= {(i,j):i,j€[1,..,3]}
Random variable X (payoff).
ELX] = Y X(.)Prl(i.j))-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.

Em:%gmu)
L)
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Payoffs: IFE{quFlbrluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.
Sample space: Q= {(i,j):i,j€[1,..,3]}
Random variable X (payoff).
ELX] = Y X(.)Prl(i.j))-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.

E[X] = % (Z)X(i, j)=0.
1J
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Payoffs: Equngbrlusm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.
Sample space: Q ={(i,j):i,j€[1,..,3]}
Random variable X (payoff).
E[X]= Y X(i.j)Pri(i,)]-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.
1 .
ElX]=3 Y X(ij)=0.
{7

Payoff for other player?
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Payoffs: Equngbrlusm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.
Sample space: Q ={(i,j):i,j€[1,..,3]}
Random variable X (payoff).
E[X] =) X(i.f)Pri(i.))-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.
1 .
E[X] = 3 Y X(i,j)=0.
(i)
Payoff for other player? One payoff!
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Payoffs: IFE{quF!brluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.

Sample space: Q ={(i,j):i,j€[1,..,3]}
Random variable X (payoff).

E[X]= Y X(i./)Pri(i.j))-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.

E[X] = % (Z)X(i, j)=0.
1J

Payoff for other player? One payoff!
- row minimizes.
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Payoffs: IFE{quF!brluSm.

33 [.33] .33
R|3/[ 0| 1 -1
P[3]-1] 0|1
S|38|1|-1]0

Payoffs? Can’t just look it up in matrix!.
Average Payoff. Expected Payoff.

Sample space: Q ={(i,j):i,j€[1,..,3]}
Random variable X (payoff).

E[X]= Y X(i./)Pri(i.j))-
(i)
Each player chooses independently: Pr{(i,j)] = 3 x § = §.

E[X] = % (Z)X(i, j)=0.
1J

Payoff for other player? One payoff!
- row minimizes. column maximizes.
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Equilibrium

R P S
.33 .33 .33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -

0
Will Player 1 change strategy?
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Equilibrium

R P S
.33 .33 .33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -

0
Will Player 1 change strategy? Mixed strategies uncountable!
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R P S
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R .33 0 1 -1
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Will Player 1 ch

Expected payoffs for pure strategies for player 1.
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Equilibrium

R P S
.33 .33 .33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -
Will Player 1 ch

Expected payoff of Rock?
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -

0
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.
Expected payoff of Rock? § x 0+ 3 x 1+ % x —1=0.
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -

0
Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 4 x 0+ 3 x1+%x —1=0.
Expected payoff of Paper?
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1

0
Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 4 x 0+ 3 x1+%x —1=0.
Expected payoff of Paper? § x — 144 x0+3x1=0.
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1 -

Will Player 1 changg strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 4 x 0+ 3 x1+%x —1=0.
Expected payoff of Paper? I x —1+1x0+1x1=0.
Expected payoff of Scissors?
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? % X 0+ F x 1 +ix-1=0.
Expected payoff of Paper? . 3 >< -1 + X O+ >< 1=0.
Expected payoff of Scissors? % 3 %1 + x —1 + x0=0.
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Equilibrium

R P S
-3

3 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? % X 0+ F x 1 +ix-1=0.
Expected payoff of Paper? . 3 >< -1 + X O+ >< 1=0.
Expected payoff of Scissors? % 3 %1 + x —1 + x0=0.

No better pure strategy.
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Equilibrium

R P S
-3

3 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? % X 0+ F x 1 +ix-1=0.
Expected payoff of Paper? . 3 >< -1 + X O+ >< 1=0.
Expected payoff of Scissors? % 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
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Equilibrium

R P S
-3

3 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
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Equilibrium

R P S
-3

3 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
E[X] = X (Prli] x Prj1)X(i,))
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Equilibrium

R P S
-3

3 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
E[X]= X j(Prlil < Pril)X(i,j) = ¥ Prlil(¥; Prlj] < X(i.f))
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Equilibrium

R P S
-3

3 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.

E[X] = Xiy(Prii] < Pri)X(i.j) = 1 Prif(x; Prij] x X(i,/))
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
E[X] = X5 (Prlil x Pril)X(i,) = X Priil(X; Prijl  X(i./))
Mixed strategy can’t be better than the best pure strategy.
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
E[X] = X5 (Prlil x Pril)X(i.) = ¥ Priil(¥; Prijl x X(i./))
Mixed strategy can’t be better than the best pure strategy.
Player 1 has no incentive to change!
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
E[X] = X5 (Prlil x Pril)X(i.) = ¥ Priil(¥; Prijl x X(i./))
Mixed strategy can’t be better than the best pure strategy.
Player 1 has no incentive to change! Same for player 2.
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Equilibrium

R P S

.33 .33 -33
R .33 0 1 -1
P .33 -1 0 1
S .33 1

Will Player 1 change strategy? Mixed strategies uncountable!
Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1 3 X O+ X 1 + X —1 =0.
Expected payoff of Paper’? >< - 1 + X O + >< 1=0.
Expected payoff of Smssors” 3 %1 + x —1 + x0=0.

No better pure strategy. — No better mixed strategy!
Mixed strat. payoff is weighted av. of payoffs of pure strats.
E[X1 = X (Priil x Pril)X(i.j) = X; Priil(X; Prijl x X(i.j))
Mixed strategy can’t be better than the best pure strategy.
Player 1 has no incentive to change! Same for player 2.
Equilibrium!
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

/R P S E
RO |1 |-1]1
Pl-1]0 |11
S|1|-1]0]1
E|-1]|-1]|-1]|0

Equilibrium?
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Another example plus notation.

Rock, Paper, Scissors, prEempt.

PreEmpt ties preEmpt, beats everything else.

Payoffs.

/R P S E
RO |1 |-1]1
Pl-1]0]1]1
S|1|-1]0 |1
E|-1]-1]-1]0

Equilibrium? (E,E).
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

/R P S E
RO |1 |-1]1
Pl-1]0]1

1
S|1]|-1]0]1
E|-1|-1]-1]0

Equilibrium? (E,E). Pure strategy equilibrium.
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

/R P S E
RO |1 |-1]1
Pl-1]0]1

1
S|1]|-1]0]1
E|-1|-1]-1]0
Equilibrium? (E,E). Pure strategy equilibrium.
Notation:
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.
/R P S E
RO |1 ]-1]1
P{-1]0] 1]
S|1]|-1]0]1
E|-1]-1|-1]0
Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
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Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.
/R P S E

RO |1 ]-1]1

P{-1]0] 1]

S|1]|-1]0]1

E|-1]-1|-1]0
Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

0 1 -1 1
10 1 A
A=l 1 1 0 1
11 10
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Playing the boss...

Row has extra strategy:Cheat.
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Playing the boss...

Row has extra strategy:Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

0o 1 -1
-1 0 1
A=l 4 4 o
0 0o -1
Note: column knows row cheats.
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

0 1 i
10
A=l 1 1 o0
0 0 -f

Note: column knows row cheats.
Why play?
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)

Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

0o 1 -1

-1 0 1
A=l 1

0 0 -1

Note: column knows row cheats.
Why play?
Row is column’s advisor.
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)

Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

0o 1 -1
-1 0 1
A= 1 —1
0 0o -1
Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.
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Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!)

Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

0o 1 -1
-1 0 1
A= 1 —1
0 0o -1
Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.
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Equilibrium: play the boss...

Equilibrium:

Satish Rao (UC Berkeley)

0o 1
-1 0
1 -1
0 O
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Equilibrium: play the boss...

0o 1 -1
-1 0 1
A=l 1 4 o0
o 0 -1

Equilibrium: Row: (0,3, %, 3).
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Equilibrium: play the boss...

0o 1 -1
-1 0 1
A=l 1 4 o0
o 0 -1

Equilibrium: Row: (0,3, 4,3). Column: (3, 7,%).
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Equilibrium: play the boss...

0o 1 -1
-1 0 1
A=l 1 4 o0
o 0 -1

Equilibrium: Row: (0,3, 4,3). Column: (3, 7,%).
Payoff?

Satish Rao (UC Berkeley) CS270: Games

February 12, 2017

19/30



Equilibrium: play the boss...

0o 1 -1
-1 0 1
A=l 1 4 o0
o 0 -1

Equilibrium: Row: (0,3, 4,3). Column: (3, 7,%).

Payoff? Remember: weighted average of pure strategies.
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Equilibrium: play the boss...

0 1 -1
40
A=l 1 4 o0
0 0 -1
Equilibrium: Row: (0,3, 4,3). Column: (3, 7,%).

Payoff? Remember: weighted average of pure strategies.
Row Player.
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Equilibrium: play the boss...

0 1 -1
40
A=l 1 4 o0
0 0 -1
Equilibrium: Row: (0,3, 4,3). Column: (1,1, }).

Payoff? Remember: weighted average of pure strategies.
Row Player.
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Equilibrium: play the boss...

0o 1 -1
A= 11 —01 (1)
0 0o -1
Equilibrium: Row: (0,3, 4,3). Column: (3, 7,%).
Payoff? Remember: weighted average of pure strategies.
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Strategy 1: 3 x0+3 x1+ix —1=1
Strategy 2: J x —1+3x0+ix1= -1
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Equilibrium: play the boss...

0 1 -1
40

A=l 1 4 o

0 0 -1

Equilibrium: Row: (0,3, %,3). Column: (3, 7,%).

Payoff? Remember: weighted average of pure strategies.
Row Player.

Strategy 1: 3><0+ ><1+ x —1=1

3
Strategy 2: 3><—1+ ><0+ x1_7%
Strategy3:%x1+%x—1+%xo:7%
Strategy 4: 1 x 0+ x0+4x—1=—1
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Equilibrium: play the boss...
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40

A=l 1 4 o

0 0 -1

Equilibrium: Row: (0,3, %,3). Column: (3, 7,%).

Payoff? Remember: weighted average of pure strategies.
Row Player.

Strategy 1: 3><0+ ><1+ x —1=
Strategy 2: ] 3 x—1+ ><0+ x1=
Strategy 3: 1 x 1+ x—1 +% x0=—
Strategy 4: F x0+3 x0+{x—1=—

\w\

o= o)==

Payoffis 0x § + & x (=3 + & x (=§)+ I x (-3 =

O‘J\—*

Column player: every column payoff is —5.

Both only play optimal strategies! Complementary slackness.
Why play more than one?
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Equilibrium: play the boss...

0 1 -1

40

A=l 1 4 o

0 0 -1

Equilibrium: Row: (0,3, %,3). Column: (3, 7,%).

Payoff? Remember: weighted average of pure strategies.
Row Player.

Strategy 1: 3><0+ ><1+ x —1=
Strategy 2: ] 3 x—1+ ><0+ x1=
Strategy 3: 1 x 1+ x—1 +% x0=—
Strategy 4: F x0+3 x0+{x—1=—

\w\

o= o)==

Payoffis 0x § + & x (=3 + & x (=§)+ I x (-3 =

O‘J\—*

Column player: every column payoff is —5.

Both only play optimal strategies! Complementary slackness.
Why play more than one? Limit opponent payoff!
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Two person zero sum games.
m x n payoff matrix A.
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Two person zero sum games.
m x n payoff matrix A.

Row mixed strategy: x = (x1,...,Xm).
Column mixed strategy: y = (¥1,.-.,¥n)-

Payoff for strategy pair (x,y):

p(x,y) = x'Ay
That is,

i i J

Recall row minimizes, column maximizes.
Equilibrium pair: (x*,y*)?
(x*) Ay = m}gx(x*)tAy = mXinx’Ay*.

(No better column strategy, no better row strategy.)
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Equilibrium.

Equilibrium pair: (x*,y*)?
p(x.y) = (x*)'Ay* = mflx(x*)tAy =min x Ay*.

(No better column strategy, no better row strategy.)

TA0) is jth row.
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Equilibrium.

Equilibrium pair: (x*,y*)?
p(x.y) = (x*)'Ay* = mflx(x*)tAy =min x Ay*.

(No better column strategy, no better row strategy.)
No row is better:

min; A .y = (x*)! Ay*. !
No column is better:

max;(A")Y - x = (x*)! Ay*.

TA0) is jth row.
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Best Response

Column goes first:
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Duality.

— H t
R= m}gx mxm(x Ay).
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Duality.

R = maxmin(x!Ay).
— t
C= min m}gx(x Ay).
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— t
C= min m}gx(x Ay).
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Proof: Better to go second.
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At Equilibrium (x*, y*), payoff v:

row payoffs (Ay*)all>v = R>v.
column payoffs ((x*)!A)all <v = v > C.
= R>C

Equilibrium — R=C!

Satish Rao (UC Berkeley) CS270: Games February 12, 2017

23/30



Duality.

R = max mxin(x’Ay).
I t
C= min m}gx(x Ay).
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row payoffs (Ay*)all>v = R>v.
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Duality.

R = max mXin(x’Ay).
I t
C= min m}gx(x Ay).
Weak Duality: R < C.
Proof: Better to go second.

At Equilibrium (x*, y*), payoff v:

row payoffs (Ay*)all>v = R>v.
column payoffs ((x*)!A)all <v = v > C.
= R>C

Equilibrium — R=C!
Strong Duality: There is an equilibrium point! and R = C!
Doesn’t matter who plays first!
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Proof of Equilibrium.

Later. Let’'s see some examples.
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An “asymptotic” game.

“Catch me”
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An “asymptotic” game.

“Catch me.”
Given: G=(V,E).
Given a,be V.

Row (“Catch me”): choose path from ato b.
Column(“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:

row for each path: p
column for each edge: e
Alp,e]=1ifeep.
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Catchme:

Catcher:



Catchme:
Use Blue Path.

Catcher:



Catchme:
Use Blue Path.

Catcher:
Caught!



Catchme:

Blue with prob. 1/2.
Green with prob. 1/2.

Catcher:



Catchme:

Blue with prob. 1/2.
Green with prob. 1/2.

Catcher:
Caught!



Catchme:

Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:



With probability 1/2.

0 @ @ Catchme:
Blue with prob. 1/3.
\ Green with prob. 1/6.
e @ 6 Pink with prob. 1/2.
Catcher:
@ Caught, sometimes.
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Example.

Row solution: Pr{pi]=1/2, Pr[p2] =1/3, Prips] =1/6.
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Example.

Row solution: Pr{pi]=1/2, Pr[p2] =1/3, Prips] =1/6.
Edge solution: Prlei] =1/2, Prles] =1/2

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.

Note: exponentially many strategies for “catch me”!
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Toll/Congestion

Given: G=(V,E).

Given (S1 , 1 ) . (Sk, tk).

Row: choose routing of all paths.
Column: choose edge.

Row pays if column chooses edge on any path.
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row for each routing: r
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Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e
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Matrix:
row for each routing: r
column for each edge: e
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Router: route along shortest paths.
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Matrix:
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Toll/Congestion

Given: G=(V,E).

Given (31 1 ) e (Sk, tk).

Row: choose routing of all paths.

Column: choose edge.

Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r, €] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.
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Finding Equilibrium.

...see you Tuesday.
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