Strategic Games.

N players.

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.
Vector valued payoff function: $u\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{N}$).

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.
Vector valued payoff function: $u\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{N}$).
Example:

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.
Vector valued payoff function: $u\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{N}$).
Example:
2 players

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.
Vector valued payoff function: $u\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{N}$).
Example:
2 players
Player 1: \{ Defect, Cooperate \}.
Player 2: \{ Defect, Cooperate \}.

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.
Vector valued payoff function: $u\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{N}$).
Example:
2 players
Player 1: \{ Defect, Cooperate \}.
Player 2: \{ Defect, Cooperate \}.
Payoff:

Strategic Games.

N players.
Each player has strategy set. $\left\{S_{1}, \ldots, S_{N}\right\}$.
Vector valued payoff function: $u\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{N}$).
Example:
2 players
Player 1: \{ Defect, Cooperate \}.
Player 2: \{ Defect, Cooperate \}.
Payoff:

	\mathbf{C}	\mathbf{D}
C	$(3,3)$	$(0,5)$
D	$(5,0)$	$(1,1)$

Famous because?

$$
\left.\begin{array}{r|c|c|}
& \mathbf{C} & \mathbf{D} \\
\mathbf{C} & (3,3) & (0,5) \\
\mathbf{D} & (5,0) & (.1 .1)
\end{array} \right\rvert\, \begin{aligned}
& \text { What is the best thing for the players to do? }
\end{aligned}
$$

Famous because?

Both cooperate. Payoff $(3,3)$.

Famous because?

Both cooperate. Payoff $(3,3)$.
If player 1 wants to do better, what does she do?

Famous because?

Both cooperate. Payoff $(3,3)$.
If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$

Famous because?

Both cooperate. Payoff $(3,3)$.
If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$
What does player 2 do now?

Famous because?

Both cooperate. Payoff $(3,3)$.
If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$
What does player 2 do now?
Defects! Payoff (.1,.1).

Famous because?

Both cooperate. Payoff $(3,3)$.
If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$
What does player 2 do now?
Defects! Payoff (.1,.1).
Stable now!

Famous because?

Both cooperate. Payoff $(3,3)$.
If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$
What does player 2 do now?
Defects! Payoff (.1,.1).
Stable now!
Nash Equilibrium:

Famous because?

What is the best thing for the players to do?
Both cooperate. Payoff (3,3).
If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$
What does player 2 do now?
Defects! Payoff (.1,.1).
Stable now!
Nash Equilibrium:
neither player has incentive to change strategy.

Proving Nash.

n players.

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

$$
\forall i \forall x_{i}^{\prime}, u_{i}\left(x_{-i} ; x_{i}^{\prime}\right) \leq u_{i}(x)
$$

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\left.\in \mathfrak{R}^{n}\right)$.
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

$$
\forall i \forall x_{i}^{\prime}, u_{i}\left(x_{-i} ; x_{i}^{\prime}\right) \leq u_{i}(x)
$$

What is x ?

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

$$
\forall i \forall x_{i}^{\prime}, u_{i}\left(x_{-i} ; x_{i}^{\prime}\right) \leq u_{i}(x)
$$

What is x ? A vector of vectors: vector i is length m_{i}.
What is $x_{-i} ; z$?

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

$$
\forall i \forall x_{i}^{\prime}, u_{i}\left(x_{-i} ; x_{i}^{\prime}\right) \leq u_{i}(x)
$$

What is x ? A vector of vectors: vector i is length m_{i}.
What is $x_{-i} ; z$? x with x_{i} replaced by z.
What does say?

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

$$
\forall i \forall x_{i}^{\prime}, u_{i}\left(x_{-i} ; x_{i}^{\prime}\right) \leq u_{i}(x)
$$

What is x ? A vector of vectors: vector i is length m_{i}.
What is $x_{-i} ; z$? x with x_{i} replaced by z.
What does say? No new strategy for player i that is better!

Proving Nash.

n players.
Player i has strategy set $\left\{1, \ldots, m_{i}\right\}$.
Payoff function for player $i: u_{i}\left(s_{1}, \ldots, s_{n}\right)$ (e.g., $\in \mathfrak{R}^{n}$).
Mixed strategy for player $i: x_{i}$ is vector over strategies.
Nash Equilibrium: $x=\left(x_{1}, \ldots, x_{N}\right)$ where

$$
\forall i \forall x_{i}^{\prime}, u_{i}\left(x_{-i} ; x_{i}^{\prime}\right) \leq u_{i}(x)
$$

What is x ? A vector of vectors: vector i is length m_{i}.
What is $x_{-i} ; z$? x with x_{i} replaced by z.
What does say? No new strategy for player i that is better!
Theorem: There is a Nash Equilibrium.

Brouwer Fixed Point Theorem.

Theorem: Every continuous from from a closed compact convex (c.c.c.) set to itself has a fixed point.

Brouwer Fixed Point Theorem.

Theorem: Every continuous from from a closed compact convex (c.c.c.) set to itself has a fixed point.

Fixed point!

What is the closed convex set here?

Brouwer Fixed Point Theorem.

Theorem: Every continuous from from a closed compact convex (c.c.c.) set to itself has a fixed point.

Fixed point!

What is the closed convex set here?
The unit square?

Brouwer Fixed Point Theorem.

Theorem: Every continuous from from a closed compact convex (c.c.c.) set to itself has a fixed point.

Fixed point!

What is the closed convex set here?
The unit square? Or the unit interval?

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\arg _{\max }^{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.
z_{i} is continuous in x.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\operatorname{argmax}_{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.
z_{i} is continuous in x.
Mixed strategy utilities is polynomial of entries of x

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\operatorname{argmax}_{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.
z_{i} is continuous in x.
Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\operatorname{argmax}_{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.
z_{i} is continuous in x.
Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix.
$\phi(\cdot)$ is continuous on the closed convex set.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.
z_{i} is continuous in x.
Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix.
$\phi(\cdot)$ is continuous on the closed convex set.
Brouwer:

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x=\left(x_{1}, \ldots, x_{n}\right)$ where $\left|x_{i}\right|_{1}=1$.
$\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ is a mixed strategy.
Define $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$
where $z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)-\left\|z_{i}-x_{i}\right\|_{2}^{2}\right]$.
Unique minimum as quadratic.
z_{i} is continuous in x.
Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix.
$\phi(\cdot)$ is continuous on the closed convex set.
Brouwer: Has a fixed point: $\phi(\hat{z})=\hat{z}$.

Fixed Point is Nash.

$$
\begin{aligned}
& \phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right) \text { where } \\
& \quad z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
\end{aligned}
$$

Fixed Point is Nash.

$$
\begin{aligned}
& \phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right) \text { where } \\
& \quad z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
\end{aligned}
$$

Fixed point: $\phi(\hat{z})=\hat{z}$

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
u_{i}\left(\hat{z_{-i} ;} \hat{y_{i}}\right)+\left\|\hat{z_{i}}-y_{i}\right\|^{2} ?
$$

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} ; \hat{y}_{i}}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \quad u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2}
\end{aligned}
$$

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i}} ; \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}
\end{aligned}
\end{aligned}
$$

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\operatorname{argmax}_{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} i} \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}>u_{i}(\hat{z}) .
\end{aligned}
\end{aligned}
$$

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\operatorname{argmax}_{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} i} \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}>u_{i}(\hat{z}) .
\end{aligned}
\end{aligned}
$$

The last inequality true when $\alpha<\frac{\delta}{\left\|y_{i}-z_{i}\right\|^{2}}$.

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} i} \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}>u_{i}(\hat{z}) .
\end{aligned}
\end{aligned}
$$

The last inequality true when $\alpha<\frac{\delta}{\left\|y_{i}-z_{i}\right\|^{2}}$.
Thus, \hat{z} not a fixed point!

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\operatorname{argmax}_{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} i} \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}>u_{i}(\hat{z}) .
\end{aligned}
\end{aligned}
$$

The last inequality true when $\alpha<\frac{\delta}{\left\|y_{i}-z_{i}\right\|^{2}}$.
Thus, ẑ not a fixed point!

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} i} \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}>u_{i}(\hat{z})
\end{aligned}
\end{aligned}
$$

The last inequality true when $\alpha<\frac{\delta}{\left\|y_{i}-z_{i}\right\|^{2}}$.
Thus, \hat{z} not a fixed point!
Thus, fixed point is Nash.

Fixed Point is Nash.

$\phi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$ where

$$
z_{i}=\arg \max _{z_{i}^{\prime}}\left[u_{i}\left(x_{-i ; z_{i}^{\prime}}\right)+\left\|z_{i}-x_{i}\right\|_{2}^{2}\right] .
$$

Fixed point: $\phi(\hat{z})=\hat{z}$
If \hat{z} not Nash, there is i, y_{i} where

$$
u_{i}\left(\hat{z}_{-i} ; y_{i}\right)>u_{i}(\hat{(z)})+\delta .
$$

Consider $\hat{y}_{i}=\hat{z}_{i}+\alpha\left(y_{i}-z_{i}\right)$.

$$
\begin{aligned}
& u_{i}\left(\hat{z_{-i} i} \hat{y}_{i}\right)+\left\|\hat{z}_{i}-y_{i}\right\|^{2} ? \\
& \qquad \begin{aligned}
u_{i}(\hat{z})+\alpha\left(u_{i}(\hat{z})\right. & \left.+\delta-u_{i}(\hat{z})\right)-\alpha^{2}\left\|\hat{z}_{i}-y_{i}\right\|^{2} \\
& =u_{i}(\hat{z})+\alpha \delta-\alpha^{2}\left\|y_{i}-\hat{z}_{i}\right\|^{2}>u_{i}(\hat{z})
\end{aligned}
\end{aligned}
$$

The last inequality true when $\alpha<\frac{\delta}{\left\|y_{i}-z_{i}\right\|^{2}}$.
Thus, \hat{z} not a fixed point!
Thus, fixed point is Nash.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored?

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored? And now?

Sperner's Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
All vertices are colored $\{1, \ldots, n+1\}$.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored? And now?
By induction!

Proof of Sperner's.

One dimension:

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1,2)$ than $(2,1)$.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.
$(1,2,1)$ triangle has in-degree=out-degree.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.
$(1,2,1)$ triangle has in-degree=out-degree.
$(2,1,2)$ triangle has in-degree=out-degree.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges. Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.
$(1,2,1)$ triangle has in-degree=out-degree.
$(2,1,2)$ triangle has in-degree=out-degree.
Must be $(1,2,3)$ triangle.

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges. Separates two regions. Dual edge connects regions with 1 on right.
Exterior region has excess out-degree: one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.
$(1,2,1)$ triangle has in-degree=out-degree.

$(2,1,2)$ triangle has in-degree=out-degree.
Must be $(1,2,3)$ triangle.
Must be odd number!

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges. Separates two regions. Dual edge connects regions with 1 on right.
Exterior region has excess out-degree: one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.
$(1,2,1)$ triangle has in-degree=out-degree.

$(2,1,2)$ triangle has in-degree=out-degree.
Must be $(1,2,3)$ triangle.
Must be odd number!

Proof of Sperner's.

One dimension: Subdivision of $[0,1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Two dimensions.
Consider (1,2) edges. Separates two regions. Dual edge connects regions with 1 on right.
Exterior region has excess out-degree: one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.
$(1,2,1)$ triangle has in-degree=out-degree.

$(2,1,2)$ triangle has in-degree=out-degree.
Must be $(1,2,3)$ triangle.
Must be odd number!

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.

n+ 1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells;

n+ 1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$.

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$. X : number of boundary rainbow faces.

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$. X : number of boundary rainbow faces. Y : number of internal rainbow faces.

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies:

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$

$n+1$-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex.

n+1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex. Induction \Longrightarrow Odd number of rainbow faces.

n+1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex. Induction \Longrightarrow Odd number of rainbow faces.
$\rightarrow X$ is odd

n+1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex. Induction \Longrightarrow Odd number of rainbow faces.
$\rightarrow X$ is odd $\rightarrow X+2 Y$ is odd

n+1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex. Induction \Longrightarrow Odd number of rainbow faces.
$\rightarrow X$ is odd $\rightarrow X+2 Y$ is odd $R+2 Q$ is odd.

n+1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex. Induction \Longrightarrow Odd number of rainbow faces.
$\rightarrow X$ is odd $\rightarrow X+2 Y$ is odd $R+2 Q$ is odd.
R is odd.

n+1-dimensional Sperner.

R : counts "rainbow" cells; has all $n+1$ colors.
Q : counts "almost rainbow" cells; has $\{1, \ldots, n\}$. Note: exactly one color in $\{1, \ldots, n\}$ used twice.
Rainbow face: n - 1 -dimensional, vertices colored with $\{1, \ldots, n\}$.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.
Number of Face-Rainbow Cell Adjacencies: $R+2 Q=X+2 Y$
Rainbow faces on one face of big simplex. Induction \Longrightarrow Odd number of rainbow faces.
$\rightarrow X$ is odd $\rightarrow X+2 Y$ is odd $R+2 Q$ is odd.
R is odd.

Sperner to Brouwer
 Consider simplex:S.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.

Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$. Exists?

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$. Exists? Yes.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this. Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.
Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$. Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid?

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.
Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid? Simplex face is at $x_{j}=0$ for opposite j.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$. Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid? Simplex face is at $x_{j}=0$ for opposite j.
Thus $f(x)_{j}$ cannot be smaller and is not colored j.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.
Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid? Simplex face is at $x_{j}=0$ for opposite j.
Thus $f(x)_{j}$ cannot be smaller and is not colored j.
Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x^{j, n+1}$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.
Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid? Simplex face is at $x_{j}=0$ for opposite j.
Thus $f(x)_{j}$ cannot be smaller and is not colored j.
Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x^{j, n+1}$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.
Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid? Simplex face is at $x_{j}=0$ for opposite j.
Thus $f(x)_{j}$ cannot be smaller and is not colored j.
Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x^{j, n+1}$.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.
Infinite sequence of subdivisions: $\mathscr{S}_{1}, \mathscr{S}_{2}, \ldots$
\mathscr{S}_{j} is subdivision of \mathscr{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.
A coloring of \mathscr{S}_{j}. Recall $\sum_{i} x_{i}=1$ in simplex. Big simplex vertices $e_{j}=(0,0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x.
Assign smallest i with $f(x)_{i}<x_{i}$.
Exists? Yes. $\sum_{i} f(x)_{i}=\sum_{i} x_{i}$.
Valid? Simplex face is at $x_{j}=0$ for opposite j.
Thus $f(x)_{j}$ cannot be smaller and is not colored j.
Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x^{j, n+1}$.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.
But $f\left(x^{j, i}\right)_{i}<x_{i}^{j, i}$ for all j and

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.
But $f\left(x^{j, i}\right)_{i}<x_{i}^{j, i}$ for all j and
$\lim _{j \rightarrow \infty} X^{j, i}=x^{*}$.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.
But $f\left(x^{j, i}\right)_{i}<x_{i}^{j, i}$ for all j and
$\lim _{j \rightarrow \infty} X^{j, i}=x^{*}$.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.
But $f\left(x^{j, i}\right)_{i}<x_{i}^{j, i}$ for all j and
$\lim _{j \rightarrow \infty} x^{j, i}=x^{*}$.
Thus, $\left(f\left(x^{*}\right)\right)_{i} \leq x_{i}^{*}$ by continuity.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.
But $f\left(x^{j, i}\right)_{i}<x_{i}^{j, i}$ for all j and
$\lim _{j \rightarrow \infty} x^{j, i}=x^{*}$.
Thus, $\left(f\left(x^{*}\right)\right)_{i} \leq x_{i}^{*}$ by continuity. Contradiction.

Rainbow Cells to Brower.

Rainbow cell, in \mathscr{S}_{j} with vertices $x^{j, 1}, \ldots, x_{j}^{j, n+1}$.
Each set of points x_{i}^{j} is an infinite set in S.
\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^{*} is limit point.
$f(x)$ has no fixed point $\Longrightarrow f(x)_{i} \geq x_{i}$ for some $i .\left(\sum_{i} x_{i}=1\right)$.
But $f\left(x^{j, i}\right)_{i}<x_{i}^{j, i}$ for all j and
$\lim _{j \rightarrow \infty} x^{j, i}=x^{*}$.
Thus, $\left(f\left(x^{*}\right)\right)_{i} \leq x_{i}^{*}$ by continuity. Contradiction.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."
Exponentially large graph with vertex set $\{0,1\}^{n}$.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."

Exponentially large graph with vertex set $\{0,1\}^{n}$.
Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."
Exponentially large graph with vertex set $\{0,1\}^{n}$.
Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$. Sperner: local information gives neighbor.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."

Exponentially large graph with vertex set $\{0,1\}^{n}$.
Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$. Sperner: local information gives neighbor.
END OF THE LINE. Given circuits P and N as above, if O^{n} is unbalanced node in the graph, find another unbalanced node.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."

Exponentially large graph with vertex set $\{0,1\}^{n}$.
Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$. Sperner: local information gives neighbor.
END OF THE LINE. Given circuits P and N as above, if O^{n} is unbalanced node in the graph, find another unbalanced node.
PPAD is search problems poly-time reducibile to END OF LINE.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."
"Graph with an unbalanced node (indegree \neq outdegree) must have another."

Exponentially large graph with vertex set $\{0,1\}^{n}$.
Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$. Sperner: local information gives neighbor.
END OF THE LINE. Given circuits P and N as above, if O^{n} is unbalanced node in the graph, find another unbalanced node.
PPAD is search problems poly-time reducibile to END OF LINE.
NASH \rightarrow BROUWER \rightarrow SPERNER \rightarrow END OF LINE \in PPAD.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.
PLS: "Every directed acyclic graph must have a sink."

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!!

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction:

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash. Uh oh.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash. Uh oh. Nash is PPAD-complete.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash. Uh oh. Nash is PPAD-complete.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash.

Uh oh. Nash is PPAD-complete.
Who invented?

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash.

Uh oh. Nash is PPAD-complete.
Who invented? PapaD

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash.
Uh oh. Nash is PPAD-complete.
Who invented? PapaD and PPAD.

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."
PPP: "If a function maps n elements to $n-1$ elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?
Reduction: END OF LINE \rightarrow Piecewise Linear Brouwer $\rightarrow 3 D$-Sperner \rightarrow Nash.
Uh oh. Nash is PPAD-complete.
Who invented? PapaD and PPAD. Perfect together!

