
Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)
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Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.
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Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.

Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x?

A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z?

x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say?

No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.
Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ℜn).

Mixed strategy for player i : xi is vector over strategies.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′i ,ui(x−i ;x ′i )≤ ui(x).

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.



Brouwer Fixed Point Theorem.
Theorem: Every continuous from from a closed compact convex
(c.c.c.) set to itself has a fixed point.

0
0

1

1

y = x

y = f (x)

Fixed point!

What is the closed convex set here?

The unit square? Or the unit interval?
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Brouwer implies Nash.

The set of mixed strategies x is closed convex set.

That is, x = (x1, . . . ,xn) where |xi |1 = 1.

αx ′+(1−α)x ′′ is a mixed strategy.

Define φ(x1, . . . ,xn) = (z1, . . . ,zn)

where zi = argmaxz ′i

[
ui(x−i ;z ′i

)−‖zi −xi‖22
]
.

Unique minimum as quadratic.
zi is continuous in x .
Mixed strategy utilities is polynomial of entries of x

with coefficients being payoffs in game matrix.

φ(·) is continuous on the closed convex set.

Brouwer: Has a fixed point: φ(ẑ) = ẑ.
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Fixed Point is Nash.

φ(x1, . . . ,xn) = (z1, . . . ,zn) where
zi = argmaxz ′i

[
ui(x−i ;z ′i

)+‖zi −xi‖22
]
.

Fixed point: φ(ẑ) = ẑ

If ẑ not Nash, there is i ,yi where

ui(ẑ−i ;yi)> ui((̂z))+δ .

Consider ŷi = ẑi +α(yi −zi).
ui( ˆz−i ; ŷi)+‖ẑi −yi‖2?

ui(ẑ)+α(ui(ẑ)+δ −ui(ẑ))−α2‖ẑi −yi‖2
= ui(ẑ)+αδ −α2‖yi − ẑi‖2 > ui(ẑ).

The last inequality true when α < δ

‖yi−zi‖2
.

Thus, ẑ not a fixed point!

Thus, fixed point is Nash.
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Consider ŷi = ẑi +α(yi −zi).
ui( ˆz−i ; ŷi)+‖ẑi −yi‖2?
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If ẑ not Nash, there is i ,yi where
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Consider ŷi = ẑi +α(yi −zi).

ui( ˆz−i ; ŷi)+‖ẑi −yi‖2?
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If ẑ not Nash, there is i ,yi where
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The last inequality true when α < δ

‖yi−zi‖2
.
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Sperner’s Lemma
For any n+1-dimensional simplex which is subdivided into smaller
simplices.

All vertices are colored {1, . . . ,n+1}.
The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored? And now?

By induction!
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Proof of Sperner’s.

One dimension:

Subdivision of [0,1].

Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.

Exterior region has excess out-degree:
one more (1,2) than (2,1).

There exist a region with excess in-degree.

(1,2,1) triangle has in-degree=out-degree.
(2,1,2) triangle has in-degree=out-degree.

Must be (1,2,3) triangle.
Must be odd number!
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n+1-dimensional Sperner.

R: counts “rainbow” cells; has all n+1 colors.

Q: counts “almost rainbow” cells; has {1, . . . ,n}.
Note: exactly one color in {1, . . . ,n} used twice.

Rainbow face: n−1-dimensional, vertices colored with {1, . . . ,n}.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: R+2Q = X +2Y

Rainbow faces on one face of big simplex.
Induction =⇒ Odd number of rainbow faces.
→ X is odd→ X +2Y is odd R+2Q is odd.

R is odd.
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Sperner to Brouwer
Consider simplex:S.

Closed compact sets can be mapped to this.
Let f (x) : S→ S.

Infinite sequence of subdivisions: S1,S2, . . .

Sj is subdivision of Sj−1. Size of cell→ 0 as j → ∞.

A coloring of Sj . Recall ∑i xi = 1 in simplex.
Big simplex vertices ej = (0,0, . . . ,1, . . . ,0) get j .

For a vertex at x .
Assign smallest i with f (x)i < xi .
Exists? Yes. ∑i f (x)i = ∑i xi .

Valid? Simplex face is at xj = 0 for opposite j .
Thus f (x)j cannot be smaller and is not colored j .

Rainbow cell, in Sj with vertices x j ,1, . . . ,x j ,n+1.
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Rainbow Cells to Brower.

Rainbow cell, in Sj with vertices x j ,1, . . . ,x j ,n+1
j .

Each set of points x j
i is an infinite set in S.

→ convergent subsequence→ has limit point.
→ All have same limit point as they get closer together.

x∗ is limit point.

f (x) has no fixed point =⇒ f (x)i ≥ xi for some i . (∑i xi = 1).

But f (x j ,i)i < x j ,i
i for all j and

limj→∞ x j ,i = x∗.

Thus, (f (x∗))i ≤ x∗i by continuity. Contradiction.
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Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with an unbalanced node (indegree 6= outdegree) must have
another.”

Exponentially large graph with vertex set {0,1}n.

Circuit given name of graph finds previous, P(v), and next, N(v).

Sperner: local information gives neighbor.

END OF THE LINE. Given circuits P and N as above, if On is
unbalanced node in the graph, find another unbalanced node.

PPAD is search problems poly-time reducibile to END OF LINE.

NASH→ BROUWER→ SPERNER→ END OF LINE ∈ PPAD.
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Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have
another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to n−1 elements, it must have a
collision.”

All exist: not NP!!! Answer is yes. How to find quickly?

Reduction:
END OF LINE→ Piecewise Linear Brouwer→ 3D−Sperner→ Nash.

Uh oh. Nash is PPAD-complete.

Who invented? PapaD and PPAD. Perfect together!
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