Strategic Games.

N players.

Each player has strategy set. $\{S_1, ..., S_N\}$.

Vector valued payoff function: $u(s_1,...,s_n)$ (e.g., $\in \mathfrak{R}^N$).

Example:

2 players

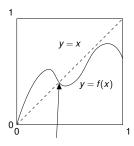
Player 1: { \mathbf{D} efect, \mathbf{C} ooperate }.

Player 2: { **D**efect, **C**ooperate }.

Payoff:

Brouwer Fixed Point Theorem.

Theorem: Every continuous from from a closed compact convex (c.c.c.) set to itself has a fixed point.



Fixed point!

What is the closed convex set here?

The unit square? Or the unit interval?

Famous because?

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium:

neither player has incentive to change strategy.

Brouwer implies Nash.

The set of mixed strategies *x* is closed convex set.

That is,
$$x = (x_1, ..., x_n)$$
 where $|x_i|_1 = 1$.

$$\alpha x' + (1 - \alpha)x''$$
 is a mixed strategy.

Define
$$\phi(x_1,...,x_n) = (z_1,...,z_n)$$

where
$$z_i = \arg\max_{z'_i} \left[u_i(x_{-i;z'_i}) - \|z_i - x_i\|_2^2 \right].$$

Unique minimum as quadratic.

 z_i is continuous in x.

Mixed strategy utilities is polynomial of entries of *x* with coefficients being payoffs in game matrix.

 $\phi(\cdot)$ is continuous on the closed convex set.

Brouwer: Has a fixed point: $\phi(\hat{z}) = \hat{z}$.

Proving Nash.

n players.

Player *i* has strategy set $\{1, ..., m_i\}$.

Payoff function for player $i: u_i(s_1,...,s_n)$ (e.g., $\in \Re^n$).

Mixed strategy for player i: x_i is vector over strategies.

Nash Equilibrium: $x = (x_1, ..., x_N)$ where

$$\forall i \forall x_i', u_i(x_{-i}; x_i') \leq u_i(x).$$

What is x? A vector of vectors: vector i is length m_i .

What is x_{-i} ; z? x with x_i replaced by z.

What does say? No new strategy for player *i* that is better!

Theorem: There is a Nash Equilibrium.

Fixed Point is Nash.

$$\begin{aligned} \phi(x_1, \dots, x_n) &= (z_1, \dots, z_n) \text{ where} \\ z_i &= \arg\max_{z_i'} \left[u_i(x_{-i, z_i'}) + \|z_i - x_i\|_2^2 \right]. \end{aligned}$$

Fixed point: $\phi(\hat{z}) = \hat{z}$

If \hat{z} not Nash, there is i, y_i where

$$u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta.$$

Consider
$$\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i)$$
.

$$u_i(\hat{z}_{-i}; \hat{y}_i) + ||\hat{z}_i - y_i||^2$$
?

$$u_{i}(\hat{z}) + \alpha(u_{i}(\hat{z}) + \delta - u_{i}(\hat{z})) - \alpha^{2} ||\hat{z}_{i} - y_{i}||^{2}$$

= $u_{i}(\hat{z}) + \alpha\delta - \alpha^{2} ||y_{i} - \hat{z}_{i}||^{2} > u_{i}(\hat{z}).$

The last inequality true when $\alpha < \frac{\delta}{\|y_i - z_i\|^2}$.

Thus, 2 not a fixed point!

Thus, fixed point is Nash.

Sperner's Lemma

For any n+1-dimensional simplex which is subdivided into smaller

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.

Where is multicolored?

Where is multicolored? And now?

By induction!

Sperner to Brouwer

Consider simplex:S.

Closed compact sets can be mapped to this.

Let $f(x): S \rightarrow S$.

Infinite sequence of subdivisions: $\mathcal{S}_1, \mathcal{S}_2, \dots$

 \mathscr{S}_i is subdivision of \mathscr{S}_{i-1} . Size of cell $\to 0$ as $j \to \infty$.

A coloring of \mathcal{S}_i . Recall $\sum_i x_i = 1$ in simplex.

Big simplex vertices $e_i = (0, 0, ..., 1, ..., 0)$ get j.

For a vertex at x.

Assign smallest i with $f(x)_i < x_i$.

Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_i = 0$ for opposite j. Thus $f(x)_i$ cannot be smaller and is not colored j.

Rainbow cell, in \mathcal{S}_i with vertices $x^{j,1}, \dots, x^{j,n+1}$.

Proof of Sperner's.

One dimension: Subdivision of [0, 1].

Endpoints colored differently.

Odd number of multicolored edges.

Two dimensions.

Consider (1,2) edges.

Separates two regions.

Dual edge connects regions with 1 on right.

Exterior region has excess out-degree:

one more (1,2) than (2,1).

There exist a region with excess in-degree.

(1,2,1) triangle has in-degree=out-degree. (2,1,2) triangle has in-degree=out-degree.

Must be (1,2,3) triangle. Must be odd number!

Rainbow Cells to Brower.

Rainbow cell, in \mathcal{S}_i with vertices $x^{j,1}, \dots, x_i^{j,n+1}$.

Each set of points x_i^j is an infinite set in S.

- \rightarrow convergent subsequence \rightarrow has limit point.
- → All have same limit point as they get closer together. x* is limit point.

f(x) has no fixed point $\implies f(x)_i \ge x_i$ for some i. $(\sum_i x_i = 1)$.

But $f(x^{j,i})_i < x_i^{j,i}$ for all j and $\lim_{i\to\infty} x^{j,i} = x^*$.

Thus, $(f(x^*))_i \le x_i^*$ by continuity. Contradiction.

n+1-dimensional Sperner.

R: counts "rainbow" cells; has all n+1 colors.

Q: counts "almost rainbow" cells; has $\{1, ..., n\}$.

Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: n-1-dimensional, vertices colored with $\{1, \dots, n\}$.

X: number of boundary rainbow faces.

Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: R+2Q=X+2Y

Rainbow faces on one face of big simplex.

Induction \implies Odd number of rainbow faces.

 \rightarrow X is odd \rightarrow X + 2Y is odd R + 2Q is odd. R is odd.

Computing Nash Equilibrium.

PPAD - "Polynomial Parity Argument on Directed Graphs."

"Graph with an unbalanced node (indegree \neq outdegree) must have another."

Exponentially large graph with vertex set $\{0,1\}^n$.

Circuit given name of graph finds previous, P(v), and next, N(v).

Sperner: local information gives neighbor.

END OF THE LINE. Given circuits P and N as above, if O^n is unbalanced node in the graph, find another unbalanced node.

PPAD is search problems poly-time reducibile to END OF LINE.

 $\mathsf{NASH} \to \mathsf{BROUWER} \to \mathsf{SPERNER} \to \mathsf{END} \ \mathsf{OF} \ \mathsf{LINE} \in \mathsf{PPAD}.$

Other classes.

PPA: "If an undirected graph has a node of odd degree, it must have another.

PLS: "Every directed acyclic graph must have a sink."

PPP: "If a function maps n elements to n-1 elements, it must have a collision."

All exist: not NP!!! Answer is yes. How to find quickly?

Reduction

END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3*D*-Sperner \rightarrow Nash.

Uh oh. Nash is PPAD-complete.

Who invented? PapaD and PPAD. Perfect together!